Al-Qadisiyah Journal of Pure Science

Volume 27 | Number 1

Article 2

4-7-2022

ON CoLC Topologies

Reyadh Delfy Ali Department of Mathematics, College of Education for Pure Sciences, Kerbala University. Iraq, reyadh_delphi@uokerbala.edu.iq

Omlsad Adgheem Ali Department of Mathematics, College of Science, Aljufra University. Libya, Omlsaed.Alrabeee@ju.edu.ly

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation

Ali, Reyadh Delfy and Ali, Omlsad Adgheem (2022) "ON CoLC Topologies," *Al-Qadisiyah Journal of Pure Science*: Vol. 27: No. 1, Article 2. DOI: 10.29350/qjps.2022.27.1.1470 Available at: https://qjps.researchcommons.org/home/vol27/iss1/2

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Al–Qadisiyah Journal of Pure Science

ISSN(Printed): 1997-2490

ISSN(Online): 2411-3514

http://qu.edu.iq/journalsc/index.php/JOPS

ON CoLC Topologies

Authors Names	ABSTRACT
a. Reyadh Delfi Ali	
b. Omlsad Adgheem Ali	The purpose of this work is to continue the study of $\operatorname{Co} LC$ topologies and offer new
Article History	characteristics of Co <i>LC</i> topologies and examine their relationships with other classes of topological spaces.
Received on: 19/11/2021 Revised on: 28/11/2021	
Accepted on: 11/1/2022	
Keywords: Co LC topologies, $LC - space$, Co-Lindelöf topologies, $WALC - space$.	
DOI: https://doi.org/10.29350/ jops. 2022.27. 1.1470	

1. Introduction:

Gauld, M., R, and Vamanamurthy [8] introduced the Co-Lindelöf topology $l(\psi) = \{\phi\} Y \{ O \in \psi : S - Ois \ Lindelof \ in \ (S, \psi) \}$. They showed that $l(\psi)$ is a topology on S with $l(\psi) \subseteq \psi$,

A. Kanibir and P. Girgino [13] introduced the Co*LC* topology

 $lc(\psi) = \{\phi\} Y \{ O \in \psi : S - Ois \quad LC - subspace \quad in \quad (S, \psi) \}$ is a topology on S with $lc(\psi) \subseteq \psi$.

In this paper is to study the basic properties of the CoLC topology.

a.Department of Mathematics, College of Education for Pure Sciences ,Kerbala University.Iraq Email:<u>reyadh_delphi@uokerbala.edu.iq</u>

2. Preliminaries

Definition2.1: (S, ψ) is an *LC*-topological space if every Lindelöf $F \subset S$ is closed [8], [16]. Also known *L*-closed [9], [10], [12] and [14].

Definition 2.2[24]: A topological space (S, ψ) is a *KC* – *space* if every compact $K \subset S$ is closed.

Definition 2.3[6] :

 (S, ψ) is *cid – space* if every countable subset of S is closed and discrete.

Definition2.4 [15]:

A topological space (S, ψ) is called *P* – space if every G_{σ} – open set in *S* is open.

Definition 2.5[1]:

A topological space (S, ψ) is a Q-set space if if each subset of S is an F_{σ} -closed sets.

<u>Definition2.6 [2]</u>: A topological space (S, ψ) is a weak P – space if every countable union of regular closed sets is closed.

Definition 2.7: A topological space (S, ψ) is almost Lindelöf if for every open cover ω of S there exists a countable subfamily a countable subfamily $\beta \subset \omega$ such that $S = \underbrace{YO}_{O \in \beta}$. From the definition that every Lindelöf space is almost Lindelöf [5], [23].

Definition2.8 [22]:

A topological space (S, ψ) is *ALC* – *space* if every subset of *S* which is almost Lindelöf in *S* is closed.

Definition 2.9: A topological space (S, ψ) is weakly $ALC - space \ WALC - space$ if every almost Lindelöf subset of S is closed [11]. Clearly, every ALC - space is an WALC - space and every WALC - space is an LC - space.

Definition2.10[7]: A topological space (S, ψ) is called a Locally LC – space if each point of S has a neighborhood which is an LC – subspace. Clearly every LC – space is locally LC – space. In general the converse needs not be true [4], however every regular locally LC – space is LC – space.

Definition2.11[3]: A topological space (S, ψ) is a R_1 -space if y and z have disjoint neighborhoods whenever $cl\{y\} \neq cl\{z\}$. Clearly a space is Hausdorff if and only if its T_1 and R_1 .

Definition2.12 [1]: A topological space (S, ψ) is said to be anti – Lindelöf if each Lindelöf subset of M is countable.

Definition2.13 [2] :

- (1) If \forall Lindelöf F_{σ} *closed* is closed. A space S is an L_1 .
- (2) If $H \subseteq S$ is Lindelöf, then clH is Lindelöf. A space S is an L_2 .
- (3) If \forall Lindelöf $H \subseteq S$ is an F_{σ} closed. A space S is an L_3

Theorem2.14 [2]:

(i) If
$$(S, \psi)$$
 is an *LC* – space, then (S, ψ) is a L_i – space, i=1,2,3.

