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ABSTRACT 

 

The purpose of this work is to continue the study of Co topologies and offer new 

characteristics of CoLC topologies and examine their relationships with other classes of 

topological spaces. 
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1. Introduction: 

Gauld, M., R, and Vamanamurthy 8 introduced the Co- Lindelöf topology 

l  O : S  Ois 

l   , 

Lindelof in S, .They showed that l  is a topology on S with 

A. Kanibir and P. Girgino 13 introduced the Co LC topology 

lc   O : S  Ois LC  subspace in S,  is a topology on S with lc   . 

 

In this paper is to study the basic properties of the Co LC topology . 
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2. Preliminaries 

Definition2.1: S, 




is an LC  topological 

 

 

space if every Lindelöf 

 

F  S 

 

is closed 8, 16. 

Also known L  closed 9, 10, 12 and 14. 

 

Definition 2.2[24]: A topological space S, is a KC  space if every compact K  S 
 
is closed . 

 

 
 

 Definition 2.3[6] : 
 

S,  is cid  spaceif every countable subset of S is closed and discrete. 

 

Definition2.4 [15]: 
 

A topological space S, is called P  space if every 

 

G  open set in S is open. 

 

Definition 2.5[1]: 

A topological space S, 

is a Q  set space if if each subset of S is an 

 

F  closed 

 

 
sets. 

Definition2.6 [2]: A topological space S, 

regular closed sets is closed. 

 
is a weak 

 
P  space 

 
if every countable union of 

 

Definition2.7: A topological space S,  is almost Lindelöf if for every open cover  of S 
 

there exists a countable subfamily a countable subfamily   


such that 

 
 

S   . From the 


definition that every Lindelöf space is almost Lindelöf 5, 23. 

Definition2.8 [22]: 

A topological space S,  is 

closed. 

ALC  space if every subset of S which is almost Lindelöf in S is 

Definition2.9: A topological space S,  is weakly ALC  space WALC  space if every almost 

Lindelöf subset of S is closed 11

WALC  space is an LC  space. 

 

.Clearly, every ALC  space 
 

is an 
 
WALC  space 

 

and every 
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Definition2.10[7]: A topological space S,  is called a Locally LC  space if each point of S has a 

neighborhood which is an LC  subspace.Clearly every LC  space is locally LC  space .In general 

the converse needs not be true 4 , however every regular locally LC  space is LC  space. . 

Definition2.11[3]: A topological space S, 


is a R1  space if y and z have disjoint 

neighborhoods whenever cly clz .Clearly a space is Hausdorff if and only if its 

T1 and R1 . 
 

Definition2.12 [1]: A topological space S,  is said to be anti – Lindelöf if each Lindelöf subset of 

 is countable. 
 

Definition2.13 [2] : 

 
(1) If  Lindelöf F




 closed 

 

is closed.A space S is an L1. 
 

(2) If H  S is Lindelöf, then clH is Lindelöf. A space S is an L2. 

(3) If  Lindelöf 

Theorem2.14 [2]: 

H  S is an F  closed . A space S is an L3 

 

(i) If S,  is an LC  space, then S,  is a Li  space, i=1,2,3. 
 

(ii) If S, is an L1  space and an L  space , then S,  is an LC  space. 

 

(iii) Every P  space is an L1  space.   (v)   Every L3  space is T1 . 

 

Corollary2.15 [18]: 
 

If S, is an LC  topological 

 
spacethen S,l  is a P  topological 

 

 

space . 
 

Corollary2.16 [18]: Every P  space S,  is weak P  space . 

 

Theorem2.17 [2]: 
 

For a space , the following are equivalent: 
 

(a) S,  is an L  topological space. (b) S,l  is a P  topological 

 

space . 1 
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Corollary 2.18[19]: Every Q  set L1  space is an LC  space. 

 

Theorem2.19 [2]: Every T1 , anti- Lindelöf L1  space is an LC  space . 
 

