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ARTICLE

Supra-Approximation Spaces Using Combined

Edges Systems

Hussein R. Jaffer, Khalid Sh. AI’'Dzhabri*

Department of Mathematics, University of Al-Qadisiyah, College of Education, Al Diwaniyah, Iraq

Abstract

The primary in this paper's notion, the i-space using incident edges system (resp. n-space using non-incidental edges
system), is what this study is responsible for generating and investigating. Additionally, we used c-interior to define the c-
lower approximations in generalized rough set theory (resp. i-interior and n-interior) Additionally, the c-upper approx-
imations are defined using c-closure (as opposed to i-closure and n-closure), and some of its characteristics are studied.

2010 Mathematics Subject classification: 05C20, 04A05, 54A05
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1. Introduction and preliminaries

or two reasons, discrete mathematics mainly re-

lies on graph theory, an interesting and signifi-
cant area of mathematics. In theory, the graph is
mathematically appealing. They can be used to depict
topographic space, harmonic objects, and a wide va-
riety of other mathematical graphs despite being
simple relation graphs. The second reason is that when
many concepts are empirically represented by graphs,
they will be incredibly helpful in practice. The con-
cepts of topological graph theory [1,2,3,4,5,8,9] are a
subfield of mathematics that have numerous applica-
tions in both theoretical and practical contexts. We
predict that topological graph structure will play a key
role in bridging the topology and applications divide.
For all graph theory slang and notation, we refer to
Harary [6] and all terminology and notation in topol-
ogy, we refer to Moller [7]. Some basic concepts of
graph theory [10] are presented. A undirected graph or
graph is pair Q = (0(Q), £(Q)) where U(Q) is a non-
empty set whose elements are called points or vertices
(called vertex set) and £(Q) is the set of unordered
pairs of elements of O(Q) (called edge set). An edge of a
graph that joins a vertex to itself is called a loop. If two
edges of a graph are joined by an vertex then these
edges are called the edges Q incident with the edges Q;.

the set of Q is {Q; €£(Q) : 9 incident with 9} and the
edges Q non incident with the edges Q. the set of Q is
{01 €£(Q) : @; nonincident with Q}. A graph is sym-
metric if (V1,%;)€E(Q) implies (R, 1) EE (Q),
antisymmetricif (1, ;) €£(Q) and (z, 1) €E(Q)
implies ?u; = 1. A sub graph of a graph Q is a graph
each of whose vertices belong to O(Q) and each of
whose edges belong to £(Q2). An empty graph if the
vertices set and edge set is empty. A degree of a
vertex? in a graph Q is the number of edges of Q
incident with ?.A star graph of order n (denoted by S,,)
is a graph that all edges are incident to each other. Let
Q= (0(Q),£(Q)) be und. g. and a edge Q€ £(Q). The
incident edges set of Q is denoted by I£(Q) and defined
by (see Tables 1—6, Figs. 1-3).