(ii) If
$$(S, \psi)$$
 is an L_1 -space and an L_3 -space, then (S, ψ) is an LC -space.

(iii) Every *P*-space is an L_1 -space. (v) Every L_3 -space is T_1 .

Corollarv2.15 [18]:

If (S, ψ) is an LC -topological space then $(S, l(\psi))$ is a P-topological space.

Corollary2.16 [18]: Every $P - space(S, \psi)$ is weak P - space.

Theorem2.17 [2]:

For a space (M, Γ) the following are equivalent:

 $(a)(S, \psi)$ is an L_1 -topological space. (b) $(S, l(\psi))$ is a P-topological space.

<u>Corollary 2.18[19]</u>: Every $Q - set L_1 - space$ is an LC - space.

Theorem2.19 [2]: Every T_1 , anti-Lindelöf L_1 -space is an LC-space.

<u>Corollary2.20 [18]</u>: If (S, ψ) is Lindelöf space then $l(\psi) = \psi$.

Theorem2.21 [17]:A regular almost Lindelöf space is Lindelöf.Theorem 2.22[19]:Every locally compact LC – space is a Hausdorff.

Corollary2.23[19]:

(i) Every $R_1LC - space$ is a Hausdorff. (ii) Every regular LC - space is a Hausdorff.

Theorem 2.24[15]: Every Huasdorff *P* – *space* is an *LC* – *space*.

Theorem 2.25[2]: For a Hausdorff space S the following are equivalent:

(a) S is an LC - space. (b) S is an L_1 - space and an L_2 - space.

Theorem2.26 [19]: For a Hausdorff Lindelöf space S the following are equivalent:

(a) S is an LC - space. (b) S is an L_1 - space.

Corollary2.27 [11]: For a Hausdorff Lindelöf space S, the following are equivalent:

- (a) S is an ALC space. (b) S is an WALC space. (c) S is LC space.
- (d) S is a P-space. (e) S is a weak P-space.

Theorem 2.28 [20]: For a regular space S the following are equivalent:

(a) S is an LC - space. (b) S is an WALC - space.

Theorem 2.29 [19]: If (S, ψ) is a topological space and $N \subseteq S$, $N = \sum_{i=1}^{n} N_i$, where N_i , i = 1, 2, ..., n

are closed and LC – subspaces in S, so N is LC – subspace.

Proposition 2.30 [13]: If (S, ψ) is an LC – space, then $\psi = lc(\psi)$.

Corollary2.31 [13]:

Let (S, ψ) be a topological space.

If $(S, lc(\psi))$ has no Lindelöf -dense subset then $(S, lc(\psi))$ is an LC – space.

Theorem 2.32[13]: For a space (S, ψ) the following are equivalent:

(a) (S, ψ) is an LC – space. (b) $(S, lc(\psi))$ is an LC – space.

Proposition2.33 [13]:

If $(S, lc(\psi))$ is \mathcal{I} , then (S, ψ) is an LC – space.

Corollarv2.34 [13]:

If $(S, lc(\psi))$ is disconnected, then $(S, lc(\psi))$ is an LC - space.

<u>**Theorem 2.35[13]:**</u> Let (M, Γ) be a topological space.

Then (S, ψ) is an *LC* – *space* and disconnected if and only if $(S, lc(\psi))$ is disconnected. **Proposition2.36 [13]:** If (S, ψ) is *T*, then $(S, lc(\psi))$ is *T*.

Proposition2.37 [13]:

(i) If (S, ψ) is an LC – space, then $l(\psi) \subseteq lc(\psi)$.

(ii) If (S, ψ) is a Lindelöf space, then $lc(\psi) \subseteq l(\psi)$.

Note that the reverse inclusions of (i) and (ii) are false in general [11].

Example2.38: If (S, Ψ) is the discrete topological space and S is an uncountable set $.So \ \Psi = lc(\Psi)$ (S is an LC – space and Proposition2.30).Since $\Psi \neq l(\Psi)$. Hence $lc(\Psi) \not\subset l(\Psi)$. **Example2.39:** If (R, Ω) is the usual topology, $N = \{0\} Y \begin{bmatrix} 1 \\ j \end{bmatrix} = 1, 2, 3, 4, 5... \}$ and if $\Psi = \Omega_N$.

 $\Theta(\mathbf{N},\Omega_N)$ is compact, it is Lindelöf. Therefore $\Omega_N = l(\Omega_N)$. Take $\left\{\frac{1}{2}\right\} \in \Omega^N$ and $\mathbf{B} = \left\{\frac{1,\frac{1}{2},\frac{1}{4},\dots}{3,\frac{1}{4},\dots}\right\}$. Then

 $B \subseteq L = N - \left\{ \frac{1}{2} \right\} \text{ is a Lindelöf subset} \quad \text{of } \left(L, \Omega_L \right) \text{,and not closed in } \left(L, \Omega_L \right) \text{.Therefore } L \text{ is not an}$ $LC - subspace \text{ of } \left(N, \Omega_N \right) \text{. Soy} \left\{ \frac{1}{2} \right\} \notin lc(\Omega_N) \text{.Hence } l(\Omega_N) \not\subset lc(\Omega_N) \text{.}$

<u>Corollary2.40 [2]</u>: Every Huasdorff, locally Lindelöf L_1 – space is an LC – space..

