ON CoLC Topologies

Reyadh Delfy Ali
Department of Mathematics, College of Education for Pure Sciences, Kerbala University. Iraq,
reyadh_delphi@uokerbala.edu.iq

Omlsad Adgheem Ali
Department of Mathematics, College of Science, Aljufra University. Libya, Omlsaed.Alrabee@ju.edu.ly

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation
DOI: 10.29350/qjps.2022.27.1.1470
Available at: https://qjps.researchcommons.org/home/vol27/iss1/2

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.
ON CoLC Topologies

<table>
<thead>
<tr>
<th>Authors Names</th>
<th>ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Reyadh Delfi Ali</td>
<td>The purpose of this work is to continue the study of Co LC topologies and offer new characteristics of CoLC topologies and examine their relationships with other classes of topological spaces.</td>
</tr>
<tr>
<td>b. Omsad Adgheem Ali</td>
<td></td>
</tr>
</tbody>
</table>

Article History
Received on: 19/11/2021
Revised on: 28/11/2021
Accepted on: 11/1/2022

Keywords: Co LC topologies, LC space, Co-Lindelöf topologies, $WALC$ space.

DOI: https://doi.org/10.29350/jops.2022.27.1.1470

1. Introduction:

Gauld, M., R., and Vamanamurthy [8] introduced the Co-Lindelöf topology

$$l(\psi) = \{ \emptyset \} \bigcup \{ O \in \psi : S - O \text{ is Lindelöf in } (S, \psi) \},$$

They showed that $l(\psi)$ is a topology on S with $l(\psi) \subseteq \psi$.

A. Kanibir and P. Grgino [13] introduced the Co LC topology

$$lc(\psi) = \{ \emptyset \} \bigcup \{ O \in \psi : S - O \text{ is } LC - \text{subspace in } (S, \psi) \}$$

is a topology on S with $lc(\psi) \subseteq \psi$.

In this paper is to study the basic properties of the Co LC topology.
2. Preliminaries

Definition 2.1: \((S,\psi)\) is an LC-topological space if every Lindelöf \(F \subseteq S\) is closed [8], [16].

Also known \(L-closed\) [9], [10], [12] and [14].

Definition 2.2[24]: A topological space \((S,\psi)\) is a KC-space if every compact \(K \subseteq S\) is closed.

Definition 2.3[6]: \((S,\psi)\) is cid-space if every countable subset of \(S\) is closed and discrete.

Definition 2.4 [15]:

A topological space \((S,\psi)\) is called \(P\)-space if every \(G_\sigma\)-open set in \(S\) is open.

Definition 2.5[1]:

A topological space \((S,\psi)\) is a \(Q\)-set space if if each subset of \(S\) is an \(F_\sigma\)-closed set.

Definition 2.6 [2]: A topological space \((S,\psi)\) is a weak \(P\)-space if every countable union of regular closed sets is closed.

Definition 2.7: A topological space \((S,\psi)\) is almost Lindelöf if for every open cover \(\omega\) of \(S\) there exists a countable subfamily a countable subfamily \(\beta \subseteq \omega\) such that \(S = \bigcup_{\omega \in \beta} \overline{Y}\). From the definition that every Lindelöf space is almost Lindelöf [5], [23].

Definition 2.8 [22]:

A topological space \((S,\psi)\) is \(ALC\)-space if every subset of \(S\) which is almost Lindelöf in \(S\) is closed.

Definition 2.9: A topological space \((S,\psi)\) is weakly \(ALC\)-space \(WALC\)-space if every almost Lindelöf subset of \(S\) is closed[11]. Clearly, every \(ALC\)-space is an \(WALC\)-space and every \(WALC\)-space is an \(LC\)-space.
Definition 2.10[7]: A topological space \((S,\psi)\) is called a Locally LC - space if each point of \(S\) has a neighborhood which is an LC - subspace. Clearly every LC - space is locally LC - space. In general the converse needs not be true [4], however every regular locally LC - space is LC - space.

Definition 2.11[3]: A topological space \((S,\psi)\) is a \(R_1\) - space if \(y\) and \(z\) have disjoint neighborhoods whenever \(cl\{y\} \neq cl\{z\}\). Clearly a space is Hausdorff if and only if its \(T_1\) and \(R_1\).

Definition 2.12 [1]: A topological space \((S,\psi)\) is said to be anti - Lindelöf if each Lindelöf subset of \(M\) is countable.

Definition 2.13 [2]:

(1) If \(\forall\) Lindelöf \(F_\sigma - closed\) is closed. A space \(S\) is an \(L_1\).

(2) If \(H \subseteq S\) is Lindelöf, then \(clH\) is Lindelöf. A space \(S\) is an \(L_2\).

(3) If \(\forall\) Lindelöf \(H \subseteq S\) is an \(F_\sigma - closed\). A space \(S\) is an \(L_3\).