Corollary2.20 [18]: If S, is Lindelöf space then l   . 

 

Theorem2.21 [17]: A regular almost Lindelöf space is Lindelöf. 

Theorem 2.22[19]: Every locally compact LC  space is a Hausdorff. 

 

Corollary2.23[19]: 
 

(i) Every R1LC  space is a Hausdorff. (ii)Every regular LC  space is a Hausdorff. 
 

Theorem 2.24[15]: Every Huasdorff P  space is an LC  space. 

 

Theorem 2.25[2]: For a Hausdorff space S the following are equivalent: 
 

(a) S is an LC  space . (b) S is an L1  space and an L2  space. 

 

Theorem2.26 [19]:  For a Hausdorff  Lindelöf space S the following are equivalent: 
 

(a) S is an LC  space . (b) S is an L1  space . 

 

Corollary2.27 [11]:  For a Hausdorff Lindelöf space S , the following are equivalent: 

(a) S is an ALC  space. (b) S is an WALC  space.   (c) S is LC  space. 
 

(d) S is a P  space . (e) S is a weak P  space . 
 

Theorem2.28 [20]: For a regular space S the following are equivalent: 
 

(a) S is an LC  space. (b) S is an WALC  space . 

 

Theorem2.29 [19]: If S,  is a topological space and   S , 

 

   i 
i1 

, where  i , i  1,2,..., n 

are closed and LC  subspacesin S ,so  is LC  subspace. 
 

Proposition2.30 [13]: If S, is an LC  space, then   lc . 
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N 

Corollary2.31 [13]: . 

Let S, be a topological space. 

If S, lc has no Lindelöf -dense subset then S, lc is an 

 

 

 
LC  space. 

Theorem 2.32[13]: For a space S, the following are equivalent: 

(a) S, 


is an LC  space. (b) S, lc is an LC  space. 

 

Proposition2.33 [13]: 

If S, lc is T , then S, is an LC  space. 

Corollary2.34 [13]: 

If S, lc is disconnected, then S, lc is an 

 

 

 

 
LC  space. 

Theorem 2.35[13]: Let , be a topological space. 

Then S,  is an LC  space and disconnected if and only if S, lc is disconnected. 

Proposition2.36 [13]: If S,  is T , then S, lc is T . 
1 1 

 

Proposition2.37 [13]: 

(i) If S, is an LC  space, then l   lc . 

(ii) If S, is a Lindelöf space, then lc   l . 

Note that the reverse inclusions of (i) and (ii) are false in general 11. 

Example2.38: If S,  is the discrete topological space and S is an uncountable set .So   lc  ( 

S is an LC  space and Proposition2.30 ).Since   l . Hence lc   l . 

Example2.39: If R,  is the usual topology ,   0 
1 

: j  1,2,3,4,5...
 and if  N  . 

 
 ,  N 




is compact, it is Lindelöf. Therefore   l




 . Take 

 

 

 
1 
 

2 
 N 





and 

 

 
 
  1  1 
1, , 

 
 
,...
 .Then 

      3  4 

  L    
1 

2 
is a Lindelöf subset of L, L ,and not closed in L, L .Therefore L is not an 

 

LC  subspaceof ,  N . So 
1 

 lc
2 

N 
.Hence l N   lc N  . 

 

Corollary2.40 [2]: Every Huasdorff , locally Lindelöf L1  space is an LC  space.. 

 

Theorem2.41 [19]: For anti – Lindelöf space S the following are equivalent: 

j 

N 
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(a) S is an LC  space . (b) S is a cid  space . 
 

Theorem2.42[ 21]: Every Huasdorff P  space is anWALC  space. 

 

3. CoLC Topologies 
 

Corollary3.1: (i) If S, lc is an LC  space then S,l  is a 

 

 
P  space . 

 

(ii) If S, lc is an LC  space then S,l  is a weak P  space . 

Proof.  Obvious by Theorem 2.32, Corollary. 2.15 and Corollary 2.16. 
 

