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1.Introduction

In this work, we investigate the global existence and exponential growth of solutions for the following
system of nonlinear Klein-Gordon equations with viscoelastic and degenerate damping terms:

(g — Au + miu + fot,ul(t — s)Au(s)ds + (Jul® + |v|D)|u " 1u,
= fi(u,v), (x,t) €QAx(0,7),
Ve — AV + M3V + fot,uz(t — $)Av(s)ds + ([v|° + [u|®)|v |V v,
= f,(wv), (x,t) €Qx(0,T) M
ulx,t) =v(x,t) =0, (x,t)€dQx(0,T),
u(x,0) = up(x), us(x,0) =u;(x), x€ Q,
\ v(x,0) = vy(x), v:(x,0) =v,(x), x€ Q,
where Q is a bounded open domain with smooth boundary in R™ (n > 1),my,m, >0, n,v =0,
k,1,8,0>1; u;(.):R* > R* (i = 1,2) are positive relaxation functions.
By taking
fi(w,v) = alu + v|*®*D (u + v) + blul u|v|**?,
£, v) = alu + v2CD(u + v) + blv|cv|u|<t?,
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where a > 0,b > 0 and

-1<k ifn=1,2,
{—1<KSEL']CT£Z3. 2)
Multiplying f; (u, v) by u, f,(u, v) by v, we get
ufi(u,v) + vf(w,v)
= u(alu + v|2®*V (u + v) + blul u|v|<*+?)
+v(alu + v|2* D (u + v) + blv|<v|ul<*+?)
= alu + v[2CHD (y + v)2 + 2b|u|*t2|v|rt+2
= alu + v|2**2 4 2p|up|*+2
=2(k+ 2)F(u,v), 3)
where V(u,v) € R? for
F(u,v) = 2(;<1+2) [alu + v|2+2) 4+ 2b|uv|*+2]. 4)

The system (1) is a generalization of the following Klein-Gordon system:
{utt — Au+ miu + auv? =0,
Ve — AV + m3v + auv = 0,
where m,, m,, @ are non-negative constants, which is considered in the study of the quantum field
theory. The above system defines the motion of a charged meson in an electromagnetic field and was
proposed by Segal [21].

The generalized system (1) was earlier investigated by Yazid et al. [24]. The authors
considered the global nonexistence of solution with positive initial energy.

Piskin [8] investigated on coupled equations of the form

U — Au+ miu + |u |, = f;(w,v),

{ e ©

Ve — Av + mav + v |V v = fo(w,v),
and the author considered the decay of solution by using Nakao’s inequality and the blow up of
solution with negative initial energy. Then, Piskin [9] studied same problem and proved lower bounds
for the time of blow up is derived if the solutions blow up. In [10], the author studied blow up of
solutions with negative initial energy in case 7 = v = 1. Furthermore, Ye [25] considered the problem
(5) with n = v and studied the asymptotic stability and global existence of solutions: In addition, some
other authors investigated problem (5) with n = v = 1 see ([6,7,22]).

The effect of the degenerate damping terms often appear in many applications and practical
problems and turns a lot of systems into different problems worth studying. Now, we state some
present results in the literature: Firstly, we mention the pioneer work of Rammaha and Sakuntasathien
[19] who focus on coupled equations of the form

{utt — M+ ([ul* + [ |ue " ue = f1(w,v), (©)

Ve —Av + (|U|9 + |u|9)|vtlv_1vt = fo(w,v).
They investigated the global well posedness of the solution under some restriction on the parameters.
In [2,26], authors studied the same problem treated in [19], and they studied the growth and blow up

properties. For more depth, here are some papers that focused on the study of degenerate damping [3-
5,11, 13-17, 23, 27].

It is well known fact that “Exponential Growth” phenomenon is one of the most important
phenomena of asymptotic behavior but many authors omit it. It presentations us very considerable
information to know the behavior of equation when time arrives at infinity, it differs from global
existence and blow up in both mathematically and in applications point of view.
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In this work, we investigate how we can apply the degenerate damping term for knowing the
behavior of growth of solutions for a coupled nonlinear Klein-Gordon system with viscoelastic and
source terms. The rest paper is organized as follows: In the next section, we present necessary
assumptions that will be used later. Then, in Section 3, we establish the global existence of problem.
The exponential growth of solution is presented in Section 4.

