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ARTICLE

Supra-Approximation Spaces Using Combined
Edges Systems

Hussein R. Jaffer, Khalid Sh. Al’Dzhabri*

Department of Mathematics, University of Al-Qadisiyah, College of Education, Al Diwaniyah, Iraq

Abstract

The primary in this paper's notion, the i-space using incident edges system (resp. n-space using non-incidental edges
system), is what this study is responsible for generating and investigating. Additionally, we used c-interior to define the c-
lower approximations in generalized rough set theory (resp. i-interior and n-interior) Additionally, the c-upper approx-
imations are defined using c-closure (as opposed to i-closure and n-closure), and some of its characteristics are studied.

2010 Mathematics Subject classification: 05C20, 04A05, 54A05
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1. Introduction and preliminaries

F or two reasons, discrete mathematics mainly re-
lies on graph theory, an interesting and signifi-

cant area of mathematics. In theory, the graph is
mathematically appealing. They can be used to depict
topographic space, harmonic objects, and a wide va-
riety of other mathematical graphs despite being
simple relationgraphs.The secondreason is thatwhen
many concepts are empirically represented by graphs,
they will be incredibly helpful in practice. The con-
cepts of topological graph theory [1,2,3,4,5,8,9] are a
subfield of mathematics that have numerous applica-
tions in both theoretical and practical contexts. We
predict that topological graph structure will play a key
role in bridging the topology and applications divide.
For all graph theory slang and notation, we refer to
Harary [6] and all terminology and notation in topol-
ogy, we refer to Moller [7]. Some basic concepts of
graph theory [10] are presented.Aundirectedgraphor
graph is pair U ¼ ðƱðUÞ; EðUÞÞ where ƱðUÞ is a non-
empty set whose elements are called points or vertices
(called vertex set) and EðUÞ is the set of unordered
pairs of elements ofƱðUÞ (callededge set).Anedgeof a
graph that joins a vertex to itself is called a loop. If two
edges of a graph are joined by an vertex then these
edges are called the edgesƍ incidentwith the edgesƍ1.

the set of ƍ is fƍ1 2EðUÞ : ƍ1 incident with ƍg and the
edges ƍ non incident with the edges ƍ1. the set of ƍ is
fƍ1 2EðUÞ : ƍ1 nonincident with ƍg. A graph is sym-
metric if ðԄ1;Ԅ2Þ2EðUÞ implies ðԄ2; Ԅ1Þ2E ðUÞ,
antisymmetric if ðԄ1;Ԅ2Þ2EðUÞ and ðԄ2;Ԅ1Þ2EðUÞ
impliesԄ2 ¼ Ԅ1: A sub graph of a graph U is a graph
each of whose vertices belong to ƱðUÞ and each of
whose edges belong to EðUÞ: An empty graph if the
vertices set and edge set is empty. A degree of a
vertexԄ in a graph U is the number of edges of U
incidentwithԄ.A star graphof ordern (denotedbySn)
is a graph that all edges are incident to each other. Let
U ¼ ðƱðUÞ; EðUÞÞ be und. g. and a edge ƍ2EðUÞ: The
incident edges set of ƍ is denoted by IEðƍÞ and defined
by (see Tables 1e6, Figs. 1e3).
IEðƍÞ ¼ fƍ1 2EðUÞ : ƍ1incident with ƍg and The

non-incident edges set of ƍ is denoted byNIEðƍÞ and
defined by NIEðƍÞ ¼ fƍ1 2EðUÞ : ƍ1 nonincident
with ƍg: an und. g., U ¼ ðƱðUÞ; EðUÞÞ the incident
edges system (resp. non incident edges system) of a
edge ƍ2EðUÞ is denoted by IESðƍÞ (resp. NIESðƍÞÞ
and defined by: IESðƍÞ ¼ fIEðƍÞg (resp. NIESðƍÞ¼
fNIEðƍÞgÞ: The Combined edges System of a edge
ƍ2EðUÞ is denoted by CESðƍÞ and defined by
CESðƍÞ ¼ fIESðƍÞ;NIESðƍÞg: Let U ¼ ðƱðUÞ; EðUÞÞ be
an und. g. and suppose that þc : EðUÞ/PðPðEðUÞÞÞ is
a mapping which assigns for each ƍ in EðUÞ its
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Combined edges System in PðPðEðUÞÞÞ: The pair ðU;
þcÞ is called the C-space.

2. c-Lower and c-upper approximations

We introduce the topological spaces i-space and
n-space in this section. The unguarded. i-interior, n-
interior, i-closure, and n-closure were all defined.
Finally, using i-interior (resp. n-interior and c-inte-
rior), we define the c-lower and c-upper approxi-
mations in generalized rough set theory and look
into some of its aspects.

Definition 2.1. Let U ¼ ðƱðUÞ; EðUÞÞ be an und. g.
and suppose that þi : EðUÞ/PðPðEðUÞÞÞ (resp.
þn : EðUÞ/PðPðEðUÞÞÞÞ is a mapping which assigns
for each ƍ in EðUÞ it's incident (resp. non incident)
edges system in PðPðEðUÞÞÞ. The pair ðU; þiÞ (resp. ðU;
þnÞ) is called an i-space (resp. n-space).

Definition 2.2. Let ðU; þiÞ be an i-space and ðU; þnÞ
be an n-space and let ƕ⊆U. Then

(a) The i-derived and n-derived of an und. g. ƕ are
defined respectively by:

½EðƕÞ�‘i¼fƍ2EðUÞ; IEðƍÞ; IEðƍÞ∩ ðEðƕÞ
�fƍgÞs ∅g

½EðƕÞ�‘n¼fƍ2EðUÞ;NIEðƍÞ;NIEðƍÞ∩ ðEðƕÞ
�fƍgÞs ∅g

(b) The classes of i-closed and n-closed of an und. g.
in i-space and n-space are defined respectively
by:

Tþi ¼
n
EðƕÞ⊆EðUÞ; ½EðƕÞ�‘i⊆EðƕÞ

o

Tþn ¼
n
EðƕÞ⊆EðUÞ; ½EðƕÞ�‘n⊆EðƕÞ

o

(c) The classes of i-open and n-open of an und. g. in
i-space and n-space are defined respectively:

Ɣþi
¼ fEðЮÞ⊆EðUÞ; EðЮÞ¼ EðUÞ � EðƕÞ such that

EðƕÞ2Tþig;
Ɣþn

¼ fEðЮÞ⊆EðUÞ; EðЮÞ¼ EðUÞ � Eð ƕÞ such that
EðƕÞ2Tþng;

Table 1. LiðEðƕÞÞ, LnðEðƕÞÞ and LcðEðƕÞÞ for all ƕ⊆U.