Theorem 2.14 [2]:

(i) If \((S,\psi)\) is an LC - space, then \((S,\psi)\) is a \(L_i\) - space, \(i=1,2,3\).

(ii) If \((S,\psi)\) is an \(L_1\) - space and an \(L_3\) - space, then \((S,\psi)\) is an LC - space.

(iii) Every \(P\) - space is an \(L_1\) - space. (v) Every \(L_3\) - space is \(T_1\).

Corollary 2.15 [18]:

If \((S,\psi)\) is an LC - topological space then \((S,\ell(\psi))\) is a \(P\) - topological space.

Corollary 2.16 [18]: Every \(P\) - space \((S,\psi)\) is weak \(P\) - space.

Theorem 2.17 [2]:

For a space \((M,\Gamma)\) the following are equivalent:

(a) \((S,\psi)\) is an \(L_i\) - topological space. (b) \((S,\ell(\psi))\) is a \(P\) - topological space.
Corollary 2.18[19]: Every \(Q \)-set \(L_1 \)-space is an \(LC \)-space.

Theorem 2.19 [2]: Every \(T_1 \), anti- Lindelöf \(L_1 \)-space is an \(LC \)-space.

Corollary 2.20 [18]: If \((S, \psi)\) is Lindelöf space then \(l(\psi) = \psi \).

Theorem 2.21 [17]: A regular almost Lindelöf space is Lindelöf.

Theorem 2.22[19]: Every locally compact \(LC \)-space is a Hausdorff.

Corollary 2.23[19]:

(i) Every \(R_1 \) \(LC \)-space is a Hausdorff. (ii) Every regular \(LC \)-space is a Hausdorff.

Theorem 2.24[15]: Every Hausdorff \(P \)-space is an \(LC \)-space.

Theorem 2.25[2]: For a Hausdorff space \(S \) the following are equivalent:

(a) \(S \) is an \(LC \)-space. \hspace{1cm} (b) \(S \) is an \(L_1 \)-space and an \(L_2 \)-space.

Theorem 2.26 [19]: For a Hausdorff Lindelöf space \(S \) the following are equivalent:

(a) \(S \) is an \(LC \)-space. \hspace{1cm} (b) \(S \) is an \(L_1 \)-space.

Corollary 2.27 [11]: For a Hausdorff Lindelöf space \(S \), the following are equivalent:

(a) \(S \) is an \(ALC \)-space. \hspace{1cm} (b) \(S \) is an \(WALC \)-space. \hspace{1cm} (c) \(S \) is \(LC \)-space. \hspace{1cm} (d) \(S \) is a \(P \)-space. \hspace{1cm} (e) \(S \) is a weak \(P \)-space.

Theorem 2.28 [20]: For a regular space \(S \) the following are equivalent:

(a) \(S \) is an \(LC \)-space. \hspace{1cm} (b) \(S \) is an \(WALC \)-space.

Theorem 2.29 [19]: If \((S, \psi)\) is a topological space and \(N \subseteq S \), \(N = \bigcup_{i=1}^{n} N_i \), where \(N_i \), \(i = 1, 2, \ldots, n \) are closed and \(LC \)-subspaces in \(S \), so \(N \) is \(LC \)-space.

Proposition 2.30 [13]: If \((S, \psi)\) is an \(LC \)-space, then \(\psi = lc(\psi) \).
Corollary 2.31 [13]:

Let \((S, \psi)\) be a topological space.

If \((S, lc(\psi))\) has no Lindelöf dense subset then \((S, lc(\psi))\) is an LC-space.

Theorem 2.32 [13]: For a space \((S, \psi)\) the following are equivalent:

(a) \((S, \psi)\) is an LC-space.

(b) \((S, lc(\psi))\) is an LC-space.

Proposition 2.33 [13]:

If \((S, lc(\psi))\) is disconnected, then \((S, \psi)\) is an LC-space.

Corollary 2.34 [13]:

If \((S, lc(\psi))\) is disconnected, then \((S, lc(\psi))\) is an LC-space.

Theorem 2.35 [13]: Let \((M, \Gamma)\) be a topological space.

Then \((S, \psi)\) is an LC-space and disconnected if and only if \((S, lc(\psi))\) is disconnected.

Proposition 2.36 [13]: If \((S, \psi)\) is \(T_1\), then \((S, lc(\psi))\) is \(T_1\).

Proposition 2.37 [13]:

(i) If \((S, \psi)\) is an LC-space, then \(l(\psi) \subseteq lc(\psi)\).

(ii) If \((S, \psi)\) is a Lindelöf space, then \(lc(\psi) \subseteq l(\psi)\).

Note that the reverse inclusions of (i) and (ii) are false in general [11].

Example 2.38: If \((S, \psi)\) is the discrete topological space and \(S\) is an uncountable set, so \(\psi = lc(\psi)\) (\(S\) is an LC-space and Proposition 2.30). Since \(\psi \neq l(\psi)\), hence \(lc(\psi) \subset l(\psi)\).