<u>Theorem2.41 [19]</u>: For anti – Lindelöf space S the following are equivalent:

(a) S is an LC – space. (b) S is a cid – space.

Theorem2.42[21]: Every Huasdorff P - space is an WALC - space.

3. CoLC Topologies

<u>Corollary3.1</u>: (i) If $(S, lc(\psi))$ is an LC – space then $(S, l(\psi))$ is a P – space.

(ii) If
$$(S, lc(\psi))$$
 is an LC – space then $(S, l(\psi))$ is a weak P – space.

Proof. Obvious by Theorem 2.32, Corollary. 2.15 and Corollary 2.16.

Theorem 3.2: For a Q – set space (S, ψ) the following are equivalent:

(a) $(S, lc(\psi))$ is an LC - space. (b) $(S, l(\psi))$ is a P - space.

Proof.

 \Leftarrow : Obvious by Corollary 3.1(i). \Rightarrow : If $(S, l(\psi))$ is a P-space, so (S, ψ) is an L_1 -space by Theorem 2,17 Since (S, ψ) is a Q-set, therefore (S, ψ) is an LC-space (Corollary 2.18). Thus $(S, lc(\psi))$ is an LC-space (Theorem 2.32).

Theorem 3.3: For a anti- Lindelöf T_1 space (S, ψ) the following are equivalent:

(a)
$$(S, \psi)$$
 is an LC – space. (b) $(S, lc(\psi))$ is an LC – space. (c) $(S, l(\psi))$ is a P – space.

Proof.

(a) \Rightarrow (b): Obvious (Theorem 2.32).(b) \Rightarrow (c):This is obvious (Corollary3.1(i)).

(c) \Rightarrow (b): If $(S,l(\psi))$ is a *P*-space, so (S,ψ) is an L_1 -space(Theorem 2.17). Since (S,ψ) is anti-Lindelöf T_1 space, therefore (S,ψ) is an *LC*-space (Theorem 2.19). Thus $(S,lc(\psi))$ is an *LC*-space (Theorem 3.1).

Theorem 3.4: For a locally Lindelöf Hausdorff space (S, ψ) the following are equivalent:

(a)
$$(S, lc(\psi))$$
 is an $LC - space$. (b) $(S, l(\psi))$ is a $P - space$.

Proof. \Leftarrow : Obvious (Corollary 3.1(i)). \Rightarrow : If $(S, l(\psi))$ is a P-space, so (S, ψ) is an L_1 -space (Theorem 2.17). Since (S, ψ) is a locally Lindelöf Hausdorff space, therefore (S, ψ) is an LC-space (Corollary 2.40). Thus $(S, lc(\psi))$ is an LC-space (Theorem 2.32).

Corollary3.5: (i) If
$$(S, lc(\psi))$$
 is Hausdorff, then $(S, l(\psi))$ is a P - space.
(ii) If $(S, lc(\psi))$ is Hausdorff, then $(S, l(\psi))$ is a weak P - space.

Proof. Obvious .

<u>Corollarv3.6:</u> (i) If $(S, lc(\psi))$ is disconnected, then $(S, l(\psi))$ is a *P*-space. (ii) If $(S, lc(\psi))$ is disconnected, then $(S, l(\psi))$ is a weak *P*-space.

Proof. Obvious .

Corollary3.7:

(i) If
$$(S, \psi)$$
 is an LC – space, then $(S, lc(\psi))$ is a T_1 – space.

- (ii) If (S, ψ) is a KC space, then $(S, lc(\psi))$ is a T_1 space.
- (iii) If (S, ψ) is locally *LC space*, then $(S, lc(\psi))$ is a T_1 *space*.

(iv) If
$$(S, \psi)$$
 is infinite *cid* – *space*, then $(S, lc(\psi))$ is a T – *space*.

Proof. Obvious by Theorem 2.36.

<u>Corollary3.8:</u> If (S, ψ) is a Lindelöf LC – *space*, then $\psi = lc(\psi) = l(\psi)$. **Proof.** Obvious by Proposition 2.30 and Corollary2.20. <u>Corollary3.9:</u>

- (i) If (S, ψ) is a *LC* Lindelöf space, then $(S, lc(\psi))$ is a *P* space.
- (ii) If (S, ψ) is a *LC* Lindelöf space, then $(S, lc(\psi))$ is a weak *P* space.
- (iii) If (S, ψ) is a *LC* Lindelöf space, then $(S, l(\psi))$ is a *P* space.

