Review of Key Derivation Functions in Cryptographic Systems

Hasan Kadhim A. Alsuwaiedi
Iraqi Commission for Computers & Informatics, Informatics Institute for Postgraduate Studies, Baghdad, Iraq, phd202030563@iips.icci.edu.iq

Abdul Monem S. Rahma
Computer Science Department Al-Maarif University College, Iraq

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Biology Commons, Chemistry Commons, Computer Sciences Commons, Environmental Sciences Commons, Geology Commons, Mathematics Commons, and the Nanotechnology Commons

Recommended Citation

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.
Review of Key Derivation Functions in Cryptographic Systems

Hasan Kadhim A. Alsuwaiedi a,*, Abdul Monem S. Rahma b

a Iraqi Commission for Computers & Informatics, Informatics Institute for Postgraduate Studies, Baghdad, Iraq
b Computer Science Department Al-Maarif University College, Al Anbar, Iraq

Abstract

Because of its significance in the formation of the core of encryption/decryption algorithms, the key derivation function (KDF) or pseudorandom number generator (PRNG) plays a major part in the cryptographic system. Random numbers are required for the usage of encryption and decryption techniques in a variety of network security applications. In this research we focus on key generation functions, which are an important aspect of symmetric and asymmetric algorithms. Disguising the background of PRNG basics and attempting to characterize and evaluate several publications that offer proposals for key generators.

Keywords: Key derivation function, Pseudorandom number generator (PRNG), Key generation

1. Introduction

The continuous developments in digital information technology, which are made by the evolution in the digital and electronic contents and applications, in addition to the expansion of the Internet network, have complicated the digital world and necessitates the preservation of critical and sensitive data transmitted. It is also well known that Internet communication devices and tools are very inexpensive around the world, with the only negative being the issue of security, which can lead to the urgent need to invest heavily in the development of encryption methods. In today's digital world, information security has become one of the most crucial criteria [1].

In information security systems, key derivation functions or pseudorandom number generators (PRNGs) are employed in numerous domains of technology. The PRNG can be categorized based on several characteristics, including the implementation technique (software, hardware), immunity to exposure (cryptographically secure, cryptographically insecure), and the algorithms used the one-way functions, elementary functions, and the shift registers [2].

When a key is strong, it can withstand cryptanalysis, even if the attacker discovers all system information linked to the production or verification of the encryption key. The remainder of this paper is organized as follows: In Section Background, we go through the basics of the infrastructure, as well as the different types of key generation functions and how they're implemented. In Section PRNG key generator tests, Tests and measurements for the PRNG Key Generator are explained. In Section Literature survey, the analysis of the comparison table. Finally, in section Comparison table, the Conclusions are stated.

2. Background

2.1. Key derivation function

The Key Derivation Function (KDF) is a function that takes an input value (key and other input data) and returns an additional key that cryptographic algorithms can use. The KDF uses pseudorandom
functions. The Key Derivation Function was explained as a process that possibly involves two different steps: 1) extraction of randomness to generate an initial key. 2) Iterative key expansion to generate new keys from the starting key and other inputs.

Inside the KDF, a pseudorandom function is used which is considered as a basic construction block represented as \(PRF(s,x) \) where \(s \) as index or seed and input variables \(x \). The pseudorandom function's output can be utilized as keying material [1]. For the derivation, the use of either the keyed-hash Authentication Message (HMAC) or the Message Authentication Message (CMAC), which uses ciphers considered as the pseudorandom function [1,2].

A key derivation function iterates a pseudorandom function several times and concatenates the results until the required length bits of keying material are generated as in Fig. 1 below [3].

The cryptographic applications typically using the algorithmic techniques concerned the generation of the pseudorandom numbers which can be used in, key distribution and mutual authentication schemes, session key generation, RSA public-key algorithm creation, and bitstream generation in symmetric encryption (ex. RC4 algorithm) [4].

There are two types of pseudorandom number generator algorithms:

- The linear congruential generator: the linear congruential method is a widely used technique proposed by Lehmer for pseudorandom generators. Represented by the equation:

\[
X_{n+1} = (aX_n + c) \mod m
\]

\(m \) the modulus \(m \geq 0 \)
\(a \) the multiplier \(0 < a < m \)
\(c \) the increment \(0 \leq c < m \)
\(X_0 \) the starting value, or seed \(0 \leq X_0 < m \)

The \(m, a, c \) and \(X_0 \) are integers, then the equation will generate a sequence with integers in the domain \(0 \leq X_n \leq m \). The chosen values \(a, c, \) and \(m \) is crucial in generating a good random number technique [4].