Example 2.39: If \((\mathbb{R}, \Omega)\) is the usual topology, \(\mathbb{N} = \{0\} \cup \{\frac{1}{j} : j = 1, 2, 3, 4, 5, \ldots\}\) and if \(\psi = \Omega_N\).

\(\Theta(\mathbb{N}, \Omega_N)\) is compact, it is Lindelöf. Therefore \(\Omega_N = l(\Omega_N)\). Take \(\frac{1}{2} \in \Omega_N\) and \(B = \left\{\frac{1}{3}, \frac{1}{4}, \ldots\right\}\). Then \(B \subseteq L = \mathbb{N} - \left\{\frac{1}{2}\right\}\) is a Lindelöf subset of \((\mathbb{L}, \Omega_L)\), and not closed in \((\mathbb{L}, \Omega_L)\). Therefore \(L\) is not an LC-subspace of \((\mathbb{N}, \Omega_N)\). So \(\left\{\frac{1}{2}\right\} \notin lc(\Omega_N)\). Hence \(l(\Omega_N) \subset lc(\Omega_N)\).

Corollary 2.40 [2]: Every Hausdorff locally Lindelöf \(L_1\)-space is an LC-space.

Theorem 2.41 [19]: For anti-Lindelöf space \(S\) the following are equivalent:
(a) S is an LC–space .

(b) S is a cid–space.

Theorem 2.42 [21]: Every Hausdorff P–space is an $WALC$–space.

3. CoLC Topologies

Corollary 3.1: (i) If $(S, lc(\psi))$ is an LC–space then $(S, l(\psi))$ is a P–space.

(ii) If $(S, lc(\psi))$ is an LC–space then $(S, l(\psi))$ is a weak P–space.

Proof. Obvious by Theorem 2.32, Corollary 2.15 and Corollary 2.16.

Theorem 3.2: For a Q–set space (S, ψ) the following are equivalent:

(a) $(S, lc(\psi))$ is an LC–space .

(b) $(S, l(\psi))$ is a P–space.

Proof.

\Longleftrightarrow: Obvious by Corollary 3.1(i).

\Rightarrow: If $(S, l(\psi))$ is a P–space, so (S, ψ) is an L_1–space by Theorem 2.17. Since (S, ψ) is a Q–set, therefore (S, ψ) is an LC–space (Corollary 2.18). Thus $(S, lc(\psi))$ is an LC–space (Theorem 2.32).

Theorem 3.3: For an anti-Lindelöf T_1 space (S, ψ) the following are equivalent:

(a) (S, ψ) is an LC–space .

(b) $(S, lc(\psi))$ is an LC–space .

(c) $(S, l(\psi))$ is a P–space .

Proof.

(a) \Rightarrow (b): Obvious (Theorem 2.32). (b) \Rightarrow (c): This is obvious (Corollary 3.1(i)).

(c) \Rightarrow: If $(S, l(\psi))$ is a P–space, so (S, ψ) is an L_1–space (Theorem 2.17). Since (S, ψ) is an anti-Lindelöf T_1 space, therefore (S, ψ) is an LC–space (Theorem 2.19). Thus $(S, lc(\psi))$ is an LC–space (Theorem 3.1).
Theorem 3.4: For a locally Lindelöf Hausdorff space \((S, \psi)\) the following are equivalent:

(a) \((S, \text{lc}(\psi))\) is an LC – space.
(b) \((S, \text{l}(\psi))\) is a P – space.

Proof. \(\Leftarrow: \) Obvious (Corollary 3.1(i)). \(\Rightarrow: \) If \((S, \text{l}(\psi))\) is a P – space, so \((S, \psi)\) is an \(L_1\) – space (Theorem 2.17). Since \((S, \psi)\) is a locally Lindelöf Hausdorff space, therefore \((S, \psi)\) is an LC – space (Corollary 2.40). Thus \((S, \text{lc}(\psi))\) is an LC – space (Theorem 2.32).

Corollary 3.5: (i) If \((S, \text{lc}(\psi))\) is Hausdorff, then \((S, \text{l}(\psi))\) is a P – space.
(ii) If \((S, \text{lc}(\psi))\) is Hausdorff, then \((S, \text{l}(\psi))\) is a weak P – space.

Proof. Obvious.

Corollary 3.6: (i) If \((S, \text{lc}(\psi))\) is disconnected, then \((S, \text{l}(\psi))\) is a P – space.
(ii) If \((S, \text{lc}(\psi))\) is disconnected, then \((S, \text{l}(\psi))\) is a weak P – space.

Proof. Obvious.