I£(Q) = {Q; €£(Q) : gqincident with @} and The
non-incident edges set of Q is denoted by NI€(Q) and
defined by NIE(Q) = {Q; €£(Q): @ mnonincident
with @}. an und. g, Q= (0(Q),£(RQ)) the incident
edges system (resp. non incident edges system) of a
edge Q€ £&(Q) is denoted by IES(Q) (resp. NIES(Q))
and defined by: I€S(Q) = {I€(Q)} (resp. NIES(Q) =
{NIE(Q)}). The Combined edges System of a edge
Q€EE&(Q) is denoted by CES(Q) and defined by
CES(Q) = {I€S(Q), NIES(Q)}. Let @ = (U(Q),£(Q)) be
an und. g. and suppose that p. : £(Q) —>P(P(E(Q))) is
a mapping which assigns for each Q in £(Q) its
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Table 1. Li(E(t)), Ln(E(h)) and L (E(h)) for all hucQ. Table 2. U;(E(h)), Un(E(N)) and U (E(t)) for all ucQ.
E(h) Li(&(hv)) La(E(h)) Lc(E()) &(hv) Ui(&(h)) Un(E(h)) Uc(&(h))
{Q1} é @ é {Q1} E(Q) {Q1,922,05,95} {Q1}
{Q} ¢ ¢ ¢ {Q2} £(Q) 191,92, 035,05} {Q:}
{3} ¢ ¢ ¢ {gs} &(Q) {Q1,922,05,95} {es}
{Q} ¢ {Q4} {Q4} {Q4} £(Q) {4} {Q}
{os} ¢ ¢ ¢ {os} £(Q) {01,92,93: 05} {os}
{01, 2} ¢ ¢ ¢ {Q1, 9} £(Q) 191,92, 935,05} {Q1,92,935, 05}
{Q1,93} ¢ ¢ ¢ {Q1,93} E(Q) {Q1,92,05,95} {Q1,92,93,95}
{1,094} ¢ {o4} {os} {Q1,94} E(Q) &(Q) £(Q)
{Q1. 05} ¢ ¢ ¢ {01, e} £(Q) {Q1,9,93: 25} {Q1:22,095, 05}
{92, 03} ¢ ¢ ¢ {Q2, 95} £(Q) 191,92, 05,05} {Q1,92,935, 05}
{92, 94} ¢ {Q4} {Q4} {92,094} E(Q) £(Q) E(Q)
{Q,05} ¢ ¢ ¢ {@,05} £(Q) {Q1,2,05,05} {Q1,2,05,05}
{93, Q4} ¢ {Q4} {Q4} {Q3,Q4} E(Q) E(Q) E(Q)
{Q3,95} ¢ @ @ {9395} &(Q) {01,92,Q5,95} {Q1,92,03, 95}
{Q4: 05} ¢ {o:} {1} {Qu, 05} £(Q) £Q) £(Q)
{Q1,9,9;} ¢ ¢ ¢ {91,92,93} £(Q) {01,2,05,05} {Q1,2,05,05}
{1, @, 1} ¢ {1} {Qi} {01, @, 0} £(Q) £Q) £Q)
{Q1,2,05} é @ é {Q1,2,05} E(Q) {01,2,95,05} {Q1,2,05,05}
{Q2,Q3,Q} ¢ {Q4} {Q4} {Q2,93,Q} EQ) &(Q) E(Q)
{Q,0935,95} ¢ @ ¢ {Q2,03,95} £(Q) {01,92,05,95} {01,92,93,95}
{93,94,01} ¢ {Q4} {Q4} {93,94,Q1} E(Q) £(Q) E(Q)
{Q3,04,05} ¢ {os} {4} {93,94,95} E(Q) &(Q) E(Q)
{1,051} ¢ {os} {ou} {1,951} £(Q) EQ)} £(Q)
{Q4,Q5,Q} ¢ {Q4} {Q4} {Q4,Q5,Q:} E(Q) &(Q) £(Q)
{Q1,93,95} ¢ ¢ ¢ {Q1,95,95} £(Q) {01,92,05,95} {Q1,92,93, 95}
{Q1,92,93,Q:} é {Q} {Q1,92,93,Q:} {01,92,95,Q:} E(Q) &(Q) &(Q)
{Q1:22,95, 05} ¢ {Q1:22,05, 05} {01,2,95,00  {Q,2,0:.%}F  £(Q) {Q1,92,95: 05} {Q1,22,93,05}
{Q2,Q3,04, 95} é {Qs} {Q2,93,04, 95} {Q:93,94:95} E(Q) &(Q) E(Q)
{01,95,94,95} ¢ {Q4} {01,93,94,95} {01,93,94,95} £(Q) &(Q) E(Q)
{Q1592,Q4, 95} ¢ {Q4} {Q1,92,Q4, 95} {Q1,922,0Q4,95} E(Q) £(Q) £(Q)
&(Q) E(Q) &(Q) &(Q) &(Q) E(Q) £(Q) &(Q)
é é @ é @ é ¢ ¢
Combined edges System in P(P(£(Q))). The pair (Q,
b.) is called the C-space. [E(h)],={Q € £(Q);I&(Q),IE(Q) N (E(h)
2. c-Lower and c-upper approximations {o})# o}

We introduce the topological spaces i-space and [5(}11)];1:{9 € £(Q);NIE(Q),NIE(Q) N (E(hv)
n-space in this section. The unguarded. i-interior, n- — Q) # o)

interior, i-closure, and n-closure were all defined.
Finally, using i-interior (resp. n-interior and c-inte-
rior), we define the c-lower and c-upper approxi-
mations in generalized rough set theory and look
into some of its aspects.

Definition 2.1. Let Q = (0(Q),£(Q)) be an und. g.
and suppose that p;:E(Q)—P(P(E(Q))) (resp.
b, : E(Q)—P(P(E(Q)))) is a mapping which assigns
for each Q in £(Q) it's incident (resp. non incident)
edges system in P(P(£(Q))). The pair (Q, ;) (resp. (@,
b)) is called an i-space (resp. n-space).

Definition 2.2. Let (Q,p;) be an i-space and (Q,p,)
be an n-space and let uCQ. Then

(a) The i-derived and n-derived of an und. g. hu are
defined respectively by:

(b) The classes of i-closed and n-closed of an und. g.
in i-space and n-space are defined respectively
by:

5, ={e(ceray e, ce(hv)

(c) The classes of i-open and n-open of an und. g. in
i-space and n-space are defined respectively:

Yp, = {€(10) CE(Q); E(10) = £(Q) — £(hu) such that
E(h) Elbi}v
Yp, = {E(10) CE(Q); E(10) = £(Q) — E( ) such that
8( hJ) ezbn}v
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Table 3. B;(£(h)), Bu(£(h)) and B.(E(h)) for all hCQ.

Table 4. $(E(N)), La(E(N)) and L (E(N)) for all ucQ.