2. Preliminaries

W™P is denote the Sobolev space and

WOoP(Q) = LP(Q) if m = 0,

{Wm'Z(Q) =H™(Q)if p =2.
Also, let denote the standart L?(Q) norm by ||. || = |I. |2y and LP(Q) norm by ||. |[, = || |l p(q) for
details see ([1,18]).
Now, we make the following assumptions:
(H1) Regarding u; (.): Rt - R*, (i = 1,2) are C'-nonincreasing functions satisfying

pi(@) >0, p'(@)<0,1-— f;oul-(oc)da =1,>0, a=0.
1<nv ifn=1,2,

(H2) 1<nv<™= ifn23.

Also, we use the following notation:

t
(i o YW)(1) = [ it — )IVw() — Vw(s)||* ds.
Now, we define the energy function

E(t) = 5 (el + 11vell?) + 2 [(y 0 Vi) () + (2 © V) (&) + mE||ull? + m3[1v]|?]
+%[(1 - .ul(S)dS) IVu@I1* + (1 - f Mz(g)ds) ||Vv(t)||2] - J, Fw,v)dx. (7)

By computation, we have
da 1 ' '
LE® <210 o Vu)(®) + (1 0 Vw)(0)]
—~ (u OlIAul? + g 011 Av][?)

— o, (ul® + [v[Du " dx = [, (1v]° + [u|®) v ["** dx
< 0. (8)

3. Global existence
In this part, we prove the global existence of solution for problem (1). For this aim we set

1(8) = mE|[ull? + m3||wl|? + (uy 0 V) (@) + (p 0 V0)() — 2k +2) [, F(u,v)dx
+ (1= [ ta()ds) IVu(OI? + (1 = [} uy(s)ds) Vw02

and
J() = [y 0 Vu)(©) + Gaz 0 V0)(©) + mE ull? + m3Ill?] - [, FCu,v)dx
+2[(1 = Jy m(ds) IVa@I? + (1 = [; my(s)ds) Vo ()17

2

Lemma 3.1. Assume that (4) holds. Then there exist p > 0 such that for any u, v € H (Q), we get
lu+ i3ty + 2wl < p(LlIVull? + L [IVv]12)<+?
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is satisfied. [20]

Lemma 3.2. Assume that (H1) and (H2) hold. Let ug, vy € H}(Q),uq, v, € H3(Q) . If

2(K+2) el
[(0)>0and y =p E(0) <1, (12)

then
I(t) >0, vt > 0.
Proof. We have 1(0) > 0, then by continuity of I(t) about t, there exist a maximal time t,, > 0 such
that
I(t) = 00ont € (0,t,,).
Let t, be as follows
{I(ty) =0and I(t) >0 forall0 <t < ty}. (13)
By using

J@®© =

e +2)I( )+ 2( +2) [y 0 Vu)(8) + (uz 0 VO) () + mi|ull® + m3|v||?]
+ =22 (1= [ (s)ds) IVu@I2 + (1 = f; u2(s)ds ) Vw0112

2(k+2)

> L LIV + LIToO I + (3 0 Vu)(©) + Gtz 0 V0)(E) +mE ull? + m3Ivl|?]. (14)

From (7) and (8), we have

2(k+ 2)

LIIVu®|? + L||Vv(®)]|? <
IVu@®Il® + LIIVe(@®)Il* < 1

2(kc+ 2)
<71 FO

2D E©0), vee[0,t] (15)

J(©®

<

By (11) and (12), we reach at
20¢ +2) fy Fu(to),v(to))dx < p(la[IVulto)l2 + L [1Vo(te) )2
K+1
<p(E2E©)  GITaEI? + LITo(E)I)
< LIVu()II? + L 1Vv(t) 1
< (1= fy m®)ds) IVu@IP? + (1= [; ko()ds) Vo (@I

Then, since (9) we have
I(ty) >0
which contradicts to (13). So, I(t) > 0 on [0, T].