EðƕÞ LiðEðƕÞÞ LnðEðƕÞÞ LcðEðƕÞÞ
fƍ1g f f f

fƍ2g f f f

fƍ3g f f f

fƍ4g f fƍ4g fƍ4g
fƍ5g f f f

fƍ1; ƍ2g f f f

fƍ1; ƍ3g f f f

fƍ1; ƍ4g f fƍ4g fƍ4g
fƍ1; ƍ5g f f f

fƍ2; ƍ3g f f f

fƍ2; ƍ4g f fƍ4g fƍ4g
fƍ2; ƍ5g f f f

fƍ3; ƍ4g f fƍ4g fƍ4g
fƍ3; ƍ5g f f f

fƍ4; ƍ5g f fƍ4g fƍ4g
fƍ1; ƍ2;ƍ3g f f f

fƍ1; ƍ2;ƍ4g f fƍ4g fƍ4g
fƍ1; ƍ2;ƍ5g f f f

fƍ2; ƍ3;ƍ4g f fƍ4g fƍ4g
fƍ2; ƍ3;ƍ5g f f f

fƍ3; ƍ4;ƍ1g f fƍ4g fƍ4g
fƍ3; ƍ4;ƍ5g f fƍ4g fƍ4g
fƍ4; ƍ5;ƍ1g f fƍ4g fƍ4g
fƍ4; ƍ5;ƍ2g f fƍ4g fƍ4g
fƍ1; ƍ3;ƍ5g f f f

fƍ1; ƍ2;ƍ3;ƍ4g f fƍ4g fƍ1;ƍ2;ƍ3; ƍ4g
fƍ1; ƍ2;ƍ3;ƍ5g f fƍ1; ƍ2;ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ3;ƍ4;ƍ5g f fƍ4g fƍ2;ƍ3;ƍ4; ƍ5g
fƍ1; ƍ3;ƍ4;ƍ5g f fƍ4g fƍ1;ƍ3;ƍ4; ƍ5g
fƍ1; ƍ2;ƍ4;ƍ5g f fƍ4g fƍ1;ƍ2;ƍ4; ƍ5g
EðUÞ EðUÞ EðUÞ EðUÞ
f f f f

Table 2. UiðEðƕÞÞ, UnðEðƕÞÞ and UcðEðƕÞÞ for all ƕ⊆U.

EðƕÞ UiðEðƕÞÞ UnðEðƕÞÞ UcðEðƕÞÞ
fƍ1g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1g
fƍ2g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ2g
fƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ3g
fƍ4g EðUÞ fƍ4g fƍ4g
fƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ5g
fƍ1; ƍ2g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ4g EðUÞ EðUÞ EðUÞ
fƍ1; ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ4g EðUÞ EðUÞ EðUÞ
fƍ2; ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ3; ƍ4g EðUÞ EðUÞ EðUÞ
fƍ3; ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ4; ƍ5g EðUÞ EðUÞ EðUÞ
fƍ1; ƍ2;ƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ2;ƍ4g EðUÞ EðUÞ EðUÞ
fƍ1; ƍ2;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ3;ƍ4g EðUÞ EðUÞ EðUÞ
fƍ2; ƍ3;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ3; ƍ4;ƍ1g EðUÞ EðUÞ EðUÞ
fƍ3; ƍ4;ƍ5g EðUÞ EðUÞ EðUÞ
fƍ4; ƍ5;ƍ1g EðUÞ EðUÞg EðUÞ
fƍ4; ƍ5;ƍ2g EðUÞ EðUÞ EðUÞ
fƍ1; ƍ3;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ2;ƍ3;ƍ4g EðUÞ EðUÞ EðUÞ
fƍ1; ƍ2;ƍ3;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ3;ƍ4;ƍ5g EðUÞ EðUÞ EðUÞ
fƍ1; ƍ3;ƍ4;ƍ5g EðUÞ EðUÞ EðUÞ
fƍ1; ƍ2;ƍ4;ƍ5g EðUÞ EðUÞ EðUÞ
EðUÞ EðUÞ EðUÞ EðUÞ
f f f f
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(d) The i-interior and n-interior of an und. g. ƕ are
defined respectively by:

IntiðEðƕÞÞ¼∪
�EðЮÞ2Ɣþi

;EðЮÞ⊆EðƕÞ�;
IntnðEðƕÞÞ¼∪fEðЮÞ2Ɣþn

;EðЮÞ⊆EðƕÞg;

(e) The i-closure and n-closure of an und. g. ƕ are
defined respectively by:

CliðEðƕÞÞ¼∩
�EðƙÞ2Tþi ;EðƕÞ⊆EðƙÞ�;

ClnðEðƕÞÞ¼∩fEðƙÞ2Tþn ;EðƕÞ⊆EðƙÞg;

(f) The i-boundary and n-boundary of an und. g. ƕ
are defined respectively by:

½EðƕÞ�bi ¼CliðEðƕÞÞ � IntiðEðƕÞÞ;

½EðƕÞ�bn¼ClnðEðƕÞÞ � IntnðEðƕÞÞ:

Theorem 2.3. In ðU; þiÞ (resp. ðU; þnÞ) is an i-space
(resp. n-space) and ƕ⊆U, then ƕ is an i-open (resp.

n-open) if and only if it contains the incident edges
(resp. non incident edges) of each of its edges.
Proof: Let ðU; þiÞ be an i-space and ƕ be an i-open
und. g. contained in U and ƍ2EðƕÞ. Suppose that
IEðƍÞ is incident edges with ƍ, and IEðƍÞ?EðƕÞ, thus
IEðƍÞT½EðUÞ�EðƕÞ�s∅ which implies

Table 3. BiðEðƕÞÞ, BnðEðƕÞÞ and BcðEðƕÞÞ for all ƕ⊆U.