E(h) Bi(&(hv)) B, (E(hv)) B:(€(hv)) &(hv) Li(€(h)) Ln(E(h)) L(E(h))
{Q1} Q) {Q1,92,Q5,05} {1} {91} 0 1/5 4/5
{92} S(Q) {9] ) 927 937 95} {92} {92} 0 1/5 4/5
{03} Q) {Q1,92,Q5,05} {03} {03} 0 1/5 4/5
{Q4} &(Q) ¢ @ {Q} 0 1 1
{os} £Q) {01,9,95, 05} {os} {os} 0 1/5 4/5
{Q1, 2} £Q) {91,92, 035,05} {1,22,03:2} {21, 2} 0 1/5 1/5
{Q1,95} Q) {Q1,02,Q5,05} {Q1,09,93,95} {Q1,0;} 0 1/5 1/5
{Q1, 94} £(Q) {Q1,92,05,95} {Q1,92,03,95} {Q1,} 0 1/5 1/5
{Q1, 05} £Q) {01,9,95: 05} {1,2,03:2} {01, 05} 0 1/5 1/5
{92, 93} £Q) {91,9, 05,05} {01,22,03:0}  {@,03} 0 1/5 1/5
{92, 94} &(Q) {91,92,05,95} {91,92,03,95} {92,094} 0 1/5 1/5
{Qs,05} £(Q) {01,92,05,05} {Q1,92,93,05} {2,095} 0 1/5 1/5
{93, Q4} &(Q) {Q1,92,05,95} {Q1,92,05,95} {Q3,94} 0 1/5 1/5
{93,095} £(Q) {Q1,09,95,05} {Q1,09,93,05} {Q3,05} 0 1/5 1/5
{Qu, 05} £Q) {01,0,05: 05} {01,2,03:2} {01, 05} 0 1/5 1/5
{Q1, 2,03} £(Q) {01,92,05,05} {Q1,92,03,95} {Q1,92,95} 0 1/5 1/5
{Q1,00,Q4} Q) {Q1,02,Q5,05} {Q1,09,03,095} {Q1,92,Q} 0 1/5 1/5
{Q1,92,95} Q) {Q1,92,95,095} {Q1,92,93,05} {Q1,92,95} 0 1/5 1/5
{Q2,Q3,Q} £(Q) {91,92,03,95} {Q1,92,03, 95} {Q2,93,Q} 0 1/5 1/5
{Q2,93,05} £(Q) {Q1,09,95,05} {Q1,92,03, 95} {Q2,93,05} 0 1/5 1/5
{Q3,Q1, @1} £(Q) {Q1,02,95,05} {Q1,09,93,05} {Q3,01,Q1} 0 1/5 1/5
{Q3,9:,95} Q) {Q1,92,95,95} {Q1,92,93,05} {Q3,94,95} 0 1/5 1/5
{04,905, 91} £(Q) {01,95,93,95} {01,92,93,95} {94595, 91} 0 1/5 1/5
{Q4, 05,2} Q) {Q1,22,93,95} {Q1,22,93,95} {Q4, 05,2} 0 1/5 1/5
{Q1,93,05} &(Q) {91,92,03,95} {91,92,03, 95} {Q1,95,95} 0 1/5 1/5
{Q1,@,Q3,94} Q) {Q1,92,95,95} {Qs} {Q1,09,95,94} 0 1/5 4/5
191,95, 03,05} £Q) ¢ ¢ {Q1, 92,03, 95} 0 1 1
{Q2,05,Q4,95} Q) {Q1,92,95,095} {91} {Q2,03,Q4,95} 0 1/5 4/5
{01,095,94,95} £(Q) {01,2,05,05} {2} {01,93,94,95} 0 1/5 4/5
{Q1,09,Q4,95} Q) {Q1,09,93,05} {93} {Q1,09,Q4,95} 0 1/5 4/5
&(Q) ¢ ¢ ¢ £(Q) 1 1 1
é ¢ ¢ é ¢ 1 1 1

(d) The i-interior and n-interior of an und. g. hu are
defined respectively by:

Int;(£(F)) = U{£(10) € Y,,; £(10) CE(N)},
Int, (E(hv)) =U{E(10) €, ;£(10) CE(h)},

(e) The i-closure and n-closure of an und. g. hu are
defined respectively by:

CL(E(h)) =n{E(K) € Ty,; E(hu) CE(K)},
Cl.(E(h)) =n{€(k) € Tp,; E(hv) cE(K)},

(f) The i-boundary and n-boundary of an und. g. bu
are defined respectively by:

[E(h)]! =CL(£(h)) — Inti(E(h)),

[£(h)], =Cla(£(hv)) — Inta (E(HV)).

Theorem 2.3. In (Q,p;) (resp. (€, b,)) is an i-space
(resp. n-space) and huc(, then tu is an i-open (resp.

n-open) if and only if it contains the incident edges
(resp. non incident edges) of each of its edges.