Corollary 3.7:

(i) If \((S, \psi)\) is an LC – space, then \((S, \text{lc}(\psi))\) is a \(T_1\) – space.
(ii) If \((S, \psi)\) is a KC – space, then \((S, \text{lc}(\psi))\) is a \(T_1\) – space.
(iii) If \((S, \psi)\) is locally LC – space, then \((S, \text{lc}(\psi))\) is a \(T_1\) – space.
(iv) If \((S, \psi)\) is infinite cid – space, then \((S, \text{lc}(\psi))\) is a \(T_1\) – space.

Proof. Obvious by Theorem 2.36.

Corollary 3.8: If \((S, \psi)\) is a Lindelöf LC – space, then \(\psi = \text{lc}(\psi) = \text{l}(\psi)\).

Proof. Obvious by Proposition 2.30 and Corollary 2.20.

Corollary 3.9:

(i) If \((S, \psi)\) is a LC Lindelöf space, then \((S, \text{lc}(\psi))\) is a P – space.
(ii) If \((S, \psi)\) is a LC Lindelöf space, then \((S, \text{l}(\psi))\) is a weak P – space.
(iii) If \((S, \psi)\) is a LC Lindelöf space, then \((S, \text{l}(\psi))\) is a P – space.
(iv) If \((S,\psi)\) is an LC Lindelöf space, then \((S, l(\psi))\) is a weak \(P - \text{space}\).

Corollary 3.10: If \((S,\psi)\) is anti-Lindelöf \(cid - \text{space}\), then \((S, l(\psi))\) is an LC-\(space\).

Proof. Since \((S,\psi)\) is anti-Lindelöf \(cid - \text{space}\), so \((S, l(\psi))\) is an LC-\(space\) (Theorem 2.41), therefore \((S, l(\psi))\) is an LC-\(space\) (Theorem 2.32).

Corollary 3.11: If \((S, l(\psi))\) is a Hausdorff, then \((S,\psi)\) is a locally LC-\(space\).

Proof. Since \((S, l(\psi))\) is a Hausdorff, then \((S,\psi)\) is an LC-\(space\) (Proposition 2.33). Therefore \((S,\psi)\) is a locally LC.

Corollary 3.12:

(i) If \((S, l(\psi))\) is a Hausdorff, then \((S,\psi)\) is \(cid - \text{space}\).

(ii) If \((S, l(\psi))\) is a Hausdorff, then \((S,\psi)\) is a KC-\(space\).

Corollary 3.13:

(i) If \((S,\psi)\) is a regular locally LC-\(space\), then \(l(\psi) \subseteq l(\psi)\).

(ii) If \((S,\psi)\) is a regular almost Lindelöf, then \(l(\psi) \subseteq l(\psi)\).

Proof. (i) Obvious by Definition 2.01 and Proposition 2.30.

(ii) Obvious by Theorem 2.21 and Corollary 2.20.

Theorem 3.14: For a locally compact \((S,\psi)\) the following are equivalent:

(a) \((S,\psi)\) is an LC-\(space\).

(b) \((S, l(\psi))\) is a Hausdorff.

Proof. =>: If \((S,\psi)\) is an LC-\(space\), so \(\psi = l(\psi)\) proposition 2.30. Since \((S,\psi)\) is a locally compact, then \((S, l(\psi))\) is a Hausdorff by Theorem 2.22.

<=: Obvious by Proposition 2.33.

Theorem 3.15: For a regular \((S,\psi)\) the following are equivalent:

(a) \((S,\psi)\) is an LC-\(space\).

(b) \((S, l(\psi))\) is a Hausdorff.
Proof. \Rightarrow: Let (S, ψ) be an LC-space, then $\psi = lic(\psi)$ Proposition 2.30. Since (S, ψ) is a regular, then $(S, lc(\psi))$ is a Hausdorff.

\Leftarrow: Obvious by Proposition 2.33.

Theorem 3.16: For a $R_1 (S, \psi)$ the following are equivalent:

(a) (S, ψ) is an LC-space. (b) $(S, lc(\psi))$ is a T_2.

Proof. \Leftarrow: If (S, ψ) is an LC-space, then $\psi = lc(\psi)$ Proposition 2.30. Since (S, ψ) is a R_1, then $(S, lc(\psi))$ is a T by Corollary 2.23(i).

\Rightarrow: Obvious.

Corollary 3.17: If $(S, lc(\psi))$ is Hausdorff, then (S, ψ) is a Hausdorff.

Proof. Since $(S, lc(\psi))$ is Hausdorff, then (S, ψ) is an LC-space by Proposition 2.33, so $\psi = lc(\psi)$. Hence (S, ψ) is a Hausdorff.

Corollary 3.18: If (S, ψ) is Hausdorff P-space, then $(S, lc(\psi))$ is a Hausdorff P-space.

Proof. Since (S, ψ) is Hausdorff P-space, hence (S, ψ) is an LC-space by Theorem 2.24, so $\psi = lc(\psi)$. Therefore $(S, lc(\psi))$ is a Hausdorff P-space.

4. CoLC and L_i-Spaces

Corollary 4.1: Let $(S, lc(\psi))$ be an LC-space, then $(S, li(\psi))$ is an L_i.