- (iv) If (S, ψ) is a *LC* Lindelöf space, then $(S, l(\psi))$ is a weak *P* space.
- **<u>Corollarv3.10</u>**: If (S, ψ) is anti-Lindelöf *cid space*, then $(S, lc(\psi))$ is an *LC space*.

Proof. Since (S, ψ) is anti-Lindelöf *cid* – *space*, so (S, ψ) is an *LC* – *space* (Theorem 2.41), therefore $(S, lc(\psi))$ is an *LC* – *space* (Theorem 2.32).

<u>Corollary3.11</u>: If $(S, lc(\psi))$ is a Hausdorff, then (S, ψ) is a locally LC – space.

Proof. Since $(S, lc(\psi))$ is a Hausdorff, then (S, ψ) is an LC – space (Proposition 2.33). Therefore (S, ψ) is a locally LC.

<u>Corollary3.12</u> (i) If $(S, lc(\psi))$ is a Hausdorff, then (S, ψ) is *cid* – *space*.

(ii) If $(S, lc(\psi))$ is a Hausdorff, then (S, ψ) is a KC – space.

Corollary3.13:

- (i) If (S, ψ) is a regular locally LC space, then $l(\psi) \subseteq lc(\psi)$.
- (ii) If (S, ψ) is a regular almost Lindelöf, then $lc(\psi) \subseteq l(\psi)$.

Proof. (i) Obvious by Definition 2.01 and Proposition 2.30.

(ii) Obvious by Theorem 2.21 and Corollary 2.20.

Theorem3.14: For a locally compact (S, ψ) the following are equivalent:

(a) (S, ψ) is an LC – space. (b) $(S, lc(\psi))$ is a Hausdorff.

Proof. \Rightarrow : If (S, ψ) is an LC – space, so $\psi = lc(\psi)$ proposition 2.30. Since (S, ψ) is a locally compact, then $(S, lc(\psi))$ is a Hausdorff by Theorem 2.22.

 \Leftarrow : Obvious by Proposition 2.33.

Theorem3.15: For a regular (S, ψ) the following are equivalent:

(a) (S, ψ) is an LC - space. (b) $(S, lc(\psi))$ is a Hausdorff.

Proof. \Rightarrow :Let (S, ψ) be an LC – space, then $\psi = lc(\psi)$ Proposition 2.30. Since (S, ψ) is a regular, then $(S, lc(\psi))$ is a Hausdorff.

 \Leftarrow : Obvious by Proposition 2.33.

<u>Theorem3.16</u>: For a $R_1(S, \psi)$ the following are equivalent:

(a) (S, ψ) is an LC – space. (b) $(S, lc(\psi))$ is aT_2 .

Proof. \Leftarrow : If (S, ψ) is an LC – space, then $\psi = lc(\psi)$ Proposition 2.30. Since (S, ψ) is a R_1 , then $(S, lc(\psi))$ is a \mathcal{I} by Corollary 2.23(i).

 \Rightarrow : Obvious.

<u>Corollarv3.17</u>: If $(S, lc(\psi))$ is Hausdorff, then (S, ψ) is a Hausdorff.

Proof. Since $(S, lc(\psi))$ is Hausdorff, then (S, ψ) is an LC - space by Proposition 2.33, so $\psi = lc(\psi)$. Hence (S, ψ) is a Hausdorff.

<u>Corollary3.18</u>: If (S, ψ) is Hausdorff P – *space*, then $(S, lc(\psi))$ is a Hausdorff P – *space*. **Proof.** Since (S, ψ) is Hausdorff P – *space*, hence (S, ψ) is an LC – *space* by Theorem 2.24, so $\psi = lc(\psi)$. Therefore $(S, lc(\psi))$ is a Hausdorff P – *space*.

4. CoLC and L_i – Spaces

<u>Corollary4.1</u>: Let $(S, lc(\psi))$ be an LC – space , then $(S, l(\psi))$ is an L_1 .

Proof. Obvious (Corollary 3.1 and Theorem 2.14 (iii)).

Theorem 4.2: For a L_3 – space (S, ψ) the following are equivalent:

(a) $(S,l(\psi))$ is a *P*-space. (b) $(S,lc(\psi))$ is an *LC*.

Proof. \Leftarrow : Obvious (Corollary 3.1). \Rightarrow : If $(S, l(\psi))$ is a *P*-space ,so (S, ψ) is an L_1 (Theorem 2.17). Since (S, ψ) is an L_3 , therefore (S, ψ) is an *LC* (Theorem 2.14(ii)). Hence $(S, lc(\psi))$ is an *LC* (Theorem 2.32).

Theorem4.3: For a L_2 Hausdorff space (S, ψ) the following are equivalent:

(a) $(S, l(\psi))$ is a P-space. (b) $(S, lc(\psi))$ is an LC.

Proof. \Leftarrow : Obvious (Corollary 3.1).

⇒: If $(S,l(\psi))$ is a *P*-space, so (S,ψ) is an *L*₁-space (Theorem 2.17). Since (S,ψ) is a *L*₂ Hausdorff space, therefore (S,ψ) is an *LC* (Theorem 2.25). Hence $(S,lc(\psi))$ is an *LC* (Theorem 2.32).