Proof: Let (Q,D;) be an i-space and hu be an i-open
und. g. contained in Q and Q€ &(hv). Suppose that
1€(Q) is incident edges with Q, and I£(Q) £ £(hv), thus
IE(QNERQ) —E(h)| =D which implies

Table 5. The i-derived and n-derived of an und. g. hu .

E(h) [E(h)); [E(h)],
{Q1} {92,93,Q} %)
{Q} {1,095, 04} @
{93} {Q1,22,Q} %)
{4} {Q1,2,03} @
{01, @} £(Q) %)
{91,905} £(Q) @
{Q, e} £(Q) %)
{92,095} £(Q) 2
{204} £(Q) %)
{Qs, 4} £(Q) o
{Q1,2,93} £(Q) @
{Q1, 2,04} &(Q) %)
{01,939} £(Q) %)
{02,93,Q4} &(Q) %)
£(Q) £(Q) @
(%] %] %]
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Table 6. The i-derived and n-derived of an und. g. hu.
() [hl; WU

{91} {Q2,03,Q}
{Q.} {01,093, 9}
{93} {Q1,92,Q}
{Q4} {Q1,2,93}
{Q1,2}
{Qi, 95}
{Q1,04}
{02, 03}
{Q2,Q4}
{Q3, 9}
{Q1,0:,03}
{Q1,92,94}
{Q1,03,Q4}
{Q2,03,Q4}
£(Q)

%)

Pad
Q0

NNV EVECECESENENEN RN RNV NEN
BEEEEEEEEEN

Q M M Oyt My

QE[E(Q) — £(h)],. But Q — hu is i-closed since Hu is i-
open and so [£(Q) — £(h)],C[E(Q) —&(Iv)] and hence
Qe [E(Q) — &(h)]. Therefore & &(tu) which con-
tradicts with Q€ £(hu) and consequently if uC Q is i-
open and Q& &(hu), then the incident edges with Q
which is contained in £(hu). Conversely, Let hu
contains the incident edges with each of its edges,
ie. for all Q€&(lu) then I£(Q)CE(hu). Let @ €
[E(Q) — E(h)], then @ &&(hu). If @, &(hu) there
would be incident edges with Q;, I£(Q,), such that
I£(Q)c€(tv)  and  this would imply that
1£(Q)NEQ) — E(h)] = &, thus o &[£(Q) — E(h)];
which is impossible. Accordingly, Q; €[£(Q) —£(h)]
and so [£(Q) — E(h)].C[E(Q) — E(hu)] which implies
Q —tu is i-closed and hence fv is i-open. Similarly,
we can prove that hu is n-open if and only if it
contains the non incident edges with each of its

edges.

Definition 2.4. Let 3 =(0(Q),£(Q)) be a generalized
approximation space and huCQ. Then is called inci-
dent composed (resp. non incident composed) if hu
contains the incident edges (resp. non incident edges)
with each of its edges i.e. for each g€ &(hu), IE(Q)C
E(hv) (resp.foreachQ €&(hu), NIE(Q) CE(H)).

03 Q3

A%;}

Q4 Q2

e Q1
3, 1

Fig. 1. und. g. Q given in Example (3.2).

3
Q3 2y Q2

84 Q1

s Vs

Fig. 2. und. g. Q given in Example (3.14).

Definition 2.5. Let 3 = (0(Q),£(Q)) be a generalized
approximation space, then the class of all incident
composed (resp. non incident composed) und. g. are
denoted by T; (resp. T,) and defined by:

Ti = {hv cO; for each Q €&(h), 1E(Q) CE(hu)}

(resp. T,, = {hu CO; for eachg € £(hu),NIE(Q) €€ (hu)})

Proposition 2.6. Let 3 = (0(Q),£(RQ)) be a general-
ized approximation space, then T; (resp. T,) forms a
topology on Q.

Proof:

1. £(Q), B €T, (resp. T,)

2. Let E(hv), E(K) €T; (resp. T,) and let for each &
&(hu) and Q=& (k), which implies that I€(Q)C&(h)
and I€(Q)cE(k), IE(Q)CE(h) NEK)
= E(N)NER)ET, (resp. T,)

3. Let £(hu;) €T (resp. T,) Yi€l Then oe|J,E(hy;)
imply that 3i, €I such that o= &(hy;,) U, E (i),
hence I£(Q)c&(huy)clY; &(hvi), that is [J€
(hy;) €T; (resp. Tp) Viel

Theorem 2.7. Let 3 = (0(Q),£(Q)) be a generalized
approximation space, then Iy, =Y, and &, =Y, .
Proof: Let ueY), be a proper then tvu is i-open, to

prove that Q — hJ is i-open. We will prove that by
contradiction, Let Q€Q — hu and I£(Q) £Q — hu then

s 094 ng%l

Q3 92

%3 ',{14

Fig. 3. und. g. Q given in Example (3.16).
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there exist at lest 9; €I£(Q) and 9;€Q —hu and
hence Q;€hy, since Q;€I£(Q) then Q€I&(Q) and
because Q;€hy and hu is i-open then by theo-
rem(2.3), we get I€(Q;)Chu and hence Q&hy, this
contradiction with Q€ Q — hy, there for each Q€ Q—
hu then I€(Q)CQ — hu and by theorem(2.3), we get Q—
hu is i-open and hence we get tu is i-closed and lue
T}, thus ¥}, €T, Now, let ke Ty, then K is i-closed
and hence Q — Kk is i-open and by the above we get
that Q — (Q —k) = k is i-open and k€Y),, thus T}, C
Y}, and since T}, Y), are both contains @ ,£(2), and
hence ¥}, =Y),. And by the same way we can prove
that Ipn = an.