EðƕÞ BiðEðƕÞÞ BnðEðƕÞÞ BcðEðƕÞÞ
fƍ1g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1g
fƍ2g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ2g
fƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ3g
fƍ4g EðUÞ f f

fƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ5g
fƍ1; ƍ2g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ4g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ4g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ3; ƍ4g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ3; ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ4; ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ2;ƍ3g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ2;ƍ4g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ2;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ3;ƍ4g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ2; ƍ3;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ3; ƍ4;ƍ1g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ3; ƍ4;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ4; ƍ5;ƍ1g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ4; ƍ5;ƍ2g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ3;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1;ƍ2;ƍ3; ƍ5g
fƍ1; ƍ2;ƍ3;ƍ4g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ5g
fƍ1; ƍ2;ƍ3;ƍ5g EðUÞ f f

fƍ2; ƍ3;ƍ4;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ1g
fƍ1; ƍ3;ƍ4;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ2g
fƍ1; ƍ2;ƍ4;ƍ5g EðUÞ fƍ1;ƍ2; ƍ3;ƍ5g fƍ3g
EðUÞ f f f

f f f f

Table 4. ziðEðƕÞÞ, znðEðƕÞÞ and zcðEðƕÞÞ for all ƕ⊆U.

EðƕÞ ziðEðƕÞÞ znðEðƕÞÞ zcðEðƕÞÞ
fƍ1g 0 1/5 4/5
fƍ2g 0 1/5 4/5
fƍ3g 0 1/5 4/5
fƍ4g 0 1 1

fƍ5g 0 1/5 4/5
fƍ1; ƍ2g 0 1/5 1/5
fƍ1; ƍ3g 0 1/5 1/5
fƍ1; ƍ4g 0 1/5 1/5
fƍ1; ƍ5g 0 1/5 1/5
fƍ2; ƍ3g 0 1/5 1/5
fƍ2; ƍ4g 0 1/5 1/5
fƍ2; ƍ5g 0 1/5 1/5
fƍ3; ƍ4g 0 1/5 1/5
fƍ3; ƍ5g 0 1/5 1/5
fƍ4; ƍ5g 0 1/5 1/5
fƍ1; ƍ2;ƍ3g 0 1/5 1/5
fƍ1; ƍ2;ƍ4g 0 1/5 1/5
fƍ1; ƍ2;ƍ5g 0 1/5 1/5
fƍ2; ƍ3;ƍ4g 0 1/5 1/5
fƍ2; ƍ3;ƍ5g 0 1/5 1/5
fƍ3; ƍ4;ƍ1g 0 1/5 1/5
fƍ3; ƍ4;ƍ5g 0 1/5 1/5
fƍ4; ƍ5;ƍ1g 0 1/5 1/5
fƍ4; ƍ5;ƍ2g 0 1/5 1/5
fƍ1; ƍ3;ƍ5g 0 1/5 1/5
fƍ1; ƍ2;ƍ3;ƍ4g 0 1/5 4/5
fƍ1; ƍ2;ƍ3;ƍ5g 0 1 1

fƍ2; ƍ3;ƍ4;ƍ5g 0 1/5 4/5
fƍ1; ƍ3;ƍ4;ƍ5g 0 1/5 4/5
fƍ1; ƍ2;ƍ4;ƍ5g 0 1/5 4/5
EðUÞ 1 1 1

f 1 1 1

Table 5. The i-derived and n-derived of an und. g. ƕ .

EðƕÞ ½EðƕÞ�‘i ½EðƕÞ�‘n
fƍ1g fƍ2; ƍ3;ƍ4g ∅
fƍ2g fƍ1; ƍ3;ƍ4g ∅
fƍ3g fƍ1; ƍ2;ƍ4g ∅
fƍ4g fƍ1; ƍ2;ƍ3g ∅
fƍ1; ƍ2g EðUÞ ∅
fƍ1; ƍ3g EðUÞ ∅
fƍ1; ƍ4g EðUÞ ∅
fƍ2; ƍ3g EðUÞ ∅
fƍ2; ƍ4g EðUÞ ∅
fƍ3; ƍ4g EðUÞ ∅
fƍ1; ƍ2;ƍ3g EðUÞ ∅
fƍ1; ƍ2;ƍ4g EðUÞ ∅
fƍ1; ƍ3;ƍ4g EðUÞ ∅
fƍ2; ƍ3;ƍ4g EðUÞ ∅
EðUÞ EðUÞ ∅
∅ ∅ ∅
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ƍ2½EðUÞ � EðƕÞ�‘i. But U�ƕ is i-closed since ƕ is i-
open and so ½EðUÞ � EðƕÞ�‘i⊆½EðUÞ�EðƕÞ� and hence
ƍ2½EðUÞ � EðƕÞ�. Therefore ƍ;EðƕÞ which con-
tradicts with ƍ2EðƕÞ and consequently if ƕ⊆ U is i-
open and ƍ2EðƕÞ, then the incident edges with ƍ
which is contained in EðƕÞ. Conversely, Let ƕ
contains the incident edges with each of its edges,
i.e. for all ƍ2EðƕÞ then IEðƍÞ⊆EðƕÞ. Let ƍ12
½EðUÞ � EðƕÞ�‘i then ƍ1;EðƕÞ. If ƍ12EðƕÞ there
would be incident edges with ƍ1, IEðƍ1Þ, such that
IEðƍ1Þ⊆EðƕÞ and this would imply that
IEðƍ1Þ

T½EðUÞ � EðƕÞ� ¼ ∅, thus ƍ1;½EðUÞ � EðƕÞ�‘i
which is impossible. Accordingly, ƍ12½EðUÞ�EðƕÞ�
and so ½EðUÞ � EðƕÞ�‘i⊆½EðUÞ� EðƕÞ� which implies
U�ƕ is i-closed and hence ƕ is i-open. Similarly,
we can prove that ƕ is n-open if and only if it
contains the non incident edges with each of its
edges.