Teorem 3.3. Assume that the conditions of Lemma 3.2 hold, then the solutions (1) is bounded and
global in infinite time.
Proof. It suffices to show that
1w, V)1l = [IVu(OlI? + IVeOII* + millull® + m3||v]|?
is bounded independently of t (time). For this purpose, we apply (7), (8), (10) and (15) to get

E) 2 E() =]() + %(Ilutll2 + v 1)

> S LIV + LIV + (1 0 Vu) () + (2 © V) (8)
1 1
5y el +m3wl2] + 5 Ulell? + e l12). (16)

Thus,
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l(w, v)l|w < CE(0),
where positive constant C, which depends only on k, [4, [,.

4. Growth
In this part, our purpose to show that the energy grow up as an exponential function as time
goes to infinity.

Theorem 4.1. Assume that
2(k+2)>max{k+n+1L,l+n+1,6+v+1,0+v+ 1}
and the initial energy E(0) < 0. Then, the solution of the system (1) grows exponentially.

Proof. We set
H(t) = —E(0),
from assumption E(0) < 0 and (8) gives H(t) = H(0) > 0.
Then, define @ (t) by
@) =H(t) +¢ (fQ ugudx + [ vtvdx) (17)
where 0 < ¢ < 1.
By differentiating (17) and using Eq.(1), we have
®'(t) = H' () + e(llull® + llvell?) — e(llVull® + [[Vv]|?)
+2e(k + 2) [, F(u,v)dx — e(mF||ull* + m3||v||*)
+e |, fot p (t = s)Vu(s)Vu(t)ds dx + ¢ [, fo U, (t — s)Vu(s)Vu(t)ds dx
—& (fg u(lul® + [v|Duelu " dx — [, v(|v|® + [ul®)ve|v ' dx). (18)
We would like to estimate the last two terms right hand side in (18) by using the following Young’s

inequality
5%4%  5-PpF

AB < + —
where A,B >0, § >0, a, € R* such that §+ % = 1. Therefore, we have forall §; > 0
n+1 _T’_+1
n—1 < 81 n+1 néy 1 n+1
g |71 < S 1 22y e

and therefore
Jo Qul* + [v1)luueu "~ dx < =— o] f (lul® + [v|Du|"** dx

T]+1

FIT [l + ol d. (19)
Similarly, for all 6, > 0

_Uv+1

v1<2 v+1 v v+1
fovelo 1] < 2 [t 4 222y e,

which gives
_ S v+1
Jo (wl® + Iulg)lvvtlvtlv Hdx < =2— [ (vl + ul®) |v|"*'dx

U+1

2t [ (1019 + [ul®) v | dx. (20)
Inserting the estimates (19), (20) into (18), we have
@'(t) 2 H'(t) + elllull? + llvell?) — e(llVull® + Vol
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+2e(k +2) [, F(w,v)dx — e(mi||lull® + m3|[v]|*)
+£f ft,ul(t — $)Vu(s)Vu(t)ds dx + ef ftuz (t — s)Vv(s)Vv(t)ds dx

f (lul® + (vl ful”

n+1

v+1

f (Iv1% + [ul®)|v|"*1dx —

T]+1
1y — gl

U+1

Jo Vu(®) fot uy (t — s)Vu(s)dsdx

1 1 ¢ 2
< 2vall? +3 f, (Ji ma(e = 9)(Vuls) = Vu()] + [Vu@)]) ds) dx.
Thanks to Young’s inequality and assumption (H1), we have, for any {; > 0,

fg Vu(t) fot py (t — s)Vu(s)dsdx < %IIVuII2 + %(1 + &) fg (fotul(t - S)Vu(s)ds)2 dx

1 1 ¢ 2
+5(1 + E—) f (fo 1, (t = $)|Vu(s) — Vu(t)lds) dx
_ 2
< 1+(1+El)(1 ll) ”vullz