Proposition 2.8. Let 3 = (0O(Q),£(RQ)) be a general-
ized approximation space, then T, =3, =Y, and
Tn = Ibn = an'

Proof: the proof of T; =Y, and T, =Y, is immedi-
ately follows from definition(2.4), definition(2.5) and
theorem(2.3). and by theorem(2.7), we get that T; =

“'Ipi = Ybi and Tn = Czpn = Ybn'

Remark 2.9. An immediate consequence of propo-
sition(2.8) and proposition(2.6) we have Yba and an
form topologies on Q.

Definition 2.10. Let 3= (0(Q),£(Q)) be a general-
ized approximation space and Y}, Y|, andY,_be the
supra topologies induced by 3 and let uC Q. Then

a) The i-lower and i-upper approximations of hu
are defined respectively by:

Li(E(hv)) =Int;(E(rv)),
Ui(E(h)) =CIi(E(h)),

b) The n-lower and n-upper approximations of hu
are defined respectively by:

Lo (E(h)) = Inty (E(N)),
Un(E(h)) = Cla(E()),

c) The c-lower and c-upper approximations of tu
are defined respectively by:

L.(E(h)) =Int.(£(h)),

UC(S(I‘U)) = CZC(E(N))~

Definition 2.11. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space and Y}, ¥}, and Y} be

the supra topologies induced by 3 and let huCQ.
Then

a) The i-boundary, i-positive and i-negative re-
gions of tu are defined respectively by:

Bd;(£(hv)) = U;(E(hv)) — Li(E(hv)),
POS;(E(h)) =Li(E(h)),
NEG;(E(h)) =£(Q) — U;(E(h)),

b) The n-boundary, n-positive and n-negative re-
gions of hu are defined respectively by:

Bd,(£(hv)) =Un(E(h)) — La(E(h)),
POS,,(£(h)) =L, (E(h)),
NEG,(E(h)) =E£(Q) — U, (E(N)),

c) The c-boundary, c-positive and c-negative re-
gions of hu are defined respectively by:

Bd(£(h)) = U.(E(W)) — L.(£(h)),
POS,(&(hv)) =Lc(E(NV)),

NEG.(£(N)) =£(Q) — U.(E(hv)).

3. Accuracy of the lower, upper and boundary
approximation spaces

In this section, we investigate some of properties
of the accuracy of lower, upper, and boundary ap-
proximations in generalized rough set theory, which
is defined by employing i-interior (resp. n-interior
and c-interior).

Definition 3.1. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space. The accuracy of the
approximation of a sub und. g. uCQ using (p;, b,, and
b.) are defined respectively by:

_ . [Bdi(E(h))]
Gi(E(hv)) =1 BREOR
_ . [Bdn(E())]
e
_ 4 |Bdc(&(h))]
It is obvious that 0<¢(E()) <1,

0 <. (E(hv) <1and 0 <. (E(h)) < 1. Moreover, if
Gi(E(h)) =T or £, (E(h)) =T or £ (£(hy)) =1 then hu
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is called hu-definable (hu-exact) und. g. otherwise, it
is called hu-rough.

Example 3.2. Let Q = (0(Q), £(Q)) such that O(hu) =
{301, 02,303, s}, E(V) = {Q1,22,03,Q,Q5}-

{91,954} },bi(Qs) ={
={{Q1,92,93,95} },bi(Q5) ={

bi(Q1) = {{92,Q4,95}},bi(Q) =
% {Q2,Q4}},bi(Qs)
x{Q1,94,95 1}

Pa(Q1) ={{Q3}},bn(Q2) ={{Qs}},bn(Qs5) =
X },bn(Q4) = @,bn(Q5) = {{22,3}}-

be(Q1) ={{Q2, 04,95}, {Qs}}, be(@2) =1

% {Q1,23,Q4},{Qs}}: b (Q3) = {{Q2: Q4 }. {Q1, Q5 }
% },bc(Q4) = {{Q1,92:Q3,95}, @ },bc(Q5) ={

% {Q1,Q4,95},{Q2,Q3}}-

={&(@), 2}

Yy, ={(Q), @,{Qu},{Q1,92,93: 95} }

{{01,05}

supra topologies induced by 3. Then any i-open (or
n-open) und. g. is c-open.