Proof. Obvious (Corollary 3.1 and Theorem 2.14 (iii)).

Theorem 4.2: For a L_3-space (S, ψ) the following are equivalent:

(a) $(S, li(\psi))$ is a P-space. (b) $(S, lc(\psi))$ is an LC.
Proof. \Leftarrow: Obvious (Corollary 3.1). \Rightarrow: If $\left(S,l\left(\psi\right)\right)$ is a P-space, so $\left(S,\psi\right)$ is an L_1 (Theorem 2.17). Since $\left(S,\psi\right)$ is an L_3, therefore $\left(S,\psi\right)$ is an LC (Theorem 2.14(ii)). Hence $\left(S,lc\left(\psi\right)\right)$ is an LC (Theorem 2.32).

Theorem 4.3: For a L_2 Hausdorff space $\left(S,\psi\right)$ the following are equivalent:

(a) $\left(S,l\left(\psi\right)\right)$ is a P-space.

(b) $\left(S,lc\left(\psi\right)\right)$ is an LC.

Proof. \Leftarrow: Obvious (Corollary 3.1).

\Rightarrow: If $\left(S,l\left(\psi\right)\right)$ is a P-space, so $\left(S,\psi\right)$ is an L_1-space (Theorem 2.17). Since $\left(S,\psi\right)$ is a L_2 Hausdorff space, therefore $\left(S,\psi\right)$ is an LC (Theorem 2.25). Hence $\left(S,lc\left(\psi\right)\right)$ is an LC (Theorem 2.32).

Theorem 4.4: For a Lindelöf Hausdorff space $\left(S,\psi\right)$ the following are equivalent:

(a) $\left(S,lc\left(\psi\right)\right)$ is an LC-space.

(b) $\left(S,l\left(\psi\right)\right)$ is a P-space.

(c) $\left(S,l\left(\psi\right)\right)$ is a weak P-space.

(d) $\left(S,\psi\right)$ is an L_1-space.

Proof.

(a) \Rightarrow(b): Obvious (Corollary 3.1).

(b) \Rightarrow(a): If $\left(S,l\left(\psi\right)\right)$ is a P-space, so $\left(S,\psi\right)$ is an L_1 (Theorem 2.17). Since $\left(S,\psi\right)$ is a Lindelöf Hausdorff space, therefore $\left(S,\psi\right)$ is an LC (Theorem 2.26). Hence $\left(S,l\left(\psi\right)\right)$ is an LC (Theorem 2.32).

(b) \Rightarrow(c): Obvious (Corollary 2.16). $(c) \Rightarrow(b)$: If $\left(S,l\left(\psi\right)\right)$ is a weak P-space. Since $\left(S,\psi\right)$ is a Hausdorff Lindelöf and $\psi = l\left(\psi\right)$, then $\left(S,\psi\right)$ is an L_1 (Theorem 2.27 and Theorem 2.14 (i)). Hence $\left(S,l\left(\psi\right)\right)$ is a P-space (Theorem 2.17).
(c) \Rightarrow (d): If $(S,l(\psi))$ is a weak P-space, since (S,ψ) is a Lindelöf, then $\psi = l(\psi)$, so $(S,l(\psi))$ is a P-space (Theorem 2.27). Hence $(S,l(\psi))$ is an L_1 (Theorem 2.14 (viii)).

(d) \Rightarrow (c): Obvious (Theorem 3.2.2 and Corollary 3.1.26).

Corollary 4.5: If $(S,lc(\psi))$ is Hausdorff, then $(S,l(\psi))$ is an L_1-space.

Proof. Obvious (Proposition 2.33, Corollary 2.15 and Theorem 2.14 (iii)).

Corollary 4.6: If $(S,lc(\psi))$ is disconnected, then $(S,l(\psi))$ is an L_1-space.

Proof. Obvious (Theorem 2.35, Corollary 2.15 and Theorem 2.14 (iii)).

Corollary 4.7: (i) If (S,ψ) is an L_3-space, then $(S,lc(\psi))$ is a T_1-space.

(ii) If (S,ψ) is a Q-set space, then $(S,lc(\psi))$ is a T_1-space.

Proof. Obvious (Proposition 2.36).

Theorem 4.8: For a locally compact L_3-space (S,ψ) the following are equivalent:

(a) $(S,l(\psi))$ is a P-space.

(b) $(S,lc(\psi))$ is a Hausdorff.

Proof. \Leftarrow: Obvious (Corollary 3.5(i)).

\Rightarrow: If $(S,l(\psi))$ is a P-space, then (S,ψ) is an L_1-space (Theorem 2.17). Since (S,ψ) is an L_3-space, therefore (S,ψ) is an LC-space (Theorem 2.14(ii)). So $\psi = lc(\psi)$. Since (S,ψ) is a locally compact space, hence $(S,\psi) = (S,lc(\psi))$ is a Hausdorff (Theorem 2.22).