2

4 (1+$1)(

Similar calculations also yield, for any &, > 0,
t 1+(1+&,)(1-15)? 2
Jo V(@) [, 12(t — 5)Vv(s)dsdx < —— IV

Then, add 2H (t) to both side of (21),

®'(t) = H'(t) + 2e(llucll® + llvell®)

—1)2-
e <(1_ll)+(1+fl>(12 1?1

—1,)2—
e ((1_12) +(1+$2>(12 12)*-1

+2e(k +1) [, F(u,v)dx +

1+
1
=)(

1_{_(1+

(1+é)(1—12)
2

+

we have

)IIVHII2
)IIVVII2

2eH(t)

+s< %) (s o V0)(0)
)

+e< fT) (uz © W) (1)

f (lul® + (w1 ful”

n+1

- f (Iv1° + [ul®)|v|"*1dx — g2

v+1

_77_+1

gy — 10

‘U+1

Then, by using Young’s inequality, we get

Jo (Qul* + wDlul™ dx < [, [ul**"*dx + [ Ivlllul”“dx
1+7+1

< J, lul*"* dx +

l+17+1

(ul o Vu)(t).

Y1

(2 © V) (0).

f (lul® + v u " dx

— Jo (W17 + [u]®) v |7+ dx.
Now, the ninth term in the right hand side of (21) can be estimated, as follows (see [12]):

= [y (ul® + 1) u 7 dx

— [, (1017 + [ul®) v 1dx.

fg |v|l+n+1dx

€2y

(22)
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n+1 l+n+1
- l+n+1
n+1
l+7l+1)/1 fQ Iul dx

_ k+n+1 l l+n+1
- ”u”k+7’]+1 +myl L ||v||l+77+1

l+n+1

l+n+1
1 +n+1

n+1 -
V1 L ”u”l+n+1

l+n+1

and

Jo (018 + [ul®) [v[**dx < [ [v]®** dx + [ [ul®|v|"* dx
0+v+1

6 1 Q N 1
< o W17 dx + oy, @ f [ulet

o+U+1

v+1
Q+v+1y2 v+1 jé vQ+v+1dx

__|| ”9+v+1 + 0 Q+:+1” ||Q+v+1

= Wle+vtr T 550 Y2 Ullgrv+1
—gtvtt o+v+1

VZ v+l ”v”Q+U+1'

v+1
o+v+1

Then, (22) deduce to
®'(t) = H'(t) + 2e(lluell® + lvell®) + 2eH (£)

_ 2_
te <(1 —1) +(1+51)(12—’1)1> Ak

—1,)2—
te ((1 ~1,) +(“““2—”1> Vw12

+2eCe+ D[l + vl 3)

te <1 + w> (s o V)(b)

144 )(1-13)

+e<1  Lrelay "2)2 )(Mz"vv)(t)

5177+1 k+n+1 l l+n+1 l+n+1 n+1 _ln+1 Ln+1
—¢ n+1 “u”k+n+1 + l+n+1 yi it ||v”l+n+1 + l+n+1)/1 T ”u”l+n+1

8" ] e et o+v+1 v+1 _etvtl o+v+1
— 5+1 [llvll‘gizii_I_Q+u+1y2 ¢ ”u”Q+U+1'FQ+U+1yz vl ”V”Q+v+1]

B/ v+1
_.né 7 k l n+1 L us v 0 0 _—
et Jo (ul* + D u ™ dx — e =2 [, (IV1° + [ul®) [v|***dx. (23)

By using 2(k +2) > max{k +n+ 1,l+n+ 1,0 + v+ 1,0 + v + 1} assumption and the following

algebraic inequality
x"Sx+1S(1+§)(x+a), Vx >0,0<0<1, a=0,
we obtain for all t > 0
IolIg35:t < eallvl i < d (Iwlisiss) + H®),

where d = 1 + —. In the same way, we obtain

(24)