Proof: Let kCQ be an i-open und. g. and f = Q — k.
So F is i-closed und. g. and by using proposi-
tion(3.3), F is c-closed. Hence k = Q — F is c-open.
Accordingly, any i-open und. g. is c-open. By the
same manner we can prove that any n-open und. g.
is c-open.

Proposition 3.5. Let 3 = (O(Q),£(RQ)) be a general-
ized approximation space and huCQ. Then.

() Li(&(h))ULn(E(H0) CLo(E(R)).

(b) U (&(r0)) UL (E(h) ) NUn (£ ().

(c) Be(E(h))CBi(E(h)) B (E(hV)).

Proof:

(a) Since Li(&(hv)) = U{E(IO) €Y, ;E(10) C&(hu)}.
Hence L;(£(hu))CE(hu) and Li(E(hv)) is i-open since
the union of any family of i-open und. g. is i-open.
Since Ln(E(hv)) = U{E(IO) €Y, ;E(10) € (hu)}. So
Ln(E(hu))Cé(tu) and Ly(E(hu)) is n-open since the
union of any family of n-open und. g. is n-open.
Since L;i(£(hv)) is i-open, then by proposition(3.4), it
is c-open and since L,(£(hv)) is n-open, then by

E(Q),2,{Q4},{92,93,04,05},{01,93,94,95},{Q1,92,94,95}, {Q1,22, 03,95}, }

ch - { {91792793794}

We can get the following four tables:

Proposition 3.3. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space, and ¥, ¥, and T be
the classes of i-closed, n-closed and c-closed graphs
induced by 3. Then any i-closed (or n-closed) und.
g. is c-closed. ,

Proof: Let uCQ be an i-closed und. g., then [£(h)].C

i=

E(rv).

[E(h)]; = {0 €£(2):1£(Q),1€(Q) n(E(h) —{Q}) # @}

and [E(h)], ={9 €E(Q) : CES(Q)N

(E(hv) —{o}) #o} = {@ €£(Q); IE(Q), IE(Q) n(&(hv) -
—{Q}) # @and NI£(Q) n(£(v) —{Q}) # @}.  Conse-

implies tu is c-closed. Therefore any i-closed und. g.
is c-closed. Similarly, we can prove that any n-
closed is c-closed.

quently, [€(h)].C[E(hv)]; and so [E(hv)] . CE(tu) which

Proposition 3.4. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space and Y, Y, and Y}, be the

proposition(3.4), it is also c-open. Hence
Li(E(h))ULn(E(hu)) is c-open and L;(E(h))ULn
(E(h))cE(h).  But, L(E(tv)) =  U{E(IO) €Yy, ;
E(10) c&(hu)}. Consequently, Li(E(h))ULn(E
(h))CLc(E(h)).

(b) Ui(E(hv)) = n{&(k) €F};E(hu) c&(k)}. Hence

E(h)CU;(E(hu)) and U;(E(hv)) is i-closed since the
intersection of any family of i-closed und. g. is i-
closed. Since Uy(E(hv)) = n{&(k) €Zp ;E(M)
c&(k)}. thus E(hu)cUn(&(hv)) and U, (E(hv)) is n-
closed since the intersection of any family of n-
closed und. g. is n-closed. Since U;(£(hv)) is i-closed
then, by proposition(3.3), it is c-closed and since
U,(€(hu)) is n-closed then, by proposition(3.3), it is
also c-closed. Hence U;(E(hv))NUn(E()) is c-closed
and E(hv)CUi(E(h))NUn(E(hY)). But U (E(hu)) =
N{E(k) €Ty ; E(hv) €E(K)}.According.
U ((R)) U (E(R)) U (E ()
(c) Let Q€B:(&(hy)), then @& (Uc(&(h)) — Le(E(hv)))
and so Qe U, (E(h))AQE L (E(h)). Since
U(E(h))cUi(E(h))NUa(E())  and  Li(&(h))U
Ly (E(h))CLc(E(hv)).  Then Q& (Ui(E(h))(MUA(E
()))AQ (Li(£(hu))ULn(E(hv))), this imply (Q €U;
(E(h))AQ EUL(E(h)))A(Q ELi(E(h))AQ ELn (€
(b)), this imply (Q €Ui(£(hu))AQ €Li(£(h)))
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AQ el (E(hu))AQ &L,(E(N))), this 1mp1y Qe
(Ui(€(h)) — Li(£(hv)))AQE (Un(E(N)) — La(€ (hv))),
this imply Q€ B;(£(hv))AQE B, (E(hv)), this imply Q&
(Bi(E(h))NBa(E(h))). Therefore B.(&
(h))CBi(E(hu))MBn(E(N)).

Remark 3.6. Let 3 = (0(Q),£(Q)) be a generalized
approximation space and huCQ. Then the following
statements are not necessarily true.

(a) Le(E(hv)) = Li(E(h))ULn (E(hV)).

(b) Uc(£(h)) = Ui(E(hu))NUn(E(hV)).