Theorem 4.4: For a Lindelöf Hausdorff space (S, ψ) the following are equivalent:

(a) $(S, lc(\psi))$ is an LC - space. (b) $(S, l(\psi))$ is a P - space.

(c) $(S,l(\psi))$ is a weak P-space. (d) (S,ψ) is an L_1 -space.

Proof.

(a) \Rightarrow (b): Obvious (Corollary 3.1).

(b) \Rightarrow (a): If $(S, l(\psi))$ is a P - space, so (S, ψ) is an L_1 (Theorem 2.17). Since (S, ψ) is a Lindelöf Hausdorff space, therefore (S, ψ) is an LC (Theorem 2.26). Hence $(S, l(\psi))$ is an LC (Theorem 2.32).

(b) \Rightarrow (c): Obvious (Corollary 2.16).(c) \Rightarrow (b):If $(S, l(\psi))$ is a weak P - space. Since (S, ψ) is a Hausdorff Lindelöf and $\psi = l(\psi)$, then (S, ψ) is an L_1 (Theorem 2.27 and Theorem 2.14 (i)). Hence $(S, l(\psi))$ is a P - space (Theorem 2.17).

(c) \Rightarrow (d): If $(S, l(\psi))$ is a weak P - space, since (S, ψ) is a Lindelöf, then $\psi = l(\psi)$, so $(S, l(\psi))$ is a P - space (Theorem 2.27). Hence $(S, l(\psi))$ is an L_1 (Theorem 2.14 (viii)).

(d) \Rightarrow (c): Obvious (Theorem 3.2.2 and Corollary 3.1.26).

<u>Corollary4.5:</u> If $(S, lc(\psi))$ is Hausdorff, then $(S, l(\psi))$ is an L_1 -space. **Proof.** Obvious (Proposition2.33, Corollary2.15 and Theorem2.14(iii)).

<u>Corollary4.6:</u> If $(S, lc(\psi))$ is disconnected, then $(S, l(\psi))$ is an L_T – space. **Proof.** Obvious (Theorem2.35, Corollary2.15 and Theorem2.14(iii)).

<u>Corollary4.7:</u> (i) If (S, ψ) is an L_3 – space, then $(S, lc(\psi))$ is a T_1 – space.

(ii) If (S, ψ) is a Q - set space, then $(S, lc(\psi))$ is a T_1 - space

Proof. Obvious (Proposition 2.36).

Theorem 4.8: For a locally compact L_3 -space (S, ψ) the following are equivalent:

(a) $(S, l(\psi))$ is a P - space. (b) $(S, lc(\psi))$ is a Hausdorff.

Proof. \Leftarrow : Oobvious (Corollary 3.5(i)).

 $\Rightarrow: \text{ If } (S,l(\psi)) \text{ is a } P-space, \text{ so } (S,\psi) \text{ is an } L_1-space \text{ (Theorem 2.17)}. \text{ Since } (S,\psi) \text{ is an } L_3-space, \text{ therefore } (S,\psi) \text{ is an } LC-space \text{ (Theorem 2.14(ii))}, \text{ so } \psi = lc(\psi). \text{ Since } (S,\psi) \text{ is a locally compact space, hence } (S,\psi) = (S,lc(\psi)) \text{ is a Hausdorff (Theorem 2.22)}.$

Theorem 4.9: For a regular L_3 – space (S, ψ) the following are equivalent:

(a) $(S, l(\psi))$ is a *P*-space. (b) $(S, lc(\psi))$ is a Hausdorff.

Proof. \Rightarrow : Obvious (Corollary 3.5(i)). \Leftarrow : If $(S, l(\psi))$ is a P-space, so (S, ψ) is an L_1 (Theorem 2.17). Since (S, ψ) is an L_3 , therefore (S, ψ) is an LC (Theorem2.14(ii)), so $\psi = lc(\psi)$. Since (S, ψ) is a regular, Thus $(S, \psi) = (S, lc(\psi))$ is a Hausdorff by Corollary 2.23(ii).

Theorem4.10: For a $R_1 L_3$ – space (S, ψ) the following are equivalent:

(a)
$$(S, l(\psi))$$
 is a $P - space$. (b) $(S, lc(\psi))$ is a Hausdorff

Proof. \Leftarrow : Obvious by Corollary 3.5(i).

 $\Rightarrow: \text{ If } (S,l(\psi)) \text{ is a } P-space \text{ ,so } (S,\psi) \text{ is an } L_1 \text{ (Theorem 2.17). Since } (S,\psi) \text{ is an } L_3 \text{ ,}$ therefore $(S,\psi) \text{ is an } LC \text{ (theorem 2.14(ii)), so } \psi = lc(\psi).\text{Since}(S,\psi) \text{ is a } R_1 - space \text{, hence} (S,\psi) = (S,lc(\psi)) \text{ is a Hausdorff by Corollary 2.23(i).}$

<u>Corollary4.11</u>: Let (S, ψ) be a Q – set space.