Definition 2.4. Let Z¼ðƱðUÞ;EðUÞÞ be a generalized
approximation space and ƕ⊆U. Then is called inci-
dent composed (resp. non incident composed) if ƕ
contains the incident edges (resp. non incident edges)
with each of its edges i.e. for each ƍ2EðƕÞ, IEðƍÞ⊆
EðƕÞ ðresp: for eachƍ2EðƕÞ;NIEðƍÞ⊆EðƕÞÞ:

Definition 2.5. Let Z ¼ ðƱðUÞ; EðUÞÞ be a generalized
approximation space, then the class of all incident
composed (resp. non incident composed) und. g. are
denoted by Ʈi (resp. Ʈn) and defined by:
Ʈi ¼ fƕ⊆U; for each ƍ2EðƕÞ; IEðƍÞ⊆EðƕÞg
(resp. Ʈn ¼ fƕ⊆U; for eachƍ2EðƕÞ;NIEðƍÞ⊆E ðƕÞgÞ

Proposition 2.6. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space, then Ʈi (resp. Ʈn) forms a
topology on U.
Proof:

1. EðUÞ;∅2Ʈi (resp. Ʈn)
2. Let EðƕÞ; EðƙÞ2Ʈi (resp. Ʈn) and let for each ƍ2

EðƕÞ and ƍ2EðƙÞ, which implies that IEðƍÞ⊆EðƕÞ
and IEðƍÞ⊆EðƙÞ; IEðƍÞ⊆EðƕÞ TEðƙÞ
0EðƕÞTEðƙÞ2Ʈi (resp. Ʈn)

3. Let EðƕiÞ2Ʈi (resp. Ʈn) ci2I. Then ƍ2
S

iEðƕiÞ
imply that dio2I such that ƍ2EðƕioÞ⊆

S
iEðƕiÞ,

hence IEðƍÞ⊆EðƕioÞ⊆
S

i EðƕiÞ, that is
S

iE
ðƕiÞ2Ʈi (resp. Ʈn) ci2I.

Theorem 2.7. Let Z ¼ ðƱðUÞ; EðUÞÞ be a generalized
approximation space, then Tþi ¼ Ɣþi

and Tþn ¼ Ɣþn
.

Proof: Let ƕ2Ɣþi
be a proper then ƕ is i-open, to

prove that U�ƕ is i-open. We will prove that by
contradiction, Let ƍ2U�ƕ and IEðƍÞ?U�ƕ then

Table 6. The i-derived and n-derived of an und. g. ƕ.

EðƕÞ ½ƕ�‘i ½ƕ�‘n
fƍ1g ∅ fƍ2;ƍ3; ƍ4g
fƍ2g ∅ fƍ1;ƍ3; ƍ4g
fƍ3g ∅ fƍ1;ƍ2; ƍ4g
fƍ4g ∅ fƍ1;ƍ2; ƍ3g
fƍ1; ƍ2g ∅ EðUÞ
fƍ1; ƍ3g ∅ EðUÞ
fƍ1; ƍ4g ∅ EðUÞ
fƍ2; ƍ3g ∅ EðUÞ
fƍ2; ƍ4g ∅ EðUÞ
fƍ3; ƍ4g ∅ EðUÞ
fƍ1; ƍ2;ƍ3g ∅ EðUÞ
fƍ1; ƍ2;ƍ4g ∅ EðUÞ
fƍ1; ƍ3;ƍ4g ∅ EðUÞ
fƍ2; ƍ3;ƍ4g ∅ EðUÞ
EðUÞ ∅ EðUÞ
∅ ∅ ∅

Fig. 1. und. g. U given in Example (3.2).

Fig. 2. und. g. U given in Example (3.14).

Fig. 3. und. g. U given in Example (3.16).
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there exist at lest ƍ12IEðƍÞ and ƍ1;U�ƕ and
hence ƍ12ƕ, since ƍ12IEðƍÞ then ƍ2IEðƍ1Þ and
because ƍ12ƕ and ƕ is i-open then by theo-
rem(2.3), we get IEðƍ1Þ⊆ƕ and hence ƍ2ƕ, this
contradiction with ƍ2U� ƕ, there for each ƍ2 U�
ƕ then IEðƍÞ⊆U�ƕ and by theorem(2.3), we get U�
ƕ is i-open and hence we get ƕ is i-closed and ƕ2
Tþi , thus Ɣþi

⊆Tþi . Now, let ƙ2Tþi then ƙ is i-closed
and hence U� ƙ is i-open and by the above we get
that U� ðU�ƙÞ ¼ ƙ is i-open and ƙ2Ɣþi

, thus Tþi⊆
Ɣþi

and since Tþi ;Ɣþi
are both contains ∅ ;EðUÞ, and

hence Tþi ¼ Ɣþi
. And by the same way we can prove

that Tþn ¼ Ɣþn
.

Proposition 2.8. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space, then Ʈi ¼ Tþi ¼ Ɣþi

and
Ʈn ¼ Tþn ¼ Ɣþn

.
Proof: the proof of Ʈi ¼ Ɣþi

and Ʈn ¼ Ɣþn
is immedi-

ately follows from definition(2.4), definition(2.5) and
theorem(2.3). and by theorem(2.7), we get that Ʈi ¼
Tþi ¼ Ɣþi

and Ʈn ¼ Tþn ¼ Ɣþn
.

Remark 2.9. An immediate consequence of propo-
sition(2.8) and proposition(2.6) we have Ɣþi

and Ɣþn
form topologies on U.