Theorem3.2: For a Q  set space S, the following are equivalent: 
 

(a) S, lc  is an LC  space . (b) S,l  is a P  space . 

 

Proof. 

 
: Obvious by Corollary 3.1(i). :If 

 
S,l 





is a 

 
P  space ,so S, is an L  space by 

Theorem 2,17 Since S,  is a Q  set , therefore S, is an LC  space 
 

( Corollary 2.18). 

Thus S, lc  is an LC  space (   Theorem 2.32). 
 

Theorem3.3: For a anti- Lindelöf T space S, the following are equivalent: 
 

(a) S, is an LC  space .(b) S, lc is an LC  space .(c) S,l is a P  space . 

 

Proof. 

 
(a) (b): Obvious ( Theorem 2.32).(b) (c):This is obvious ( Corollary3.1(i)). 

 

(c) (b): If S,l 

is a P  space ,so S,  is an L  space ( Theorem 2.17). Since S,  is 

 

anti- Lindelöf T space, therefore S,  is an LC  space 
 

( Theorem 2.19).Thus S, lc 


is an 

LC  space ( Theorem 3.1). 
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Theorem3.4: For a locally Lindelöf Hausdorff space S, the following are equivalent: 
 

(a) S, lc  is an LC  space . (b) S,l 


is a P  space . 
 

Proof. : Obvious ( Corollary 3.1(i)). : If S,l  is a P  space ,so S,  is an L1  space ( 

Theorem 2.17). Since S,  is a locally Lindelöf Hausdorff space, therefore S, is an LC  space 

( Corollary 2.40).Thus S, lc  is an LC  space (Theorem 2.32). 
 

Corollary3.5: (i) If S, lc is Hausdorff, then S,l  is a P  space . 

 

 
Proof. Obvious . 

(ii) If S, lc is Hausdorff, then S,l  is a weak P  space . 

Corollary3.6: (i) If S, lc 


is disconnected, then S,l  is a P  space . 

(ii)If S, lc  is disconnected, then 

Proof. Obvious . 

Corollary3.7: 

S,l  is a weak P  space . 

 

(i) If S, is an LC  space , then S, lc  is a T  space. 

(ii) If S, is a KC  space , then S, lc  is a T  space. 

(iii) If S, is locally LC  space, then S, lc  is a T  space. 

(iv) If S, is infinite cid  space , then S, lc  is a T  space. 

Proof. Obvious by Theorem 2.36. 
 

Corollary3.8: If S, is a Lindelöf LC  space, then  lc  l . 

Proof. Obvious by Proposition 2.30 and Corollary2.20. 

Corollary3.9: 

(i) If S, is a LC Lindelöf space, then S, lc is a P  space . 

(ii) If S, is a LC Lindelöf space, then S, lc is a weak P  space . 

(iii) If S, is a LC Lindelöf space, then S,l is a P  space . 
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(iv) If S, is a LC Lindelöf space, then S,l is a weak P  space . 

Corollary3.10: If S, is anti- Lindelöf cid  space ,then S, lc is an LC  space. 

Proof. Since S, is anti- Lindelöf cid  space ,so S, is an 

S, lc  is an LC  space ( Theorem 2.32). 

LC  space (Theorem 2.41), therefore 

 

Corollary3.11: If S, lc  is a Hausdorff, then S,  is a locally LC  space. 
 

 
Proof. Since S, lc  is a Hausdorff , then S, 



is an LC  space 

 
(Proposition 2.33). 

Therefore S,  is a locally LC . 

Corollary3.12: (i) If S, lc  is a Hausdorff, then S,  is cid  space . 

(ii) If S, lc  is a Hausdorff, then S,  is a KC  space. 

Corollary3.13: 
 

(i) If S, is a regular locally LC  space, then l   lc . 

(ii) If S, is a regular almost Lindelöf, then lc   l . 

Proof. (i) Obvious by Definition 2.01 and Proposition2.30. 