If $(S, l(\psi))$ is a *P*-space, then $(S, lc(\psi))$ is T_1 .

Proof. Since $(S,l(\psi))$ is a P-space, so (S,ψ) is an L_1 -space by Theorem 2.17. Since (S,ψ) is a Q-set, therefore (S,ψ) is an LC (Corollary 2.18), then $(S,lc(\psi))$ is T_1 (Proposition 2.36).

<u>Corollary4.12</u>: Let (S, ψ) be a L_3 – *space* topological space.

If $(S, l(\psi))$ is a *P*-space, then $(S, lc(\psi))$ is T_1 .

Proof. Since $(S,l(\psi))$ is a *P*-space, so (S,ψ) is an L_1 (Theorem 2.17). Since (S,ψ) is an L_3 , therefore (S,ψ) is an *LC* (Theorem 2.14(ii)), thus $(S,lc(\psi))$ is T_1 (Proposition 2.36).

<u>Corollary4.13:</u> (i)If (S, ψ) is a Lindelöf LC - space, then $(S, lc(\psi))$ is an $L_{f} - space$. (ii)If (S, ψ) is a Lindelöf LC - space, then $(S, l(\psi))$ is an L - space. <u>Corollary4.14:</u> If $(S, lc(\psi))$ has no Lindelöf -dense subset, then $(S, lc(\psi))$ is T_{1} . **Proof.** Since $(S, lc(\psi))$ has dense - no Lindelöf subset, therefore $(S, lc(\psi))$ is an L_3 (Corollary2.31 and Theorem 2.14(i)), hence $(S, lc(\psi))$ is T_1 (Theorem 2.14(v)).

Theorem4.15: For a locally compact Q – set space (S, ψ) the following are equivalent:

(a) $(S, lc(\psi))$ is a *P*-space. (b) $(S, lc(\psi))$ is a Hausdorff.

Proof: \Rightarrow : If $(S, lc(\psi))$ is a P - space, so (S, ψ) is an L_1 (Theorem 2.17). Since (S, ψ) is a Q - set, therefore (S, ψ) is an LC (Corollary 2.18) and $\psi = lc(\psi)$. Since (S, ψ) is a locally compact. Hence $(S, lc(\psi))$ is a Hausdorff by Theorem 2.22.

 \Leftarrow : Obvious (Corollary 3.5(i)).

Theorem4.16: For a R_1 Q-set space (S, ψ) the following are equivalent:

(a)
$$(S, l(\psi))$$
 is a *P*-space. (b) $(S, lc(\psi))$ is a Hausdorff

Proof. \Rightarrow : If $(S, l(\psi))$ is a P - space, so (S, ψ) is an L_1 (Theorem 2.17). Since (S, ψ) is a Q - set, therefore (S, ψ) is an LC (Corollary 2.18) and $\psi = lc(\psi)$. Since (S, ψ) is a R. Hence $(S, lc(\psi))$ is a Hausdorff (Corollary 2.23(i)).

 \Leftarrow : Obvious (Corollary 3.5(i)).

Theorem4.17: For a regular Q - set space (S, ψ) the following are equivalent:

(a) $(S, l(\psi))$ is a *P*-space. (b) $(S, lc(\psi))$ is a Hausdorff.

Proof. \Rightarrow : If $(S, l(\psi))$ is a *P*-space, so (S, ψ) is an L_1 (Theorem 2.17). Since (S, ψ) is a *Q*-set, therefore (S, ψ) is an *LC* (Corollary 2.18) and $\psi = lc(\psi)$. Since (S, ψ) is a regular. Hence $(S, lc(\psi))$ is a Hausdorff (Corollary 2.23(i)). \Leftarrow : Obvious (Corollary 8.1.20(i)).

5. CoLC and WALC

<u>Corollary5.1</u>: (i) If (S, ψ) is an WALC – space, then $(S, lc(\psi))$ is a T_1 – space.

(ii) If (S, ψ) is an ALC – space, then $(S, lc(\psi))$ is a T_1 – space.

Proof. Obvious) Definition 2.9and Proposition 2.36(.

Theorem 5.2: Let (S, ψ) be a regular topological space. If $(S, lc(\psi))$ has no Lindelöf -dense subset, then (S, ψ) and $(S, lc(\psi))$ are WALC – spaces.

Proof. Since $(S, lc(\psi))$ has dense -no Lindelöf subset, so (S, ψ) is an LC) Corollary 2.31 and Theorem 2.32(.Since (S, ψ) is a regular, therefore (S, ψ) is an WALC)Theorem 2.28(, Since $\psi = lc(\psi)$ then $(S, lc(\psi))$ is an WALC.

<u>Corollary5.3</u>: Let (S, ψ) be a regular topological space. If $(S, lc(\psi))$ is a Hausdorff, then (S, ψ) is an WALC – space.