Definition 2.10. Let Z¼ðƱðUÞ;EðUÞÞ be a general-
ized approximation space and Ɣþi

, Ɣþn
and Ɣþc

be the
supra topologies induced by Z and let ƕ⊆ U. Then

a) The i-lower and i-upper approximations of ƕ
are defined respectively by:

LiðEðƕÞÞ¼ IntiðEðƕÞÞ;

UiðEðƕÞÞ¼CliðEðƕÞÞ;
b) The n-lower and n-upper approximations of ƕ

are defined respectively by:

LnðEðƕÞÞ¼ IntnðEðƕÞÞ;

UnðEðƕÞÞ¼ClnðEðƕÞÞ;
c) The c-lower and c-upper approximations of ƕ

are defined respectively by:

LcðEðƕÞÞ¼ IntcðEðƕÞÞ;

UcðEðƕÞÞ¼ClcðEðƕÞÞ:

Definition 2.11. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space and Ɣþi

, Ɣþn
and Ɣþc

be

the supra topologies induced by Z and let ƕ⊆U.
Then

a) The i-boundary, i-positive and i-negative re-
gions of ƕ are defined respectively by:

BdiðEðƕÞÞ¼UiðEðƕÞÞ � LiðEðƕÞÞ;

POSiðEðƕÞÞ¼LiðEðƕÞÞ;

NEGiðEðƕÞÞ¼EðUÞ �UiðEðƕÞÞ;

b) The n-boundary, n-positive and n-negative re-
gions of ƕ are defined respectively by:

BdnðEðƕÞÞ¼UnðEðƕÞÞ � LnðEðƕÞÞ;

POSnðEðƕÞÞ¼LnðEðƕÞÞ;

NEGnðEðƕÞÞ¼EðUÞ �UnðEðƕÞÞ;

c) The c-boundary, c-positive and c-negative re-
gions of ƕ are defined respectively by:

BdcðEðƕÞÞ¼UcðEðƕÞÞ � LcðEðƕÞÞ;

POScðEðƕÞÞ¼LcðEðƕÞÞ;

NEGcðEðƕÞÞ¼EðUÞ �UcðEðƕÞÞ:

3. Accuracy of the lower, upper and boundary
approximation spaces

In this section, we investigate some of properties
of the accuracy of lower, upper, and boundary ap-
proximations in generalized rough set theory, which
is defined by employing i-interior (resp. n-interior
and c-interior).

Definition 3.1. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space. The accuracy of the
approximation of a sub und. g.ƕ⊆U using (þi; þn and
þc) are defined respectively by:

ziðEðƕÞÞ¼1� jBdiðEðƕÞÞj
jEðUÞj ;

znðEðƕÞÞ¼1� jBdnðEðƕÞÞj
jEðUÞj ;

zcðEðƕÞÞ¼1� jBdcðEðƕÞÞj
jEðUÞj :

It is obvious that 0 � ziðEðƕÞÞ � 1 ;
0 � znðEðƕÞÞ � 1 and 0 � zcðEðƕÞÞ � 1. Moreover, if
ziðEðƕÞÞ ¼ 1 or znðEðƕÞÞ ¼ 1 or zcðEðƕÞÞ ¼ 1 then ƕ
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is called ƕ-definable (ƕ-exact) und. g. otherwise, it
is called ƕ-rough.

Example 3.2. Let U ¼ ðƱðUÞ; EðUÞÞ such that ƱðƕÞ ¼
fԄ1;Ԅ2;Ԅ3;Ԅ4g; EðƕÞ ¼ fƍ1; ƍ2;ƍ3; ƍ4;ƍ5g.
þiðƍ1Þ¼ffƍ2;ƍ4;ƍ5gg;þiðƍ2Þ¼ffƍ1;ƍ3;ƍ4gg;þiðƍ3Þ¼f
�fƍ2;ƍ4gg;þiðƍ4Þ¼ffƍ1;ƍ2;ƍ3;ƍ5gg;þiðƍ5Þ¼f
�fƍ1;ƍ4;ƍ5gg:

þnðƍ1Þ¼ffƍ3gg;þnðƍ2Þ¼ffƍ5gg;þnðƍ3Þ¼ffƍ1;ƍ5g
�g;þnðƍ4Þ¼ ∅ ;þnðƍ5Þ¼ffƍ2;ƍ3gg:

þcðƍ1Þ¼ffƍ2;ƍ4;ƍ5g;fƍ3gg;þcðƍ2Þ¼f
�fƍ1;ƍ3;ƍ4g;fƍ5gg;þcðƍ3Þ¼ffƍ2;ƍ4g;fƍ1;ƍ5g
�g;þcðƍ4Þ¼ffƍ1;ƍ2;ƍ3;ƍ5g; ∅g;þcðƍ5Þ¼f
�fƍ1;ƍ4;ƍ5g;fƍ2;ƍ3gg:

Ɣþi
¼fEðUÞ; ∅g

Ɣþn
¼fEðUÞ; ∅ ;fƍ4g;fƍ1;ƍ2;ƍ3;ƍ5gg;

We can get the following four tables:

Proposition 3.3. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space, and Tþi , Tþn and Tþc be
the classes of i-closed, n-closed and c-closed graphs
induced by Z. Then any i-closed (or n-closed) und.
g. is c-closed.
Proof: Let ƕ⊆U be an i-closed und. g., then ½EðƕÞ�‘i⊆
EðƕÞ.
½EðƕÞ�‘i ¼ fƍ2EðUÞ; IEðƍÞ; IEðƍÞ∩ðEðƕÞ�fƍgÞs∅g
and ½EðƕÞ�‘c ¼ fƍ2EðUÞ : CESðƍÞ∩
ðEðƕÞ � fƍgÞsfg ¼ fƍ2EðUÞ; IEðƍÞ; IEðƍÞ∩ðEðƕÞ -
�fƍgÞs∅and NIEðƍÞ∩ðEðƕÞ�fƍgÞs∅g: Conse-
quently, ½EðƕÞ�‘c⊆½EðƕÞ�‘i and so ½EðƕÞ�‘c⊆EðƕÞ which
implies ƕ is c-closed. Therefore any i-closed und. g.
is c-closed. Similarly, we can prove that any n-
closed is c-closed.

Proposition 3.4. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space and Ɣþi

, Ɣþn
and Ɣþc

be the

supra topologies induced by Z. Then any i-open (or
n-open) und. g. is c-open.
Proof: Let ƙ⊆U be an i-open und. g. and Ғ ¼ U� ƙ.
So Ғ is i-closed und. g. and by using proposi-
tion(3.3), Ғ is c-closed. Hence ƙ ¼ U� Ғ is c-open.
Accordingly, any i-open und. g. is c-open. By the
same manner we can prove that any n-open und. g.
is c-open.

