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ARTICLE

Finite Time Blow Up of Solutions for the m-Laplacian
Equation With Variable Coefficients

Erhan Piskin*, Ayse Fidan

Dicle University, Department of Mathematics, Diyarbakir, 21280, Turkey

Abstract

In this work, we deal with the m- Laplacian equation with time dependent variable coefficients. Under suitable
conditions on variable coefficients, we prove the blow up of solutions for finite time with negative initial energy. These
results partially generalize and extend some recent ones in previous literature.
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1. Introduction

I n this paper, we are concerned with the following
problem:

damping (Ju|’ *u;) and the source term (|u|’ u)
makes the problem more interasting. Levine [4,5]
first studied the interaction between the linear
damping (p=2) and source term by using Con-
cavity method. But this method can't be applied in

uy — div (V" V) + wy ()P 2w = o ()] u, xEQ,t>0

u(x,0) = up(x),u(x,0) = uy(x),
u(x,t) =0,

where Q is a bounded domain in R” (n €N) with a
smooth boundary 0Q, and m > 2,p > 2,q>2, u,(t) is
a non-negative function of ¢+ and u,(t) is a positive
functions of t. The quantity ||’ u; is a damfing
term which assures global existence, and |u|” “u is
the source term which contributes to nonexistence
of global solutions. u,(¢) and u,(t) can be regarded
as two control buttons which can dominate the po-
larity between damping term and source term.
When uq(t) = u,(t)=1 and m = 2, then the problem
(1) can be reduced to the following wave equation

g — AuA+ |y = |u| " u

Many authors have been established the exis-
tence, nonexistence and decay of solutions, see
[2,4—6,12,13]. The interaction between nonlinear

xeQ, (1)
xE0Q,

the case of a nonlinear damping term. Georgiev and
Todorova [2] extended Levine's result to the
nonlinear case (p >2). They showed that solutions
with negative initial energy blow up in finite time.
Later, Vitillaro in [13] extended these results to sit-
uations where the nonlinear damping and the so-
lution has positive initial energy.

Pigkin and Fidan [9] considered

Uy — A — Auyp+-puq (¢) |ut|p_2ut =u,(t) |u|‘7_2u7

with initial-boundary conditions, and proved a
blow up of solutions.
Messaoudi [7], studied the following problem

Uy — div(|Vu" 7 Vu) — A+ || " e = [ulP (2)
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He studied decay of solutions of the problem
(2). Then the problem (2) was studied by Wu and
Xue [14] and Pigkin [8].
Zheng et al. [16] considered the Petrovsky equa-
tion in a bounded domain. They proved the blow up
of solutions.

ty — D2u+ Ky (8) g™y = ko (8) |0t

In this paper, we established the blow up of
solutions. To our best knowledge, the blow up of
solutions of m-Laplacian equation with variable
coefficients have not yet studied. By using the same
techniques in [16].

This paper is organized as follows: In the next
section, we present some lemmas, not notations and
local existence theorem. In section 3, the blow up of
solutions are given.

2. Preliminaries

In order to state the main results to problem (1)
more clearly, we start to our work by introducing
some notations lemmas which will be used in this
paper. Throughout this paper |jul|, = [[u[/,,o, and
|ull, = ||u|| denote the usual LP(Q) norm and L?(Q)
norm, respectively. Also, W{"*(Q)=H(Q) is a
Hilbert spaces (see [1, 11], for details).

Lemma 2.1. [3] Assume that
m<g<oo,n<m,

nm
m<q<
n—m
Then, there exist a positive constant C>1,
depending on Q only, such that

JA>m.

Jully < (11 vully + ) 3)

For any uEW&’m(Q) and m <s <gq.

Lemma 2.2. Suppose that u(t) is a nonnegative
function of t, u,(t) is a positive functions of t and
uh(t) > 0. Let u(t) be a solution of problem (1) then
the energy functional E(t) is non- increasing,
namely E'(t) <O0.

Proof. Multiplying the equation (1) with u; and
integrating with respect to x over the domain Q, we
obtain

d (1 1o m Holt)
i G+ ol =22t ) = — a0l

QTN @)

t
q

By the equality (4), we get

Hm=—mwww—%ﬁ

and E(t) < E(0). Where

Nz(t)
q

lullg <0,

1 5 1. . .
E() =g llull” + lIVull, == =lull; (5)

and

1 1 (0
EO) =gl P+ 9l — 22
In order to obtain our main results, we set

H(t)= —E(t) (6)
In the following remark, C denotes a generic

constant that varies from line to line. Combining (3),
(5) and (6), we obtain

Remark 2.1. Assume that

m<g<oo,n<m,

m<g< ,>m,

n—m

and energy functional E(t) <0. Then, there exist a
positive constant C, depending only on Q, such that

s po (¢
nmusc(Hm+wwW+<%§%4)wm) @)
for any uEWé"m(Q) and m <s<q.

Next, we state the local existence theorem that can
be established by combining arguments of [2,10,15].

Theorem 2.1. (Local existence). Suppose that

m<g<oo,n<m,

nm
m<g<
n—m

Then, for any given (uo, u;) €(Wy™(Q) x LA(Q)),
the problem (1) has a local solution satisfying

,>m.

ueC([0,T]: Wy™(Q),u; € C(
x [0, T]; L*(©2)) nL*(, [0, T]))

for some T>0.