Proof. Since $(S, lc(\psi))$ is a Hausdorff, so (S, ψ) is an LC) Proposition 2.33(.Since (S, ψ) is a regular, then (S, ψ) is an *WALC – space*) Theorem 2.28(.

Theorem5.4:

If (S, ψ) is an WALC – space, then $(S, lc(\psi))$ is an WALC – space and an LC – space.

Proof.Since (S, ψ) is an WALC, so (S, ψ) is an $LC, \psi = lc(\psi)$. Hence $(S, lc(\psi))$ is an WALC and an LC.

Theorem 5.5: If $(S, lc(\psi))$ is T_3 – space, then (S, ψ) is an WALC – space.

Proof. Let $w, z \in S$ and $w \neq z$. Since $(S, lc(\psi))$ is Hausdorff, $\exists O, V \in lc(\psi) \ni w \in O, z \in V$ and $O \downarrow V = \phi$. Thus S = (S - O)Y(S - V) and since S - O, S - V are two closed, LC – subspaces of (S, ψ) . Therefore $(S, lc(\psi))$ is an LC (Theorem 2.29). Hence $(S, lc(\psi))$ is an WALC (Theorem 2.28).

Theorem5.6: For a regular space (S, ψ) the following are equivalent:

(a) (S, ψ) is an WALC - space. (b) $(S, lc(\psi))$ is an LC - space.

Proof. \Rightarrow : Obvious (Theorem 5.4). \Leftarrow : If $(S, lc(\psi))$ is an *LC*,

so (S, ψ) is an *LC* (Theorem 2.32). Since (S, ψ) is a regular, hence (S, ψ) is an *WALC* (Theorem 2.28).

Theorem 5.7: For a regular space (S, ψ) the following are equivalent:

(a) (S, ψ) is an WALC - space. (b) $(S, lc(\psi))$ is an WALC - space

Proof. \Rightarrow : Obvious (Theorem 5.4). \Leftarrow : If $(S, lc(\psi))$ is an LC, so (S, ψ) is an LC (Theorem 2.32). Since (S, ψ) is a regular, hence (S, ψ) is an WALC (Theorem 2.28).

Corollary5.8: (i) If
$$(S, \psi)$$
 is an WALC – space, then $l(\psi) \subseteq lc(\psi)$.
(ii) If (S, ψ) is an ALC – space, then $l(\psi) \subseteq lc(\psi)$.

Proof. (i) and (ii) Obvious (Definition 2.9and Proposition 2.37(i)).

<u>Theorem5.9</u>: Let (S, ψ) be a regular space. Then $(S, lc(\psi))$ is an WALC – space if it can be written as the union of two closed sets which are not equal to S.

Proof.

Let $S = K_1 Y K_2$ and let $K_1 \neq S, K_2 \neq S$ be closed in $(S, lc(\psi))$. Then K_1 and K_2 are LC - subspace of (S, ψ) by Definition CoLC. Therefore (S, ψ) is an LC - space (Theorem 2.29), since K_1 and K_2 are closed in (S, ψ) . So $(S, lc(\psi))$ is an LC - space (Theorem 2.32) and $\psi = lc(\psi)$. Since (S, ψ) is a regular space, then $(S, lc(\psi))$ is an WALC - space (Theorem 2.28).

<u>Corollarv5.10</u>: Let (S, ψ) be a regular topological space. If $(S, lc(\psi))$ is disconnected, then $(S, l(\psi))$ is an *WALC – space*.

Proof. Obvious (Theorem 5.9).

Theorem 5.11: For a regular Q – set space (S, ψ) the following are equivalent:

(a) (S, ψ) is an LC - space. (b) (S, ψ) is an WALC - space.

(c) $(S, l(\psi))$ is a *P*-space. (d) $(S, lc(\psi))$ is a Hausdorff and an *LC*-space.

Proof.

- (a) \Rightarrow (b): Obvious (Theorem 2.28).
- (b) \Rightarrow (a): Obvious (Definition2.9).

(b) \Rightarrow (c): Let (S, ψ) be an *WALC - space*, so (S, ψ) is an *LC - space* (Theorem 2.28). Therefore $(S, l(\psi))$ is a *P*-space (Theorem 2.15).

(c) \Rightarrow (b): If $(S, l(\psi))$ is a *P*-space, so (S, ψ) is an L_1 (Theorem 2.17). Since

 (S, ψ) is a Q - set, therefore (S, ψ) is an LC (Corollary 2.18) and $\psi = lc(\psi)$. Since (S, ψ) is a regular. Hence $(S, lc(\psi))$ is an *WALC* (Theorem 2.28).

(c) \Rightarrow (d): If $(S, l(\psi))$ is a *P*-space, so (S, ψ) is an L_1 (Theorem 2.17). Since (S, ψ) is a Q-set, therefore (S, ψ) is an LC-space (Corollary 2.18) and $\psi = lc(\psi)$. Since (S, ψ) is a regular. Hence $(S, lc(\psi))$ is a Hausdorff (Corollary 2.23(ii)).

(d) \Rightarrow (c): Obvious (Corollary 3.5).