Proposition 3.5. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space and ƕ⊆U. Then.
ðaÞ LiðEðƕÞÞSLnðEðƕÞÞ⊆LcðEðƕÞÞ:
ðbÞ UcðEðƕÞÞ⊆UiðEðƕÞÞTUnðEðƕÞÞ:
ðcÞ BcðEðƕÞÞ⊆BiðEðƕÞÞTBnðEðƕÞÞ:
Proof:
ðaÞ Since LiðEðƕÞÞ ¼ ∪fEðЮÞ2Ɣþi

; EðЮÞ⊆EðƕÞg.
Hence LiðEðƕÞÞ⊆EðƕÞ and LiðEðƕÞÞ is i-open since
the union of any family of i-open und. g. is i-open.
Since LnðEðƕÞÞ ¼ ∪fEðЮÞ2Ɣþn

; EðЮÞ⊆E ðƕÞg. So
LnðEðƕÞÞ⊆EðƕÞ and LnðEðƕÞÞ is n-open since the
union of any family of n-open und. g. is n-open.
Since LiðEðƕÞÞ is i-open, then by proposition(3.4), it
is c-open and since LnðEðƕÞÞ is n-open, then by
proposition(3.4), it is also c-open. Hence
LiðEðƕÞÞSLnðEðƕÞÞ is c-open and LiðEðƕÞÞSLn
ðEðƕÞÞ⊆EðƕÞ. But, LcðEðƕÞÞ ¼ SfEðЮÞ2Ɣþc

;

EðЮÞ⊆EðƕÞg. Consequently, LiðEðƕÞÞSLnðE
ðƕÞÞ⊆LcðEðƕÞÞ.
ðbÞ UiðEðƕÞÞ ¼ ∩fEðƙÞ2Tþi ; EðƕÞ⊆EðƙÞg. Hence
EðƕÞ⊆UiðEðƕÞÞ and UiðEðƕÞÞ is i-closed since the
intersection of any family of i-closed und. g. is i-
closed. Since UnðEðƕÞÞ ¼ ∩fEðƙÞ2Tþn ; EðƕÞ
⊆EðƙÞg. thus EðƕÞ⊆UnðEðƕÞÞ and UnðEðƕÞÞ is n-
closed since the intersection of any family of n-
closed und. g. is n-closed. Since UiðEðƕÞÞ is i-closed
then, by proposition(3.3), it is c-closed and since
UnðEðƕÞÞ is n-closed then, by proposition(3.3), it is
also c-closed. Hence UiðEðƕÞÞTUnðEðƕÞÞ is c-closed
and EðƕÞ⊆UiðEðƕÞÞTUnðEðƕÞÞ. But UcðEðƕÞÞ ¼
∩fEðƙÞ2Tþc ; EðƕÞ⊆EðƙÞg.According.
UcðEðƕÞÞ⊆UiðEðƕÞÞTUnðEðƕÞÞ
ðcÞ Let ƍ2BcðEðƕÞÞ, then ƍ2ðUcðEðƕÞÞ� LcðEðƕÞÞÞ
and so ƍ2UcðEðƕÞÞ∧ƍ;LcðEðƕÞÞ. Since
UcðEðƕÞÞ⊆UiðEðƕÞÞTUnðEðƕÞÞ and LiðEðƕÞÞS
LnðEðƕÞÞ⊆LcðEðƕÞÞ. Then ƍ2ðUiðEðƕÞÞTUnðE
ðƕÞÞÞ∧ƍ;ðLiðEðƕÞÞSLnðEðƕÞÞÞ, this imply ðƍ2Ui

ðEðƕÞÞ∧ƍ2UnðEðƕÞÞÞ∧ðƍ;LiðEðƕÞÞ∧ƍ;Ln ðE
ðƕÞÞÞ, this imply ðƍ2UiðEðƕÞÞ∧ƍ;LiðEðƕÞÞÞ

Ɣþc
¼
�EðUÞ;∅;fƍ4g;fƍ2;ƍ3;ƍ4;ƍ5g;fƍ1;ƍ3;ƍ4;ƍ5g;fƍ1;ƍ2;ƍ4;ƍ5g;fƍ1;ƍ2;ƍ3;ƍ5g;
fƍ1;ƍ2;ƍ3;ƍ4g

�
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∧ðƍ2Un ðEðƕÞÞ∧ƍ;LnðEðƕÞÞÞ, this imply ƍ2
ðUiðEðƕÞÞ � LiðEðƕÞÞÞ∧ƍ2ðUnðEðƕÞÞ � LnðE ðƕÞÞÞ,
this imply ƍ2BiðEðƕÞÞ∧ƍ2BnðEðƕÞÞ, this imply ƍ2
ðBiðEðƕÞÞTBnðEðƕÞÞÞ. Therefore BcðE
ðƕÞÞ⊆BiðEðƕÞÞTBnðEðƕÞÞ.

Remark 3.6. Let Z ¼ ðƱðUÞ; EðUÞÞ be a generalized
approximation space and ƕ⊆U. Then the following
statements are not necessarily true.
ðaÞ LcðEðƕÞÞ ¼ LiðEðƕÞÞSLnðEðƕÞÞ:
ðbÞ UcðEðƕÞÞ ¼ UiðEðƕÞÞTUnðEðƕÞÞ:
ðcÞ BcðEðƕÞÞ ¼ BiðEðƕÞÞTBnðEðƕÞÞ:
The next example shows pervious remark.