- Blum Blum Shub generator: The Blum-Blum-Shub (BBS) generator (writers Lenore Blum, Manuel Blum, and Michael Shub) was first proposed in 1986 and has since become a widely used secure PRNG technique. It's built on the employment of a crypto-secured one-way function that's focused on program implementation. The BBS generator generates a \(Bi \)-bit sequence using the following algorithm:

\[
X_0 = s^2 \mod n \\
\text{for } i=1 \text{ to } \infty \\
X_i = (X_{i-1})^2 \mod n \\
B_i = X_i \mod 2
\]

\(s \) is a random number relatively prime to \(n, n = p \times q \) (both \(p \) and \(q \) are prime numbers too). As a result, for each iteration, the least significant bit is taken. as shown in Fig. 2 [5].

2.2. Utilization of pseudorandom number generation

2.2.1. Block cipher

One of the famous approaches to building the PRNG, by using the symmetric block cipher which is considered the core of PRNG mechanisms. Any input clear text (plaintext), produces a symmetric block cipher text as a random output. Therefore, a symmetric block cipher is a good mechanism to construct a pseudorandom number generator.

DES and AES are considered standard block cipher mechanisms therefore the security distinctive of the PRNG can be confirmed and established.
in many implementations of DES and AES
applications.

The counter CTR, in every plaintext block, is
XORed with an encrypted counter. For each subse-
quent block, the counter is increased. And the
Output Feedback OFB when the previous encryp-
tion output is utilized as the input to the encryption
process, and entire blocks are employed. Both the
CTR and OFB represent the two approaches to
using the block ciphers for constructing the PRNG
as illustrated in Fig. 3 [4].

2.2.2. Stream ciphers

Stream ciphers encrypt one bit or byte or larger
than a byte at one time. Fig. 4 depicted the structure
of the stream ciphers, which depicted the encryp-
tion and decryption process with the combination
of the pseudorandom number generation (key-
stream generator). The stream cipher could be as
secure as a block cipher with the same key length.
If there is an application that demands encryption
and decryption of stream data, over a communi-
cation channel or web link/browser, the stream cipher might be better than the block cipher
[5].

RC4 is one of the basic stream cipher algorithms
designed by Ron Rivest for RSA in 1986 which uses
the random permutation. One of its main imple-
mentations is the wireless LAN standard IEEE
802.11, of Wi-Fi Protocol Access (WPA) which uses
the RC4 algorithm [6].

3. PRNG key generator tests

The output secrecy of PRNG produces specific
requirements in the disciplines of randomization,
unpredictability, and seed characters arise as a
result.
- **Randomness**: although being deterministic, the resulting PRNG bit stream should appear random. Randomness has three characteristics:
 - **Uniformity**: this means in short, it’s equally likely that zero or one will appear, with the probability of each being exactly as \(n/2 \), where \(n = \) sequence length.
 - **Scalability**: If a chain is random, any subsequence retrieved from it should be random as well.
 - **Consistency**: A generator’s behavior must be consistent across different starting values (seeds) [4].

The NIST standards SP 800–22 registered fifteen statistical analysis recommended tests, beyond the scope of this paper. Therefore we list three important types as follows:

- **Frequency test**: The target of this mechanism is to specify whether a sequence’s number of ones and zeros are even and the same as it would be predicted for a truly random sequence.
- **Runs test**: The goal of this method is to check if the number of one-and-zero runs of various lengths is as predicted for a random pattern [7].
- **Maurer’s test**: The aim of this test is the number of bits between the same equivalent patterns (compressed sequence). The test’s goal is to see if the matching sequence can be compressed greatly without sacrificing any information [7].
- **Seed requirements**: the seed that works for input to the PRNG must be secure for cryptographic applications. Because the PRNG is a deterministic algorithm, the output can be classified if the attacker can determine the seed. As a result, the seed must be unpredictably unexpected. The seed should, in reality, be a pseudorandom digit [4].
- **Unpredictability**: should be present in a stream of pseudorandom numbers (both forward and backward). If the created bit-stream appears random, it is hard to forecast a specific bit or bit-sequence based on previous bits’ capacities. Also, if the bit-sequence looks to be random, there is no way to guess the seed from the bit-sequence [6].

4. **Literature survey**

S.M and A.M in this paper [8], proposed a new modification to the Blowfish algorithm which use three generated keys, instead of using an XOR, a multi-state operation is used in the encryption and decryption procedures. Rather than one for calculating the state table numbers and managing the variable block bit widths (1, 2, 4, and 8 bits). To increase the complexity of the proposed technique, these tables are created from the addition table in a Galois field GF (2n) based on variable block bit size.