Theorem 5.12: For a regular P – space S the following are equivalent:

(a)
$$(S, \psi)$$
 is $T = space.(b)$ (S, ψ) is a Hausdorff space.(c) (S, ψ) is an WALC = space

(d) (S, ψ) is an *LC* – *space*.(e) (S, ψ) is a Locally *LC* – *space*.(f) (S, ψ) is a *KC* – *space*.

Proof.

(a) \Rightarrow (b):If S is a T_1 , since S is a regular, hence S is a Hausdorff.

(b) \Rightarrow (a): Obvious. (b) \Rightarrow (c): Obvious (Theorem 2.42).

(c) \Rightarrow (b): If S is an WALC, so S is an T_1 , since S is a regular, therefore S is a Hausdorff. (c) \Rightarrow (d): Obvious (Definition 2.9).

(d) \Rightarrow (c): Obvious (Theorem2.28). (d) \Leftrightarrow (e): Obvious (Definition 2.10).

(e) \Rightarrow (f): Let S be a Locally LC, since S is a regular, so S is an LC (Definition 2.10), therefore S is a KC.

(f) \Rightarrow (e): Let S be a KC, then S is an T_1 , since S is a regular, therefore S is a Hausdorff, so S is an LC (Theorem 2.24), therefore S is a Locally LC.

<u>Corollary5.13</u>: For a regular $P - space(S, \psi)$ the following are equivalent:

- (a) (S, ψ) is T space.(b) (S, ψ) is a Hausdorff space.(c) (S, ψ) is an WALC space
- (d) $(S, lc(\psi))$ is an LC space and T space. (e) (S, ψ) is an LC - space (f) (S, ψ) is a Locally LC - space. (g) (S, ψ) is a KC - space.

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] Bankston P., The total negation of a topological property, Illinois J. Math. 23 (1979), 241-255.

[2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LC- spaces , Acta Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp.345-353.

[3] Dontchev J., Ganster M., On the product of LC – spaces, Q & A in General Topology15 (1997), 71–74.

[4] Engelking R. ,General Topology. Heldermann Verlag, Berlin, revised and completed edition,1989.
[5] F.Cammaroto, G. Santoro: Some counter examples and properties on generalizations of Lindelöf spaces. Int. J. Math. Math. Sci. 19 (1996), 737–746.

[6] Ganster M. and Jankovic D., On spaces whose Lindelöf subsets are closed, Q & A in General Topology 7 (1989), 141–148.

[7] Ganster M., Kanibir A., Reilly I., Two Comments Concerning Certain Topological Spaces , Indian J., Pure Appl. Math.29(9)965- 967, September1998.

[8] Gauld D. B., Mrsevic M., Reilly I. and Vamanamurthy M. K., Co-Lindelöf topologies and I-continuous functions, Glasnik Mat. 19(39) (1984), 297-308.

[9] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6(1988),67-72.

[10] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelöf sets are closed, Q & A in General Topology 4 (1986), 3-13.

[11] Hdeib H. Z. and Sarsak M. S. , Weakly ALC Spaces, International Mathematical Forum, 3, 2008, no. 41, 2017 – 2024.

[12] Henrikson M. and Woods R. G., Weak P – spaces and l – closed spaces, Q & A in General Topology 6 (1988), 201-207.

[13] Kanibir A. and Girginok P., On CoLC Topologies. Mathematica Bohemica. 59(2007), 23-30.

[14] Levy R., A non-P L-closed space, Q & A in General Topology 4 (1986), 145-146.

[15]Misra A. K., A topological view of *P* – *spaces*, Topology & Appl.2(1972), 349-362.

[16] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459–474.

[17]Petra Staynova , A Comparison of Lindelöf –type Covering Properties of Topological Spaces, Rose-Hulman Undergraduate Mathematics Journal, V. 12, no. 2, Fall 2011.

[18] Reyadh D.Ali and Adam A. Abker., ON Locally Lindelöf Spaces, Co-Lindelöf Topologies and Locally LC-Space, Journal of AL-Qadisiyah for computer science and mathematics Vol.(7) No(1) 2015.

[19] Reyadh D.Ali , ON WEAKER FORMS OF LC-SPACES, Journal of Iraqi Al-Khwarizmi Society (JIKhS)Vol.(1) No(1) 2017.

[20] Reyadh D.Ali, Weakly ALC-Spaces (WALC-Spaces), AL-Qadisiyah Journal of pure Science Vol.(23) No(1) 2018.

[21] Reyadh D.Ali, ON WEAKER FORMS OF WALC-Spaces, Science International Vol.(31) No(2) 2019, 255-263.

[22] Sarsak M. S., On relatively almost Lindelöf subsets, Acta Math. Hunger., 97(1-2) (2002), 109-114.

[23] S.Willard, U.N. B.Dissanayake: The almost Lindelöf degree. Can. Math. Bull. 27 (1984), 452–455.

[24] Wilansky A., Between T_1 and T_2 , Amer. Math. Monthly, 74 (1967), 261-266.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of attribution -NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).