Example 3.7. According to example(3.2),

(a) Let ƕ ¼ ðƱðƕÞ; EðƕÞÞ such that ƱðƕÞ ¼ fԄ1;Ԅ2;
Ԅ3;Ԅ4g and EðƕÞ ¼ fƍ1; ƍ2; ƍ3; ƍ4g. Then
LcðEðƕÞÞ ¼ fƍ1; ƍ2; ƍ3; ƍ4g, LiðEðƕÞÞ ¼ ∅ and
LnðEðƕÞÞ ¼ fƍ4g, such that LiðEðƕÞÞSLnðEðƕÞÞ ¼
fƍ4g and so LcðEðƕÞÞsLiðEðƕÞÞSLnðEðƕÞÞ:
ðbÞ Let ƕ ¼ ðƱðƕÞ; EðƕÞÞ such that ƱðƕÞ ¼ fԄ2g
and EðƕÞ ¼ fƍ5g. Then UcðEðƕÞÞ ¼ fƍ5g,
UiðEðƕÞÞ ¼ EðUÞ and UnðEðƕÞÞ ¼ fƍ1; ƍ2; ƍ3; ƍ5g,
such that UiðEðƕÞÞTUn ðEðƕÞÞ ¼ fƍ1; ƍ2; ƍ3; ƍ5g
and so UcðEðƕÞÞsUiðEðƕÞÞTUnðEðƕÞÞ:
ðcÞ Let ƕ ¼ ðƱðƕÞ; EðƕÞÞ such that ƱðƕÞ ¼ fԄ2g
and EðƕÞ ¼ fƍ5g. Then BcðEðƕÞÞ ¼ fƍ5g,
BiðEðƕÞÞ ¼ EðUÞ and BnðEðƕÞÞ ¼ fƍ1; ƍ2; ƍ3; ƍ5g,
such that BiðEðƕÞÞTBnðEðƕÞÞ ¼ fƍ1; ƍ2; ƍ3; ƍ5g
and so BcðEðƕÞÞsBiðEðƕÞÞTBnðEðƕÞÞ:

Theorem 3.8. Let Z ¼ ðƱðUÞ; EðUÞÞ be a generalized
approximation space and ƍ is isolated edge then:
ðaÞ fƍg is i-closed.
ðbÞ If fƍg=EðUÞ then fƍg is not n-closed.
Proof: Let ƍ is isolated edge in a graph U.then
ðaÞ Since ƍ is isolated edge then for every ƍ12 EðUÞ
we get ƍ;IEðƍ1Þ and IEðƍ1Þ∩ðfƍg�fƍ1gÞ ¼ ∅ and
hence for every ƍ12EðUÞ then ƍ1;½fƍg�‘i , thus
½fƍg�‘i ¼ ∅⊆fƍg, there fore fƍg is i-closed.
ðbÞ Since fƍg=EðUÞ then there exist at least a edge
ƍ12EðUÞ different from ƍ , since ƍ is isolated edge
then ƍ2NIEðƍ1Þ and NIEðƍ1Þ∩ðfƍg�fƍ1gÞ ¼ fƍgs ∅
and hence ƍ12½fƍg�‘n , thus ½fƍg�‘n?fƍg , therefore
fƍg is not n-closed.

Theorem 3.9. Let Z ¼ ðƱðUÞ; EðUÞÞ be a generalized
approximation space. Then if U is connected graph
then Tþi ¼ f∅; EðUÞg.
Proof: Let U be a connected graph and letƕ be any a
proper sub und. g. in U i.e. ∅=ƕ=EðUÞ. Since U is
connected then U�ƕ connected with ƕ and hence
there exist at least a edge ƍ2U�ƕ such that ƍ is

incident with at least for some a edge ƍ12ƕ and we
get ƍ12IEðƍÞ and hence IEðƍÞ∩ðƕ�fƍgÞ contains at
least a edge ƍ1 , then IEðƍÞ∩ðƕ�fƍgÞs∅ , thus
ƍ2½ƕ�‘i and ƍ;ƕ then we get ½ƕ�‘i?ƕ , there fore ƕ
is not i-closed and the only i-closed are ∅; EðUÞ and
hence Tþi ¼ f∅; EðUÞg.

Theorem 3.10. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space. Then if U is disconnected
graph then Tþn ¼ f∅; EðUÞg.
Proof: Let U be a disconnected graph then there
exist at least two disjoint component in U say A and
B that is A∩B ¼ ∅. Let ƕ be any a proper sub und.
g. in U i.e. ∅=ƕ=EðUÞ the

(i) If ƕ⊆A then ƕ?B and for all ƍ2B then
ƕ⊆NIEðƍÞ and NIEðƍÞ∩ðƕ�fƍgÞ ¼ ƕs∅ then
ƍ2½ƕ�‘n and ƍ;ƕ , there fore ½ƕ�‘n?ƕ then ƕ
is not n-closed

(ii) If ƕ⊆B then ƕ?A and for all ƍ2A then
ƕ⊆NIEðƍÞ and NIEðƍÞ∩ðƕ�fƍgÞ ¼ ƕs∅ then
ƍ2½ƕ�‘n and ƍ;ƕ , there fore ½ƕ�‘n?ƕ then ƕ
is not n-closed

(iii) If ƕ∩As∅ and ƕ∩Bs∅ then there exist at
least ƍ2A and ƍ12B such that ƍ;ƍ12ƕ, since
ƕ=EðUÞ then there exist ƍ22EðUÞ and ƍ2;ƕ
then ƍ2 belong to one of them component of
U, if ƍ22A then ƍ12NIEðƍ2Þ and
NIEðƍ2Þ∩ðƕ�fƍ2gÞ contain at least ƍ1 and
hence NIEðƍ2Þ∩ðƕ � fƍ2gÞs∅, then ƍ22½ƕ�‘n
and ƍ2;ƕ, thus ½ƕ�‘n?ƕ and hence ƕ is not
n-closed, if ƍ22B then ƍ2NIEðƍ2Þ and
NIEðƍ2Þ∩ðƕ�fƍ2gÞ contain at least ƍ and
hence NIEðƍ2Þ∩ðƕ � fƍ2gÞs∅, then ƍ22½ƕ�‘n
and ƍ2;ƕ, thus ½ƕ�‘n?ƕ and hence ƕ is not
n-closed, there for the only n-closed are ∅;
EðUÞ.and hence Tþn ¼ f∅; EðUÞg.

Corollary 3.11. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space. Then for any und. g. U we
have that either Tþi ¼ f∅; EðUÞg or Tþn ¼ f∅;EðUÞg.
Proof: The proof is immediately follows from The-
orem (3.9) and Theorem (3.10) and by (for any und.
g. U we have that either U is connected or U is
disconnected.