(c) Be(€(h)) = Bi(€£(h))MBa(E(hV)).

The next example shows pervious remark.

Example 3.7. According to example(3.2),

(a) Let u = (O(hu), £(hu)) such that O(hu) = {31, s,
3,4} and E(lv) = {Q;, @, Q3, Q}. Then
Le(E(v)) = {Q1, @, @, U}, Li(E()) =@ and
Ln(E(hu)) = {Qu}, such that L;(E(hv))ULn(E(h)) =
{Q4} and so L.(E(hu)) #=Li(E(hv)) ULy (E(h)).

(b) Let hu = (O(hu), £(hv)) such that O(hu) = {3,}
and £(hv) = {gs}. Then U.(E(h)) = {os},
Ui(E(hv)) = £(Q) and Un(E()) = {Q1, @2, @3, s},
such that Ui(&(hv ))ﬂU (€(h)) = {Q1,22,Q3, 95}

and so Uc(E(h)) # Ui(E(h))Ua(E(h)).
(c) Let bu = (O(h), £(hv)) such that () = {30}

and &(hv) = {@s}. Then B.(E(hv)) = {os},
Bi(&(hv)) = £(2) and Bn(E(hv)) = {Q1, Q25 3, 51,
such that B;i(E(h))NBn(E(WV)) = {Q1,22,Q3,Q5}
and so B.(&(hu)) #B;(E(hu))NBa(E()).

Theorem 3.8. Let 3 = (0(Q),£(Q)) be a generalized
approximation space and Q is isolated edge then:
(a) {Q} is i-closed.

(b) If {Q} S £(Q) then {Q} is not n-closed.

Proof: Let Q is isolated edge in a graph Q.then

(a) Since Q is isolated edge then for every Q; € £(Q)
we get Q#I1E(Q;) and I€(Q)n({Q} —{e1}) =@ and
hence for every Q,€&(Q) then o, ¢&[{Q}]; , thus
[{Q}]; = @<{Q}, there fore {Q} is i-closed.

(b) Since {Q} S £(Q) then there exist at least a edge
Q, €£(Q) different from Q , since Q is isolated edge
then Q€ NIE(g;) and NIE(y)n({e} —{@1}) = {o} # @
and hence @, €[{Q}], , thus [{Q}],Z{Q} , therefore
{0} is not n-closed.

Theorem 3.9. Let 3 = (0(Q),£(Q)) be a generalized
approximation space. Then if Q is connected graph
then T, = {@,£(Q)}.

Proof: Let Q be a connected graph and let tu be any a
proper sub und. g. in Q i.e. S S E(Q). Since Q is
connected then Q — hu connected with tu and hence
there exist at least a edge €Q — hu such that Q is

incident with at least for some a edge 9; €tu and we
get 9; €I£(Q) and hence I€(Q)n(hu —{Q}) contains at
least a edge @, , then I&(Q)n(hu—{Q})+#@ , thus
Q€ []; and Q& hu then we get []; &y, there fore hu
is not i-closed and the only i-closed are @, £(2) and
hence T, = {2,£(Q)}.

Theorem 3.10. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space. Then if Q is disconnected
graph then T, = {@,£(Q)}.

Proof: Let Q be a disconnected graph then there
exist at least two disjoint component in Q say A and
B that is AnB = @. Let hu be any a proper sub und.
g. in Qie gSEE(Q) the

(i) If uCA then huZ€B and for all g then
FUCENIE(Q) and NIE(Q)N(hu —{Q}) = hu# @ then
Q€[] and @&ty there fore [fu] Zhu then hu
is not n-closed

(ii) If huCB then huZ A and for all g€ A then
RUCNIE(Q) and NIE(Q)N(hu —{Q}) = hu# g then
Qe[h], and gy, there fore [hu], Zhu then hu
is not n-closed

(iii) If unA#@ and hunB+ g then there exist at
least Q= A and @; € 5 such that 9,9, €hy, since
hu & £(Q) then there exist @, €&(RQ) and @, & hu
then @, belong to one of them component of
Q if @A then @ &NIE(Q,) and
NIE(Q)N(hu —{Q,}) contain at least Q; and
hence NIE(Q,)n(hu — {@,})#@, then @,&[h],
and Q, ¢hy, thus [hu], £t and hence hu is not
n-closed, if Q,€B then Q&NIE(Q,) and
NIE(Q)N(hu—{Q,}) contain at least Q and
hence NIE(Q,)n(hu — {Q,})#@, then @,&[h],
and Q, &hy, thus [hu], £ty and hence hu is not
n-closed, there for the only n-closed are @,
£(Q).and hence T, = {@,£(Q)}.

Corollary 3.11. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space. Then for any und. g. Q we
have that either T}, = {@,£(Q)} or T, ={@,£(Q)}.
Proof: The proof is immediately follows from The-
orem (3.9) and Theorem (3.10) and by (for any und.
g. Q© we have that either Q is connected or Q is
disconnected.