Theorem 4.9: For a regular L_3-space (S,ψ) the following are equivalent:

(a) $(S,l(\psi))$ is a P-space.

(b) $(S,lc(\psi))$ is a Hausdorff.
Proof. \Rightarrow: Obvious (Corollary 3.5(i)). \Leftarrow: If $(S,l(\psi))$ is a P-space, so (S,ψ) is an L_1 (Theorem 2.17). Since (S,ψ) is an L_3, therefore (S,ψ) is an LC (Theorem 2.14(ii)), so $\psi = lc(\psi)$. Since (S,ψ) is a regular, Thus $(S,\psi) = (S,lc(\psi))$ is a Hausdorff by Corollary 2.23(ii).

Theorem 4.10: For a $R_1 L_3 - space (S,\psi)$ the following are equivalent:

(a) $(S,l(\psi))$ is a P-space.
(b) $(S,lc(\psi))$ is a Hausdorff

Proof. \Leftarrow: Obvious by Corollary 3.5(i).

\Rightarrow: If $(S,l(\psi))$ is a P-space, so (S,ψ) is an L_1 (Theorem 2.17). Since (S,ψ) is an L_3, therefore (S,ψ) is an LC (Theorem 2.14(ii)), so $\psi = lc(\psi)$. Since (S,ψ) is a R_1-space, hence $(S,\psi) = (S,lc(\psi))$ is a Hausdorff by Corollary 2.23(i).

Corollary 4.11: Let (S,ψ) be a Q-set space.

If $(S,l(\psi))$ is a P-space, then $(S,lc(\psi))$ is T_1.

Proof. Since $(S,l(\psi))$ is a P-space, so (S,ψ) is an L_1-space by Theorem 2.17. Since (S,ψ) is a Q-set, therefore (S,ψ) is an LC (Corollary 2.18), then $(S,lc(\psi))$ is T_1 (Proposition 2.36).

Corollary 4.12: Let (S,ψ) be a L_3-space topological space.

If $(S,l(\psi))$ is a P-space, then $(S,lc(\psi))$ is T_1.

Proof. Since $(S,l(\psi))$ is a P-space, so (S,ψ) is an L_1-space by Theorem 2.17. Since (S,ψ) is an L_3, therefore (S,ψ) is an LC (Theorem 2.14(ii)), thus $(S,lc(\psi))$ is T_1 (Proposition 2.36).

Corollary 4.13: (i) If (S,ψ) is a Linelof LC-space, then $(S,lc(\psi))$ is an L_1-space.
(ii) If (S,ψ) is a Lindelof LC-space, then $(S,l(\psi))$ is an L_1-space.

Corollary 4.14: If $(S,lc(\psi))$ has no Lindelof-dense subset, then $(S,lc(\psi))$ is T_1.
Proof. Since \((S, lc(\psi))\) has dense - no Lindelöf subset, therefore \((S, lc(\psi))\)is an \(L_3\) (Corollary2.31 and Theorem 2.14(i)), hence \((S, lc(\psi))\)is \(T_1\) (Theorem 2.14(v)).

Theorem 4.15: For a locally compact \(Q – set\) space \((S, \psi)\) the following are equivalent:

(a) \((S, lc(\psi))\) is a \(P – space\).

(b) \((S, lc(\psi))\) is a Hausdorff.

Proof: \(\Rightarrow\): If \((S, lc(\psi))\) is a \(P – space\), so \((S, \psi)\) is an \(L_i\) (Theorem 2.17). Since \((S, \psi)\) is a \(Q – set\), therefore \((S, \psi)\) is an \(LC\) (Corollary 2.18) and \(\psi = lc(\psi)\). Since \((S, \psi)\) is a locally compact, hence \((S, lc(\psi))\) is a Hausdorff by Theorem 2.22.

\(\Leftarrow\): Obvious (Corollary 3.5(i)).

Theorem 4.16: For a \(R_i\ \(Q – set\) space \((S, \psi)\) the following are equivalent:

(a) \((S, l(\psi))\) is a \(P – space\).

(b) \((S, lc(\psi))\) is a Hausdorff.

Proof: \(\Rightarrow\): If \((S, l(\psi))\) is a \(P – space\), so \((S, \psi)\) is an \(L_i\) (Theorem 2.17). Since \((S, \psi)\) is a \(Q – set\), therefore \((S, \psi)\) is an \(LC\) (Corollary 2.18) and \(\psi = lc(\psi)\). Since \((S, \psi)\) is a \(R\). Hence \((S, lc(\psi))\) is a Hausdorff (Corollary 2.23(i)).

\(\Leftarrow\): Obvious (Corollary 3.5(i)).

Theorem 4.17: For a regular \(Q – set\) space \((S, \psi)\) the following are equivalent:

(a) \((S, l(\psi))\) is a \(P – space\).