H(0)
+v+1 +v+1 2 2
RalloTh < collullins) < d (llulibir s + HD),
l 1 l 1 2 2
Il < clivllbiity, < d (Ivllsiers) + HE®),
l+n+1 l+n+1 2 2
Rl 253 < callullsirty < d (lulisiers + H),
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k k
Rell03h < esllullyerns) < d (lulibiers) + HD),

k+n+1 = 2(k+2) 2(k+2)
and
Q+U+1 Q+v+1 2(k+2)
” I|Q+U+1 — 6”v”2(K+2) (” Ilz(K+2) + H(t) .
Selecting C;, Cy, C3, C4, Cs5 as follows
_nt1 v+1
néy M _V% v
Cl = ) C = ]
n+1 v+1
T[+1 l+T]+1 5 v+1 w
C3 = n+1 22 e )/2 0
n+1 l+n+1 v+1 o+vu+1 !
U+1 _etv+1 5.1 1 l+n+1
C, = ( v+l ) 1 Yi L,
v+1 Q+U+1 n+1 l+n+1
and
n+1 l+n+1 n+1 _Ln+1
CS = ]/1 n+1
n+1 l+ +1 l+n+1
5,1 v+l ettt 0 g+l
+ 1+ v+l + e .
v+1 Q+v+1y2 Q+v+1y2

where we pick 84, 85, ¥; and ¥, to find small enough C;, C,, C3, C4 and Cs.
This implies
@'(t) = H'(t) + 2e(lluell® + lvelI*) + e(2 — dCs)H(t)
+ew |[Vull? + w, ||Vl
+e0; (uq 0 Vu)(t) + 0, (uy o Vv)(t)
+(1 - £6) f, (Iul¥ + oD d
+(1 — £Cy) fQ (Iv1% + [ul®) |ve [V *1dx
+e2(c + 1) — dC)[ull?“2 + e(2(k + 1) — dCy)||v|) 2%+ (25)

2(k+2) 2(k+2)
1
N(1-1)2— 7 )a-1)
where w; = <(1 -1+ M) >0and6; = <1 + %) > 0 (i = 1,2) for choosing

L

$i =

1 {;Ve can find positive constants K;, K,, K3 and Cg such that
®'(t) = (1 — eCe)H (1) + 2&(l[uell® + [lvelI*) + ek H(2)
+ew [IVull? + ew, V0|2 + Ky llull etz + eKsllvll5bers)- (26)
We pick € small enough such that (1 — eCg) = 0 and
®(0)=H) +¢ (fQ ugugdx + [ vtvodx) > 0.
As a result, there exists M > 0 such that (26) deduce to
'(t) 2 eM(H() + lluell? + vl + I9ull? + 190112 + llull3rs) + Ivll5es)- 27)

Thus, ®(t) is strictly positive and increasing for all t > 0.
Now, by applying Holder’s and Young’s inequalities, we have

|fQ utudx| < [Jue Hlwll
< C(lluellllullger2)
< 2 (lluell? + el o))
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1
c 2(k+2)\x+2
< ;(nutuz + (Ihll5iers) )

1
Applying (24) for (Ilullﬁﬁﬁig)"“, we get

|fiy weudx| < g(uutuz + (14 75) (ell3es3) + H(t))).

Likewise, we get

|fiy vevdx| < §<||vt||2 + (14 555) (el + H(t))).

Then, we have

o (t) < C(H(®) + llueli? + w12 + 1VuliZ + 199112 + llull3ers) + Ivllrs)) (28)
and from (27) and (28), we reach
2O > ro@),ve 20 (29)

where I' is a positive constant.
Integration of (29) over (0, t), we obtain
®(t) = &(0)exp(l't)

and this completes the proof.

Conclusion

In this work, we are interested in the exponential growth of solutions for coupled of Klein-
Gordon equations with degenerate damping and viscoelastic term. This kind of problem is mostly
found in some mathematical models in applied sciences. What interests us in this current work is the
combination of Klein-Gordon system with these terms of damping (viscoelastic term, degenerate
damping and source terms), which dictates the emergence of these terms in the system.
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