Example 3.12. Let Q = (0(Q),£(RQ)) be und. g. such
that O(Q) contain only one vertex then &}, =3, =

{2,£(9)}.

Theorem 3.13. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space. Then if Q is star graph
then.

(@) Ty, = {2,£(Q)}.



H.R. Jaffer, K.Sh. AI'Dzhabri / Al-Qadisiyah Journal of Pure Science 28 (2023) 86—94 93

(b) Tp, = P(£(Q))-
Proof: Let Q is star graph then,

(a) Since Q is star graph then Q is connected
graph and hence by theorem (3.9) we get T, =
{2,£(Q)}.

(b) We will prove that by contradiction. suppose
that ¥, SP(£(Q)) then there exists at least sub
und. g. veP(£(Q)) such that hu is not n-closed
then [hu] Zh then there exist at least g€ [h],
and Q¢&hy, since Q< [hu],, then NIE(Q)n(hu —{Q})#
@ and hence there exists at least a edge Q; € hu
different from Q such that @; ENIE(Q) and hence
Q; is non incident with Q, thus this contradiction
with Q is star graph. There fore hu is n-closed.
then we have that for every sub und. g. of Q is n-
closed and hence ¥}, = P(£(Q)).

The next example illustrates the above theorem.

Example 3.14. Let Q= (0(Q),£(Q2)) such that
U(Q) = {Q\Jl; QU27 %37 QU‘la Q\J5} and 5(Q) = {Qla Q2, Q3,

Q-
Hence p; is defined by

bi(Q1) = {Q2,93:Q4},bi(Q2) = {Q1,93,Q4},bi(Q3) =
{01, 9, Q}, bi(Qs) = {01, 9, Q3}. Hence b, is
defined by b,(Q1) = @, bn(%) = @, bn(%) = 2,
bn(94) = Q.

Then T}, ={@,£(Q)} because (V@EhEQ then
[h];£hu) and T}, = P(£(2)) because (VhucQ then
[hu],Chu).

Theorem 3.15. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space. Then if Q is antisym-
metric graph then.

(a) Ty, = (2,6()}.

(b) T, = P(£(Q)).

Proof: Let Q be an antisymmetric graph then,

(a) Since Q is antisymmetric graph then Q is
disconnected graph and hence by theorem(3.10)
weget ¥, ={02,£Q)}.

(b) We will prove that by contradiction. suppose
that T, SP(£(Q)) then there exists at least sub
und. g. WEP(£(Q)) such that hu is not i-closed
then [hu]; Zhu then there exist at least Q€ [h]; and
Q&hy, since Q€ [I’U]1 then I€(Q)n(hv —{Q}) # @ and
hence there exists at least a edge Q; €hu different
from Q such that Q; €I£(Q) and hence @, is inci-
dent with @, thus this contradiction with Q is
antisymmetric graph. Therefore hu is i-closed.
then we have that for every sub und. g. of Q is i-
closed and hence ¥}, = P(£(Q)).

The next example illustrates the above theorem.

Example 3.16. Let Q= (0(Q),£(Q)) such that
0(Q) = {31,2, 33,4} and E(Q) = {Q1,22,23,Q}-
Hence b; is defined by b;(Q;) = {Q:},bi(Q2) = {Q},
bi(Q3) = {Qs},bi(Qs) = {Q4}. Hence D, is defined by”
pn(gl) = {QZa 93’ 94}7 pn(92) = {91) 937 94}7 bn(93) =
{Q1,Q2,Q4},bn(Q4) = {Q1,9, 93}

Then I, = {@,£(Q)} because (VOFhEQ then
[hu],£hu) and T}, = P(£(Q)) because (VhuCQ then
[hu],chu).

Note 3.17. Let (Q,b;) be an i-space if Q is connected
(resp. disconnected,star, antisymmetric) then (Q,p;)
is called connected (resp. disconnected, star, anti-
symmetric) i-space.

Corollary 3.18. Let 3 = (0(Q),£(Q)) be a general-
ized approximation space. Then:

(a)The induced topology by b; on connected i-
space is indiscrete topology.

(b)The induced topology by b, on disconnected
n-space is indiscrete topology.

(c)The induced topology by b; on star i-space is
indiscrete topology and the induced topology by
b, on star n-space is discrete topology.

(d)The induced topology by b; on antisymmetric
i-space is discrete topology and the induced to-
pology by b, on antisymmetric n-space is indis-
crete topology,

(e)For any und. g. Q we have that either T; is
indiscrete topology or T, is indiscrete topology.

Proof:

(a) The proof is immediately follows from theo-
rem(3.9) and theorem(2.7).

(b) The proof is immediately follows from theo-
rem(3.10) and theorem(2.7).

(c) The proof is immediately follows from theo-
rem(3.13) and theorem(2.7).

(d) The proof is immediately follows from theo-
rem(3.15) and theorem(2.7).

(e) The proof is immediately follows from Cor-
ollary (3.11) and proposition(2.8).
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