(b) \((S, lc(\psi))\) is a Hausdorff.

Proof. \(\Rightarrow\): If \((S, l(\psi))\) is a \(P – space\), so \((S, \psi)\) is an \(L_i\) (Theorem 2.17). Since \((S, \psi)\) is a \(Q – set\), therefore \((S, \psi)\) is an \(LC\) (Corollary 2.18) and \(\psi = lc(\psi)\). Since \((S, \psi)\) is a regular. Hence \((S, lc(\psi))\) is a Hausdorff (Corollary 2.23(i)). \(\Leftarrow\): Obvious (Corollary 8.1.20(i)).

5. CoLC and WALC

Corollary 5.1: (i) If \((S, \psi)\) is an \(WALC – space\), then \((S, lc(\psi))\) is a \(T_1 – space\).
(ii) If \((S, \psi)\) is an ALC - space, then \((S, lc(\psi))\) is a \(T_1\) - space.

Proof. Obvious) Definition 2.9 and Proposition 2.36.

Theorem 5.2: Let \((S, \psi)\) be a regular topological space. If \((S, lc(\psi))\) has no Lindelöf -dense subset, then \((S, \psi)\) and \((S, lc(\psi))\) are WALC - spaces.

Proof. Since \((S, lc(\psi))\) has dense -no Lindelöf subset, so \((S, \psi)\) is an LC) Corollary 2.31 and Theorem 2.32. Since \((S, \psi)\) is a regular, therefore \((S, \psi)\) is an WALC) Theorem 2.28. Since \(\psi = lc(\psi)\) then \((S, lc(\psi))\) is an WALC.

Corollary 5.3: Let \((S, \psi)\) be a regular topological space. If \((S, lc(\psi))\) is a Hausdorff, then \((S, \psi)\) is an WALC - space.

Proof. Since \((S, lc(\psi))\) is a Hausdorff, so \((S, \psi)\) is an LC) Proposition 2.33. Since \((S, \psi)\) is a regular, then \((S, \psi)\) is an WALC - space Theorem 2.28.

Theorem 5.4:

If \((S, \psi)\) is an WALC - space, then \((S, lc(\psi))\) is an WALC - space and an LC - space.

Proof. Since \((S, \psi)\) is an WALC, so \((S, \psi)\) is an LC. \(\psi = lc(\psi)\). Hence \((S, lc(\psi))\) is an WALC and an LC.

Theorem 5.5: If \((S, lc(\psi))\) is \(T_1\) - space, then \((S, \psi)\) is an WALC - space.

Proof. Let \(w, z \in S\) and \(w \neq z\). Since \((S, lc(\psi))\) is Hausdorff, \(\exists O, V \in lc(\psi) \ni w \in O, z \in V\) and \(O \cap V = \emptyset\). Thus \(S = (S - O)Y(S - V)\) and since \(S - O\), \(S - V\) are two closed, LC - subspaces of \((S, \psi)\). Therefore \((S, lc(\psi))\) is an LC (Theorem 2.29). Hence \((S, lc(\psi))\) is an WALC (Theorem 2.28).

Theorem 5.6: For a regular space \((S, \psi)\) the following are equivalent:

(a) \((S, \psi)\) is an WALC - space.

(b) \((S, lc(\psi))\) is an LC - space.
Proof. \Rightarrow: Obvious (Theorem 5.4). \Leftarrow: If $\left(S, l_{c}(\psi) \right)$ is an LC, so $\left(S, \psi \right)$ is an LC (Theorem 2.32). Since $\left(S, \psi \right)$ is a regular space, hence $\left(S, \psi \right)$ is an $WALC$ (Theorem 2.28).

Theorem 5.7: For a regular space $\left(S, \psi \right)$ the following are equivalent:

(a) $\left(S, \psi \right)$ is an $WALC$ - space.

(b) $\left(S, l_{c}(\psi) \right)$ is an $WALC$ - space.

Proof. \Rightarrow: Obvious (Theorem 5.4). \Leftarrow: If $\left(S, l_{c}(\psi) \right)$ is an LC, so $\left(S, \psi \right)$ is an LC (Theorem 2.32). Since $\left(S, \psi \right)$ is a regular space, hence $\left(S, \psi \right)$ is an $WALC$ (Theorem 2.28).

Corollary 5.8: (i) If $\left(S, \psi \right)$ is an $WALC$ - space, then $l(\psi) \subseteq l_{c}(\psi)$.

(ii) If $\left(S, \psi \right)$ is an ALC - space, then $l(\psi) \subseteq l_{c}(\psi)$.

Proof. (i) and (ii) Obvious (Definition 2.9 and Proposition 2.37(i)).

Theorem 5.9: Let $\left(S, \psi \right)$ be a regular space. Then $\left(S, l_{c}(\psi) \right)$ is an $WALC$ - space if it can be written as the union of two closed sets which are not equal to S.

Proof.