(ii) Obvious by Theorem 2.21and Corollary 2.20. 

Theorem3.14: For a locally compact S, the following are equivalent: 
 

(a) S, 


is an LC  space . (b) S, lc 


is a Hausdorff. 
 

Proof. : If S, 


is an LC  space ,so   lc  proposition 2.30. Since S, 


is a   locally 

compact, then S, lc  is a Hausdorff by Theorem 2.22. 

: Obvious by Proposition 2.33. 

Theorem3.15: For a regular S, the following are equivalent: 
 

(a) S, 


is an LC  space . (b) S, lc 


is a Hausdorff. 
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Proof. :Let S,  be an 

then S, lc is a Hausdorff . 

LC  space ,then   lc  Proposition2.30. Since S,  is a regular, 

 

: Obvious by Proposition 2.33. 
 

 

Theorem3.16: For a R S, the following are equivalent: 
 

(a) S, 


is an LC  space . (b) S, lc  is a T2 . 
 

Proof. : If S, 


is an LC  space ,then   lc  Proposition2.30. Since S,  is a R1 , then 

S, lc is a T by Corollary2.23(i). 

: Obvious. 

Corollary3.17: If S, lc is Hausdorff, then S, is a Hausdorff. 
 

 
Proof. Since S, lc  is Hausdorff , then  S, 



is an 
 

LC  space 

 
by Proposition 2.33, so 

  lc . Hence S, is a Hausdorff. 

Corollary3.18: If S, is Hausdorff P  space , then S, lc is a Hausdorff P  space. 

Proof. Since S,  is Hausdorff P  space, hence S, 


is an LC  space 
 

by Theorem 2.24,so 

  lc . Therefore S, lc is a Hausdorff P  space. 

4. CoLC and Li  Spaces 

 
Corollary4.1: Let S, lc be an LC  space ,then S,l  is an L . 

 

Proof. Obvious ( Corollary 3.1 and Theorem 2.14 (iii)). 
 

 
Theorem4.2: For a L  space S,  the following are equivalent: 

 

 
(a) S,l  is a P  space . (b) S, lc  is an LC. 
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Proof. : Obvious ( Corollary 3.1). : If S,l  is a P  space ,so S, is an 

 
L1 ( Theorem 

2.17). Since S,  is an 

LC (Theorem 2.32). 

L , therefore S,  is an LC ( Theorem 2.14(ii)) . Hence S, lc  is an 

 

Theorem4.3: For a L Hausdorff space S, the following are equivalent: 
 

 
(a) S,l  is a P  space . (b) S, lc  is an LC. . 

 

Proof. : Obvious ( Corollary 3.1). 
 

: If S,l is a P  space ,so S, is an 

 

L1  space ( Theorem 2.17). Since S,  is a L2 

Hausdorff space, therefore S,  is an LC ( Theorem 2.25). Hence S, lc 

2.32). 
 

Theorem4.4: For a Lindelöf Hausdorff space S, the following are equivalent: 

is an LC ( Theorem 

 

(a) S, lc  is an LC  space . (b) S,l  is a P  space . 
 

 
(c) S,l  is a weak P  space . (d) S, 


is an L1  space . 

 

Proof. 

 
(a) (b): Obvious ( Corollary 3.1). 

 

(b) (a): If S,l 

is a P  space ,so S, is an L ( Theorem 2.17). Since S,  is a Lindelöf 

Hausdorff space, therefore S,  

Theorem 2.32). 

is an LC ( Theorem 2.26). Hence S,l  is an LC ( 

(b) (c): Obvious ( Corollary 2.16).(c) (b):If S,l is a weak P  space . Since S, is a 
 

Hausdorff Lindelöf and   l  , then S,  is an L1 ( Theorem 2.27 and Theorem 2.14 (i)). 

 

Hence S,l is a P  space 
 

( Theorem 2.17). 
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(c) (d): If S,l  is a weak P  space ,since S, is a Lindelöf,then  l , so S,l 

is a P  space ( Theorem 2.27).Hence S,l  is an L1 ( Theorem 2.14 (viii)). 
 