Example 3.12. Let U ¼ ðƱðUÞ; EðUÞÞ be und. g. such
that ƱðUÞ contain only one vertex then Tþi ¼ Tþn ¼
f∅; EðUÞg.
Theorem 3.13. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space. Then if U is star graph
then.
ðaÞ Tþi ¼ f∅; EðUÞg:
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ðbÞ Tþn ¼ PðEðUÞÞ:
Proof: Let U is star graph then,

ðaÞ Since U is star graph then U is connected
graph and hence by theorem (3.9) we get Tþi ¼
f∅; EðUÞg.
ðbÞ We will prove that by contradiction. suppose
that Tþn=PðEðUÞÞ then there exists at least sub
und. g. ƕ2PðEðUÞÞ such that ƕ is not n-closed
then ½ƕ�‘n?ƕ then there exist at least ƍ2 ½ƕ�‘n
and ƍ;ƕ, since ƍ2½ƕ�‘n then NIEðƍÞ∩ðƕ�fƍgÞs
∅ and hence there exists at least a edge ƍ12 ƕ
different from ƍ such that ƍ12NIEðƍÞ and hence
ƍ1 is non incident with ƍ , thus this contradiction
with U is star graph. There fore ƕ is n-closed.
then we have that for every sub und. g. of U is n-
closed and hence Tþn ¼ PðEðUÞÞ.

The next example illustrates the above theorem.

Example 3.14. Let U ¼ ðƱðUÞ; EðUÞÞ such that
ƱðUÞ ¼ fԄ1;Ԅ2;Ԅ3;Ԅ4;Ԅ5g and EðUÞ ¼ fƍ1; ƍ2; ƍ3;
ƍ4g.
Hence þi is defined by

þiðƍ1Þ ¼ fƍ2;ƍ3;ƍ4g;þiðƍ2Þ ¼ fƍ1;ƍ3;ƍ4g;þiðƍ3Þ ¼
fƍ1; ƍ2; ƍ4g; þiðƍ4Þ ¼ fƍ1; ƍ2; ƍ3g. Hence þn is
defined by þnðƍ1Þ ¼ ∅; þnðƍ2Þ ¼ ∅; þnðƍ3Þ ¼ ∅ ;
þnðƍ4Þ ¼ ∅.

Then Tþi ¼ f∅; EðUÞg because (c∅=ƕ=U then
½ƕ�‘i?ƕÞ and Tþn ¼ PðEðUÞÞ because (cƕ⊆U then
½ƕ�‘n⊆ƕÞ.

Theorem 3.15. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space. Then if U is antisym-
metric graph then.
ðaÞ Tþn ¼ f∅; EðUÞg:
ðbÞ Tþi ¼ PðEðUÞÞ:
Proof: Let U be an antisymmetric graph then,

ðaÞ Since U is antisymmetric graph then U is
disconnected graph and hence by theorem(3.10)
we get Tþn ¼ f∅; EðUÞg.
ðbÞ We will prove that by contradiction. suppose
that Tþi=PðEðUÞÞ then there exists at least sub
und. g. ƕ2PðEðUÞÞ such that ƕ is not i-closed
then ½ƕ�‘i?ƕ then there exist at least ƍ2 ½ƕ�‘i and
ƍ;ƕ, since ƍ2½ƕ�‘i then IEðƍÞ∩ðƕ�fƍgÞs∅ and
hence there exists at least a edge ƍ12ƕ different
from ƍ such that ƍ12IEðƍÞ and hence ƍ1 is inci-
dent with ƍ, thus this contradiction with U is
antisymmetric graph. Therefore ƕ is i-closed.
then we have that for every sub und. g. of U is i-
closed and hence Tþi ¼ PðEðUÞÞ.

The next example illustrates the above theorem.

Example 3.16. Let U ¼ ðƱðUÞ; EðUÞÞ such that
ƱðUÞ ¼ fԄ1;Ԅ2;Ԅ3;Ԅ4g and EðUÞ ¼ fƍ1;ƍ2;ƍ3;ƍ4g.
Hence þi is defined by þiðƍ1Þ ¼ fƍ1g; þiðƍ2Þ ¼ fƍ2g;
þiðƍ3Þ ¼ fƍ3g;þiðƍ4Þ ¼ fƍ4g. Hence þn is defined by”
þnðƍ1Þ ¼ fƍ2; ƍ3; ƍ4g; þnðƍ2Þ ¼ fƍ1; ƍ3; ƍ4g; þnðƍ3Þ ¼
fƍ1; ƍ2;ƍ4g; þnðƍ4Þ ¼ fƍ1; ƍ2; ƍ3g.
Then Tþn ¼ f∅; EðUÞg because (c∅=ƕ=U then
½ƕ�‘n?ƕÞ and Tþi ¼ PðEðUÞÞ because (cƕ⊆U then
½ƕ�‘i⊆ƕÞ.
Note 3.17. Let ðU; þiÞ be an i-space if U is connected
(resp. disconnected,star, antisymmetric) then ðU; þiÞ
is called connected (resp. disconnected, star, anti-
symmetric) i-space.

Corollary 3.18. Let Z ¼ ðƱðUÞ; EðUÞÞ be a general-
ized approximation space. Then:

ðaÞThe induced topology by þi on connected i-
space is indiscrete topology.
ðbÞThe induced topology by þn on disconnected
n-space is indiscrete topology.
ðcÞThe induced topology by þi on star i-space is
indiscrete topology and the induced topology by
þn on star n-space is discrete topology.
ðdÞThe induced topology by þi on antisymmetric
i-space is discrete topology and the induced to-
pology by þn on antisymmetric n-space is indis-
crete topology,
ðeÞFor any und. g. U we have that either Ʈi is
indiscrete topology or Ʈn is indiscrete topology.

Proof:

ðaÞ The proof is immediately follows from theo-
rem(3.9) and theorem(2.7).
ðbÞ The proof is immediately follows from theo-
rem(3.10) and theorem(2.7).
ðcÞ The proof is immediately follows from theo-
rem(3.13) and theorem(2.7).
ðdÞ The proof is immediately follows from theo-
rem(3.15) and theorem(2.7).
ðeÞ The proof is immediately follows from Cor-
ollary (3.11) and proposition(2.8).
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