W. W and C. W [9], proposed a security framework model known as The CAM (Adaptive Chosen All Inputs Model) examines the security of KDFs in terms of bit flipping and timing attacks. Existing KDFs are evaluated using this security model. The results reveal that for both the bit-flipping and timing attacks, none of the available KDFs are safe in CAM. The cryptographic keys’ security feature is indistinguishable from random strings of identical length. As a result, this study proposes a new KDF that has been shown secure in CAM.

L.T and H.L [10] submitted a modified data encryption algorithm in cloud computing. By analyzing and modifying the advanced encryption standard for data security in cloud computing through a proposing a random disturbance information to improve the data security, by column mix operation and key choreography in AES are improved. Tests and experiments are done on Hadoop, indicate that the proposed solutions ensures that the attribute privacy and algorithm efficiency for data storage in mobile cloud computing.

Talib M and Lahieb Mohammed [11], based on the confusion and diffusion architecture they proposed a new concept of text encryption algorithm. Suggested Pseudo-Random Number Generator (PRNG) approach derived from the input key’s SHA-1 digest and plain text using Newton Raphson’s method. The suggested PRNG was designed to generate a random integer key sequence that is the same length as the plaintext needed to permute the characters locations in the confusion stage, as well as a starting key for the RC4 random generator. During the diffusion step, the RC4 method is employed to produce a new PRNG key sequence to modify the value of the characters.

Álvarez. R and Martínez. F [12] proposes a novel nonlinear filter design that improved the output sequences of pseudo random generators in terms of complexity. It is built on four seed-dependent substitution-boxes, an evolving internal state register, and a mixture of different sorts of operations with the goal of diffusing nonrandom patterns of input sequence. It is inspired by techniques used in symmetric ciphers. The approach delivers great unpredictability and can even convert a basic counter generator into fully useable pseudo random.
sequences, according to test findings. Furthermore, the performance was great while the storage use was minimal, and the implementation used low-power computing platforms.

K. Raghunanda and Aithal Ganesh [13] using the notion of false modulus and the extended Pell’s equation, we may improve security. The extended Pell’s equation reveals that the public key exponent is dependent on multiple factors, making obtaining the private key parameter a major difficulty. Which reflect on emphasizes the RSA by propose a new method of key generation.

Alz W. and V. Liwandouw [14] the diffusion qualities of the Shannon principle may be achieved by using logistics functions as a random number generator in a cryptography procedure. This research proposes three strategies for providing input key flexibility while employing the domain logistics function’s x0 value. Each method does not provide a sample that is inversely or directly proportional to the value of x0 and relative error x0. As a result, key inputs may be used to determine the existence of logistical functions in creating chaotic numbers. Furthermore, the resulting random numbers are dispersed equally across the chaotic range, which strengthens the process if used as a key in cryptography.

H. Atee, R. Ahmad [15] proposed a sub key generation concept for achieving a secure cryptosystem based on Artificial Neural Network (ANN) algorithm. The input hidden layer weights and data are initialized (in each cycle). The initialization key is based on the topology of the ANN, the activation function, and the seeds for the Pseudo-Random Number Generator (PRNG). The output layer weights are used to create the sub-key in each round.

J. Mcginthy, A. Michaels [16] introduced a pseudorandom number generator (PRNG) based on the Residue Number System (RNS) and the key derivation function (PKDF) that has high initial energy efficiency for IoT devices. Implementations were performed, Subsequent embedded software on a MSP430 and MSP432 (mixed-signal microcontroller) and the key generation function of the Transport Layer Security (TLS) 1.3 hash-based message authentication code (HMAC). Adding an extra layer of security on top of the PRNGs to provide design flexibility for resource-constrained devices.

Baby T. and Sujatha R [17]. Chaotic autonomous oscillator circuits were created in this research to generate a binary sequence that may be utilized as a key generator for cryptographic methods to ensure data security. The resulting binary sequences are tested for randomness using the NIST standard test and the Dieharder battery test. Furthermore, these random sequences may be utilized for a variety of purposes, including NONCE creation, One-time-pad, and initial password in cryptosystem settings.