3. Blow up

In this section, we will consider the blow up of
solutions for the problem (1).
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Theorem 3.1. Let the assumptions of Lemma 2 hold.
And assume that y,(t) is a nonnegative function of ¢,
Uy (t) is a positive functions of ¢, u5(¢t) > 0 and

}imﬂl(t)ﬂz(t)a(pil)
exists, where
9-2 q9-p {
20 'q(p—1)
Then the solution of Eq. (1) blows up in finite
time T and

0<a§min{

. 1-«
T <———
~ ayL=:(0)

if g > p and the initial energy function

E(0)<0,
where
L(0)=[H(0)]" * + e/uguldx > 0.
Q
Proof. From (4) — (6), we get
d w5 (8)

#HO=m Ol +52 2] > 0 (®)

for almost, every t€[0,T). Also,

0< H(O)SH(t)SMZq(ﬂluHZJE [o,T). )
Define
L(t) = H(f) + ¢ / g (10)
Q
where ¢> 0 is small to be chosen later, and
O<a<mind1=2_97P | (11)
2q q(p-1)
Differentiating (10) with respect to t and

combining the first equation of (1), we have

L'(t)y=(1-a)H “(H)H'(t) + s/ (uny +u ) dx

=(1—a)H *(HH'(t)

+e/ (udiv (| V"2 Vu) — g (1) [l e = ey (8) )7 + 12 dx

Q

= (1= a)H “(OH'(t) +¢llus]|* — ]| V[ sy x

et O] — e 1) [

Q

(12)

Due to the Holder's and Young's inequalities, we
get

a0 ] < ) ol e
Q Q

< (/ul(t)lutlpdﬁppl(/m(t)lut"dX)p

-1
14

=

<

_r o
()0 ’”’lllut||5+?ul(t)||u||§ (13)

where ¢ is positive constant to be determined later.
According to the conditions u,(t) > 0, u5(t) > 0 and
(8), we obtain
H'(#) =y (8) eI

Combining (5), (6), (12), (13) and (14), we get

(14)

L'(t) > [(1 —a)H™(t) Jr%lgéﬂ H'(t)

te (qH(t) - %pm ® ||ut||,':)

+s(g+1) Jou [+ (2

T 1) vul. (15)

Since the integral is taken over the variable x, it is
reasonable to take ¢ depending on variable t. From
(9), we get

0 <H™(t) <H(0),

for every t > 0. Hence H “(¢) is a positive function
and bounded. Thus, by taking ¢ 7T = kH “(¢), for
large k to be specified later, and substituting in (15),
we get

-1

L2 |(1-e) 2 Rek] B0 (@) el wul;

+e(q+1)||ut\|2+e<

g T 1) vul”
: 1) vull;

te [qH(t)—%M(t)H“(”l) <t>|u||z]. (16)

By using the (5),(6),(9) and the embedding
L1(Q) = LF(Q) (g > p), we arrive at [[u]) < C|lul} and
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L'(t)> [(1 —a) —pr%lsk] H“(H)H'(t) — ¢||Vul|;

oL 1) P+ e (L 1) | vu

Gk OV Y )
oottt - = (20) T I )
From (11), we get 2<s=p+qa(p-1) <q.

Combining (5), (6), Remark 3 and (17), we obtain

L'(t)> {(1 —a) _pr%lsk] H *(t)H'(t) +€<g+ 1) [As
(Z 1) 9]

GH(E) — Ck 1y (570 1 (H(t) T2

5 (t
+"q<)+1>|u|g]

-1 ek} H(8)H'(¢)

+e

Ky () Wf)) H(Y)

() 1>u1<t>} o

+e {qzqzﬂz(t) _Clklfpﬂz(t)a(pil)ﬂl (t) (M{;t)

1)l

(18)

where C; = Since hmul(t)u 1)*PY exists,

pqa(zﬂ 1)
(D (H*P~Y is bounded for every t>0. Then, we
choose k large enough so that the coefficients of
2
H(t), |||
Therefore, we arrive at

and ||u||g in (18) are strictly positive.

L'(t) > {(1 —a)-F ; ! ek} H(H)H' (1)

8 0+ o+ (1) ] (19)
where

B= min{qziz — Gk Py, (t)a(pil)ﬂl (t),

+6 alp—
qT_Clkl_pﬂz(t) v 1)M1(t)a

qz_qzluz (t) — Cik" Py (t)a(pil) pa(t) }

1s the minimum of the coefficients of H(¢),
\|uag||* and Hqu Once k is f1xed we can take ¢ small
enough so that (1-a)— —ek >0 and

L(0) = [H(0)]"* +¢ / totizdx > 0. (20)
Then (19) becomes

L'(t) =B

H(t) + |Jue]|* + (
Then, we have

L(t) > L(0)>0. (22)
For the definition of L(t) (see (10)) we have

o

Q

(¢
0.1 julg| 0. @)

< flel

< el 1| (23)

using Holder's inequality and the embedding
L1(Q)=LF(Q) (g >p). Thanks to Young's inequality,
we have

1
T

./uutdx B

Q

s S B
< Cllal7 [l

< c(|u||:,—2«+ ||uf||2) (24)

from (11), we arrive at ;3-<q.
Combining (24) and Remark 3, we get

| /uutdx&sc(H<t>+nut|2+(“2;” Yty @)

Therefore, we obtain

Lra(t) = {Hl‘“(t) Jrs/uutdx]ﬁ

1
111)

“Z;t) +1) ||u||g). (26)

1

< 2t (H(t) +le

uudx

< C(H(t)+ |aag]|* + (
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Combining (21), (22) and (26), we have
L'(£) > yLra(t) (27)

where v is a constant depending only on C, 8 and e.
Integrating (27), we arrive at

L) 2 ey~ (28)
If
ozv%;((ﬂ) LTH(0) =7t =0,
Hence, L(t) blows up in finite time T" and
. 1-«
~ ayLta(0)’

which complete the proof of the Theorem.
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