(d) (c): Obvious ( Theorem 3.2.2 and Corollary 3.1.26). 
 

Corollary4.5: If S, lc is Hausdorff, then S,l  is an L1  space . 

Proof. Obvious ( Proposition2.33,Corollary2.15andTheorem2.14(iii)). 
 

Corollary4.6: If S, lc  is disconnected, then S,l  is an L  space . 

Proof. Obvious ( Theorem2.35,Corollary2.15and Theorem2.14(iii)). 
 

Corollary4.7: (i) If S, is an L  space , thenS, lc  is a T  space. 
3 1 

 

(ii) If S, is a  Q  set space, then S, lc  is a T  space 
 

Proof. Obvious (Proposition 2.36). 

 
Theorem4.8: For a locally compact 

 
L  space S, the following are equivalent: 

 

 
(a) S,l  is a P  space . (b) S, lc is a Hausdorff. 

 

Proof. : Oobvious ( Corollary 3.5(i)). 
 

: If S,l is a P  space ,so S, 

is an 

 
L1  space ( Theorem 2.17).Since S, is an 

L  space ,therefore S, is an 
 
LC  space ( Theorem 2.14(ii)),  so  lc .Since S, is a locally 

compact space, hence S,   S, lc is a Hausdorff ( Theorem 2.22). 
 

 
Theorem4.9: For a regular L  space S, the following are equivalent: 

 

 
(a) S,l  is a P  space . (b) S, lc is a Hausdorff. 
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Proof. : Obvious ( Corollary 3.5(i)). : If S,l 


is a P  space , soS, 


is an 

 
L1 ( 

Theorem 2.17). Since S,  is an L , therefore S, is an LC (Theorem2.14(ii)), so  lc 

.Since S,  is a regular , Thus S,   S, lc is a Hausdorff by Corollary 2.23(ii). 
 

Theorem4.10: For a R1 L  space S, the following are equivalent: 
 

 
(a) S,l  is a P  space . (b) S, lc is a Hausdorff 

 

Proof. : Obvious by Corollary 3.5(i). 
 

: If S,l is a 
 
P  space ,so S, is an L (Theorem 2.17). Since S, 


is an L3 , 

therefore S, is an   LC (theorem 2.14(ii)),so   lc .Since S,  is a R1  space,  hence 

S,   S, lc  is   a Hausdorff by Corollary 2.23(i). 
 

Corollary4.11: Let S, be a Q  set space. 
 

If S,l  is a P  space , then S, lc  is T1 . 
 

 
Proof. Since S,l  is a P  space , so S, is an L  space by Theorem 2.17. Since S,  is 

a Q  set , therefore S, is an LC ( Corollary 2.18), then S, lc is T ( Proposition 2.36). 
 

Corollary4.12: : Let S, be a L3  space topological space. 
 

If S,l is a P  space , then S, lc  is T1 . 

 

Proof. Since S,l  is a P  space , so S, is an L ( Theorem 2.17). Since S,  is an L3 , 

therefore S, is an LC ( Theorem 2.14(ii)), thus S, lc is T ( Proposition 2.36). 

Corollary4.13: (i)If S, is aLindelöf LC  space,thenS, lc is an L  space . 

(ii)If S, is a Lindelöf LC  space, then S,l  is an L  space . 

Corollary4.14: If S, lc has no Lindelöf -dense subset, then S, lc  is T1 . 
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Proof. Since S, lc  has dense - no Lindelöf subset, therefore S, lc is an L3 (Corollary2.31and 

Theorem 2.14(i)), hence S, lc is T1 ( Theorem 2.14(v)). 
 

 

Theorem4.15: For a locally compact Q  set space S, the following are equivalent: 
 

(a) S, lc  is a P  space . (b) S, lc  is a Hausdorff. 
 