Let $S = K_1 \cup K_2$ and let $K_1 \neq S, K_2 \neq S$ be closed in $\left(S, l_{c}(\psi) \right)$. Then K_1 and K_2 are LC - subspace of $\left(S, \psi \right)$ by Definition CoLC. Therefore $\left(S, \psi \right)$ is an LC - space (Theorem 2.29), since K_1 and K_2 are closed in $\left(S, \psi \right)$. So $\left(S, l_{c}(\psi) \right)$ is an LC - space (Theorem 2.32) and $\psi = l_{c}(\psi)$. Since $\left(S, \psi \right)$ is a regular space, then $\left(S, l_{c}(\psi) \right)$ is an $WALC$ - space (Theorem 2.28).

Corollary 5.10: Let $\left(S, \psi \right)$ be a regular topological space. If $\left(S, l_{c}(\psi) \right)$ is disconnected, then $\left(S, l(\psi) \right)$ is an $WALC$ - space.

Proof. Obvious (Theorem 5.9).

Theorem 5.11: For a regular Q - set space $\left(S, \psi \right)$ the following are equivalent:

(a) $\left(S, \psi \right)$ is an LC - space.

(b) $\left(S, \psi \right)$ is an $WALC$ - space.
(c) \((S,l(\psi))\) is a \(P\)–space. (d) \((S,lc(\psi))\) is a Hausdorff and an \(LC\)–space.

Proof.

(a) \(\implies\)(b): Obvious (Theorem 2.28).

(b) \(\implies\)(a): Obvious (Definition 2.9).

(b) \(\implies\)(c): Let \((S,\psi)\) be an \(WALC\)–space, so \((S,\psi)\) is an \(LC\)–space (Theorem 2.28). Therefore \((S,l(\psi))\) is a \(P\)–space (Theorem 2.15).

(c) \(\implies\)(b): If \((S,l(\psi))\) is a \(P\)–space, so \((S,\psi)\) is an \(L_1\) (Theorem 2.17). Since \((S,\psi)\) is a \(Q\)–set, therefore \((S,\psi)\) is an \(LC\) (Corollary 2.18) and \(\psi = lc(\psi)\). Since \((S,\psi)\) is a regular. Hence \((S,lc(\psi))\) is an \(WALC\) (Theorem 2.28).

(c) \(\implies\)(d): If \((S,l(\psi))\) is a \(P\)–space, so \((S,\psi)\) is an \(L_1\) (Theorem 2.17). Since \((S,\psi)\) is a \(Q\)–set, therefore \((S,\psi)\) is an \(LC\)–space (Corollary 2.18) and \(\psi = lc(\psi)\). Since \((S,\psi)\) is a regular. Hence \((S,lc(\psi))\) is a Hausdorff (Corollary 2.23(iii)).

(d) \(\implies\)(c): Obvious (Corollary 3.5).

Theorem 5.12: For a regular \(P\)–space \(S\) the following are equivalent:

(a) \((S,\psi)\) is a \(T\)–space (b) \((S,\psi)\) is a Hausdorff space (c) \((S,\psi)\) is an \(WALC\)–space (d) \((S,\psi)\) is an \(LC\)–space (e) \((S,\psi)\) is a Locally \(LC\)–space (f) \((S,\psi)\) is a \(KC\)–space.

Proof.

(a) \(\implies\)(b): If \(S\) is a \(T_1\), since \(S\) is a regular, hence \(S\) is a Hausdorff.

(b) \(\implies\)(a): Obvious. (b) \(\implies\)(c): Obvious (Theorem 2.42).
(c) \(\implies \)(b): If \(S \) is an WALC, so \(S \) is an \(T_1 \), since \(S \) is a regular, therefore \(S \) is a Hausdorff.

(c) \(\implies \)(d): Obvious (Definition 2.9).

(d) \(\implies \)(c): Obvious (Theorem 2.28).
(d) \(\iff \)(e): Obvious (Definition 2.10).

(e) \(\implies \)(f): Let \(S \) be a Locally LC, since \(S \) is a regular, so \(S \) is an LC (Definition 2.10), therefore \(S \) is a KC.

(f) \(\implies \)(e): Let \(S \) be a KC, then \(S \) is an \(T_1 \), since \(S \) is a regular, therefore \(S \) is a Hausdorff, so \(S \) is an LC (Theorem 2.24), therefore \(S \) is a Locally LC.

Corollary 5.13: For a regular \(P - space \) \((S, \psi)\) the following are equivalent:

(a) \((S, \psi)\) is a \(T - space \).
(b) \((S, \psi)\) is a Hausdorff space.
(c) \((S, \psi)\) is an WALC - space.

(d) \((S, lc(\psi))\) is an \(LC - space \) and \(T - space \).
(e) \((S, \psi)\) is an LC - space.

(f) \((S, \psi)\) is a Locally LC - space.
(g) \((S, \psi)\) is a KC - space.

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