5. Comparison table

<table>
<thead>
<tr>
<th>No.</th>
<th>Ref</th>
<th>Algorithm</th>
<th>Key size</th>
<th>Flexible</th>
<th>Feature</th>
<th>Methods of key Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8]</td>
<td>New modifica- tion of Blowfish >algorithm</td>
<td>Variable block bit size</td>
<td>Efficiency</td>
<td></td>
<td></td>
<td>Multi-state tables operation >instead of an XOR operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keys cannot be >distinguish- ed from random >strings of equal length.</td>
<td>keys cannot be >distinguish- ed from random >strings of equal length.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[9]</td>
<td>CAM is a new security model >for analyzing the security >of KDFs.</td>
<td>Security versus >performance >efficiency trade-off</td>
<td>Security versus >performance >efficiency trade-off</td>
<td></td>
<td></td>
<td>Randomness timing of the >alternative KDF</td>
</tr>
<tr>
<td>[10]</td>
<td>A Modified Advanced Encryption Standard (AES)</td>
<td>key choreography and >column mix operation</td>
<td>key choreography and >column mix operation</td>
<td>yes</td>
<td></td>
<td>algorithm has better key >sensitivity</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>No.</th>
<th>Ref</th>
<th>Algorithm</th>
<th>Key size</th>
<th>Flexible</th>
<th>Feature</th>
<th>Methods of key Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>[11]</td>
<td>Enhanced RC4 Algorithm</td>
<td>The input key's SHA-1 digest.</td>
<td>high-performance and high-security</td>
<td>Results comes with big secret key size for resisting force-brute attacks, high sensitivity at secret key and plain-text, resisting the entropy attack, and generating uniform histogram, and time fast encryption</td>
<td>Chaotic pseudo-random generator</td>
</tr>
<tr>
<td>12</td>
<td>[12]</td>
<td>A novel nonlinear filter that enhances the output patterns of commonly used pseudo random generators.</td>
<td>Key-stream sequences</td>
<td>Excellent performance</td>
<td>High unpredictability is achieved, and it's even possible to turn a simple counter encoder into perfectly useable pseudo random patterns.</td>
<td>The combination of numerous sorts of operations is based on four seed-dependent substitution boxes and a developing internal state register. Forged modulus was utilized, and Pell's equation was generalized.</td>
</tr>
<tr>
<td>13</td>
<td>[13]</td>
<td>Enhanced Algorithm RSA</td>
<td>Public key exponent</td>
<td>The encrypting and decryption processes take the same amount of time.</td>
<td>The suggested cryptosystem is difficult in the same way that the factorization problem is.</td>
<td>Key inputs can be used to create logistics functions for creating chaotic numbers. Seeds and activating function for Pseudo Random Number Generator (PRNG)</td>
</tr>
<tr>
<td>14</td>
<td>[14]</td>
<td>Designed a scheme capable of providing key input flexibility</td>
<td>/</td>
<td>Providing key input flexibility</td>
<td>When used as a key in cryptography, the algorithm's strength.</td>
<td>Key derivation function for hash-based message authentication code (HMAC). On top of the PRNGs, an extra layer of protection is added.</td>
</tr>
<tr>
<td>15</td>
<td>[15]</td>
<td>Artificial Neural Network (ANN) algorithm</td>
<td>Initialized key depend on ANN topology</td>
<td>Efficiency</td>
<td>The ANN output layer weights are used to create the sub-key in each round.</td>
<td>Seeds and activating function for Pseudo Random Number Generator (PRNG)</td>
</tr>
<tr>
<td>16</td>
<td>[16]</td>
<td>Based on a pseudorandom number generator, the Residue Number System (RNS) was developed</td>
<td>The key is determined using the key derivation function (KDF)</td>
<td>Providing flexibility</td>
<td>Implementations were performed, subsequent embedded software on a MSP430 and MSP432 (mixed-signal microcontroller)</td>
<td>Key derivation function for hash-based message authentication code (HMAC). On top of the PRNGs, an extra layer of protection is added.</td>
</tr>
</tbody>
</table>

(continued on next page)
6. Conclusion

In this research, we talked about a background of the PRNG fundamentals and review at several key derivation functions or pseudorandom number generators (PRNG) for various algorithms across times (2016–2022). Writing about key generation security, a literary research review, and a paper by some authors about methods that work with any algorithm. We noticed the efficiency and security of algorithms employed in all forms of algorithms when analyzing the suggested research on key creation in various types. This article literature review gives a brief introduction and analysis of algorithms, as well as some guidance on how to improve encryption systems to ensure network security.

References

[12] Álvarez Rafael, Martínez Francisco. Improving the statistical qualities of pseudo random number generators. Symmetry 2022; 14:269. Department of Computer Science and Artificial Intelligence (DCCIA), University of Alicante, 03690 Alicante, Spain.

(continued)