Proof: : If S, lc  is a P  space ,so S, is an L ( Theorem 2.17). Since S,  is a Q  set , 

therefore S, 

Hence S, lc 

is an LC ( Corollary 2.18) and   lc 

is a Hausdorff by Theorem 2.22. 

.Since S, is a locally compact . 

 

: Obvious ( Corollary 3.5(i)). 
 

Theorem4.16: For a R1 Q  set space S, the following are equivalent: 
 

 
(a) S,l  is a P  space . (b) S, lc  is a Hausdorff 

 

Proof. :If S,l is a P  space ,so S, is an L (Theorem2.17). Since S, is a Q  set , 

therefore S, is an LC ( Corollary 2.18)and   lc .Since S, is a R .Hence S, lc  is a 

Hausdorff ( Corollary2.23(i)). 
 

: Obvious ( Corollary 3.5(i)). 

 
Theorem4.17: For a regular Q  set 

 
space S, the following are equivalent: 

 

 
(a) S,l  is a P  space . (b) S, lc  is a Hausdorff. 

 

Proof. : If S,l is a P  space ,so S, is an L ( Theorem 2.17). Since S, is a Q  set , 

therefore S, is an LC ( Corollary 2.18)and   lc .Since S, is a regular. Hence S, lc is a 

Hausdorff ( Corollary 2.23(i)). : Obvious ( Corollary 8.1.20(i)). 

 
5. CoLC and WALC 

Corollary5.1: (i) If S, is anWALC  space , then S, lc  is a T  space. 
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(ii) If S, is an ALC  space , then S, lc  is a T  space. 

Proof. Obvious ) Definition 2.9and Proposition 2.36(. 
 

Theorem5.2: Let S, be a regular topological space. If S, lc  has no Lindelöf -dense subset, 

then S, and S, lc  are WALC  spaces . 

 
Proof. Since S, lc  has dense -no Lindelöf subset, so S, is an LC ) Corollary 2.31 and 

Theorem 2.32(.Since S,  is a regular, therefore S, is an WALC )Theorem 2.28(, Since 

  lc  then S, lc  is an WALC . 
 

Corollary5.3: Let S, be a regular topological space. If S, lc  is a Hausdorff, then S,  is an 

WALC  space . 
 

 
Proof. Since S, lc  is a Hausdorff, so S, is an LC ) Proposition 2.33(.SinceS, 



is a regular, 

then S, is an WALC  space) Theorem 2.28(. 

 

Theorem5.4: 
 

If S, is an WALC  space , then S, lc  is an WALC  space and an LC  space . 
 

Proof.Since S,  is an WALC , so S, is an LC ,  lc . Hence S, lc  is an WALC and an 

LC . 

Theorem5.5: If S, lc is T  space, then S, is an WALC  space . 

Proof. Let w, z  S and w  z . Since S, lc  is Hausdorff, O,V  lc( )  w O, z V and 

O  V   . Thus S  S OS V 


and since S  O , S V 
 

are two closed, 

LC  subspaces of S, . Therefore S, lc  is an LC (Theorem 2.29).Hence S, lc  is an WALC ( 

Theorem 2.28). 

Theorem5.6: For a regular space S, the following are equivalent: 
 

(a) S,  is an WALC  space . (b) S, lc is an LC  space . 
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Proof. : Obvious (Theorem 5.4). :If S, lc  is an LC , 
 

so S, is an LC ( Theorem 2.32). Since S, 
2.28). 

is a regular, hence S,  is   anWALC (Theorem 

 

Theorem5.7: For a regular space S, the following are equivalent: 
 

(a) S,  is an WALC  space . (b) S, lc is anWALC  space 
 

Proof. : Obvious ( Theorem 5.4). : If S, lc  is an LC , so S, is an LC (Theorem2.32). 

Since S,  is a regular, hence S, is an WALC ( Theorem 2.28). 

 Corollary5.8: (i) If S, is anWALC  space , then l   lc . 

(ii) If S, is an ALC  space , then l   lc . 

Proof. (i) and (ii) Obvious ( Definition 2.9and Proposition 2.37(i)). 
 

Theorem5.9: Let S,  be a regular space. Then S, lc is an WALC  space if it can be written as 

the union of two closed sets which are not equal to S . 
 

Proof. 

Let 

 
S  1  2 

 
 

and let 

 
1   S,2  S 

 
 

be closed in 

 

S, lc . Then 1 

 
and  2 

 
 

are 

LC  subspace of S, by Definition CoLC . Therefore S, 


is an LC  space 

 

(Theorem2.29),since 1 and  2 are closed in S, . So S, lc 


is an LC  space ( Theorem 

2.32 ) and   lc . Since S, is a regular space, then S, lc is anWALC  space 

2.28). 

Corollary5.10: Let S, be a regular topological space. If S, lc  is disconnected, then 

is anWALC  space . 

Proof. Obvious ( Theorem 5.9). 

 

( Theorem 

 

S,l 

Theorem5.11: For a regular Q  set space S, the following are equivalent: 
 

(a) S, 


is an LC  space . (b) S,  is an WALC  space . 
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(c) S,l is a P  space . (d) S, lc is a Hausdorff and an 

 

LC  space . 

 

Proof. 

 
(a) (b): Obvious ( Theorem 2.28). 

 

(b) (a): Obvious ( Definition2.9). 
 

(b) (c): Let S, 


be   an WALC  space , so S, 


is an LC  space 
 
( Theorem 2.28). 

 

Therefore S,l  is a P  space 
 

( Theorem 2.15). 
 

(c) (b): If S,l  is a P  space ,so S, is an L1 ( Theorem 2.17). Since 
 

S, 


is a Q  set , therefore S, is an LC ( Corollary 2.18)and   lc .Since S, is a 

regular. Hence S, lc is anWALC (Theorem 2.28). 
 

(c) (d): If S,l  is a P  space ,so S, is an L1 ( Theorem2.17). Since S,  is a 

 

Q  set , therefore S,  isan LC  space 
 

( Corollary 2.18) and   lc . Since S,  is a 

regular . Hence S, lc  is a Hausdorff ( Corollary 2.23(ii)). 

(d) (c): Obvious ( Corollary 3.5). 

 

Theorem5.12: For a regular P  space S the following are equivalent: 
 

(a) S,  is T  space.(b)  S, is a Hausdorff space.(c) S, 


is an WALC  space 
 

(d) S, is an LC  space.(e) S, is a Locally LC  space.(f) S,  is a KC  space. 

Proof. 

 

(a) (b):If S is a T1 , since S is a regular, hence S is a Hausdorff. 

(b) (a): Obvious. (b) (c): Obvious ( Theorem 2.42). 



26 Reyadh Delfi Ali, Omlsad Adgheem Ali , Al-Qadisiyah Journal of Pure Science 27 , 1(2022) PP. Math 10-28 
 

 

1 

1 

 

(c) (b):   If S is   an   WALC , so S is an 

(c) (d): Obvious ( Definition2.9). 

T1 ,since S is a regular, therefore S is a Hausdorff. 

 

(d) (c): Obvious (Theorem2.28). (d)  (e): Obvious ( Definition 2.10). 

 

(e) (f): Let S be a Locally LC , since S is a regular, so S is an LC ( Definition 

2.10),therefore S is a KC . 
 

(f) (e): Let S be a KC , then S is an T1 , since S is a regular , therefore S is a 

Hausdorff , so S is an LC (Theorem 2.24), therefore S is a Locally LC . 

Corollary5.13: For a regular P  space S,  the following are equivalent: 
 

(a) S,  is T  space.(b) S, is a Hausdorff space.(c) S, 


is an WALC  space 
 

(d) S, lc is an LC  space and T  space. (e ) S, is an LC  space 

.(f) S, is a Locally LC  space. (g) S,  is a KC  space. 
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