Al-Qadisiyah Journal of Pure Science

Volume 27 | Number 1

Article 4

4-7-2022

The Cyclic Decomposition Of cf(Q_14×C_2p)/ R (Q_14×C_2p)

Naseer Rasool Albakaa University of Kufa -Faculty of Education -Mathematics, Najaf, Iraq, naseer.mahmood@uokufa.edu.iq

Habeeb Kareem Al-Bdairi University of Kufa -Faculty of Education for Women-Mathematics, Najaf, Iraq, habeebk.abdullah@uokufa.edu.iq

Neeran Tahir Abd Alameer University of Kufa-Faculty of Education for Women-Mathematics, Najaf, Iraq, niran.abdulameer@uokufa.edu.iq

Follow this and additional works at: https://gjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation

Albakaa, Naseer Rasool; Al-Bdairi, Habeeb Kareem; and Abd Alameer, Neeran Tahir (2022) "The Cyclic Decomposition Of cf(Q_14×C_2p)/ R̄(Q_14×C_2p)," *Al-Qadisiyah Journal of Pure Science*: Vol. 27: No. 1, Article 4. DOI: 10.29350/qjps.2022.27.1.1475 Available at: https://qjps.researchcommons.org/home/vol27/iss1/4

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

The Cyclic Decomposition Of cf(Q_14×C_2p)/ R⁻(Q_14×C_2p)

Authors Names	ABSTRACT
a.Naseer Rasool Albakaa	
b.Habeeb Kareem Al-Bdairi	In this paper, we propose the cyclic decomposition of the factor group $\gamma'(2)$ 14 G 2) $\gamma'(2)$ 14 G 2) $\gamma'(2)$ 14 G 2)
c.Neeran Tahir Abd Alameer	$cf((Q_14 \times C_2p),Z)/R((Q_14 \times C_2p)))$, and the group $cf((Q_14 \times C_2p),Z)$ is Z-valued class functions of the direct product group ((Q_14 \times C_2p)) under the operation of
Article History	addition, and $R((Q \ 14 \times C \ 2p))$ is the subgroup of the generalized characters of the
Received on:2/1/2022 Revised on: 21/1/2022 Accepted on: 26/1/2022 Keywords: matrix representation, character tables,	group cf((Q_14×C_2p),Z).Then cf((Q_14×C_2p),Z)/ $R(Q_14×C_2p)$ is an abelian factor group denoted by K((Q_14×C_10)) where (Q_14 is the quaternion group of order28 and C_2p is the cyclic group of order 2p. Also, we find the rational valued characters table of the group ((Q_14×C_2p)) when p, and q prime numbers and
Quaternion groups, the cyclic decomposition of group.	$\equiv^{*} (Q_14 \times C_2p) = \llbracket \equiv \rrbracket ^* (Q_14) \otimes \equiv^{*} (C_2p) (1)$
DOI: https://doi.org/10.29350/jops.2022.27. 1.1475	and find the cyclic decomposition of group (Q_14× $[\![C_2p\ C]\!]$ _10) in this paper and prove that
	$K(Q_{14}\times C_{2p}) = \bigoplus_{(i=1)^2} [K(C_{14}) \otimes C_{4}] \bigoplus_{(i=1)^8} K(C_{2p})(2)$

1.Introduction

"Any two elements' of a finite group G. are said to be Γ - conjugate if they generated conjugate cyclic subgroups in G. This relation is equivalence on G and its classes are called Γ -classes".

"The number of Γ -classes of G is equal to the rank of cf(G.Z) is the intersection of cf(G.Z) with the group R(G) which is a normal subgroup of cf(G.Z), then, cf(G.Z)/R(G) is a finite abelian factor group denoted by K(G)".

"Each element in $\overline{R}((Q_{14} \times C_{2p}))$ can be written as" $v1\theta 1 + v2\theta 2 + \dots + vr\theta r$, "where r is the number of Γ – classes. $v1. v2. \dots vr \in Z$ and , where χi is an irreducible character of the group G and σ is any element in Galios group Gal $(Q(\chi i)/Q)$ ".

^a University of Kufa - Faculty of Education - Mathematics, Najaf, Iraq, E-Mail: naseer.mahmood@uokufa.edu.iq

^b University of Kufa - Faculty of Education for Women- Mathematics, Najaf, Iraq, E-Mail: habeebk.abdullah@uokufa.edu.iq

^c University of Kufa - Faculty of Education for Women- Mathematics, Najaf, Iraq, E-Mail: niran.abdulameer@uokufa.edu.iq

"In 1982, Kirdar M. S. [3] studied the K(C_n). In 1994, Abass H. H. [1] studied the K(D_n) and found \equiv^* (D_n). In 1995, Mahmood N. R. [4] studied the factor group K(Q_{2m}) and foun \equiv^* (Q_{2m}). In 2008, Mahdi M. S. [5] studied the factor group K(Dnh) where n is an odd number."

"The aim of this paper to find" $\equiv^* (Q_{14} \times C_{2p})$ "and to determine the cyclic decomposition of the group" $K(Q_{14} \times C_{2p})$, when p is primes number Preliminaries. We review some definitions and results which is need in this research.

"Let $T_1: G1 \rightarrow GL(V1)$ and $T_1: G2 \rightarrow GL(V2)$ be two irreducible representations of the groups c G1 and G2 respectively, then $T_1 \otimes T_1$ is irreducible representations of the group $G_1 \times G_2$."

"Let T be a matrix representation of a group G over the field F, the character χ of a matrix representation T is the mapping $\chi: G \to F$ defined by $\chi(g) = Tr(T(g))$ for all $g \in G$ where Tr(T(g)) refers to the trace of the matrix T(g) and $\chi(1)$ is the degree of χ ."

"A finite group G has a finite number of conjugacy classes and a finite number of distinct k-irreducible representations, the group character of a group representation is constant on a conjugacy class $CL \propto .$ ($1 \leq \propto \leq k$), the values of the characters can be written as a table known as the characters table which is denoted by \equiv (G)."

2 -Basic Concepts

2.1 Definition [2]

A rational valued character θ of G is a character whose values are in Z, which is θ (g) \in Z. for all g \in G

2.2 Proposition:[3]

The rational valued characters

$$\theta_i = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_i)/\mathcal{Q})} \sigma(\chi_i) \tag{3}$$

form basis for $\overline{R}(G)$, where χ_i are the irreducible characters of *G* and their numbers are equal to the number of all distinct Γ - classes of *G*.

2.3 Proposition: [3]

The rational valued characters table of the cyclic group C_p of the rank 2 where *p* is a prime number which is denoted by ($\equiv^* (C_p)$), is given as follows:

Γ – classes	[<i>I</i>]	[<i>r</i>]
θ_1	1	1

 θ_2 p-1 -1

Table 1. The Rational Valued Characters Table Of The Cyclic Group ${\bm C}_{\bm p}$

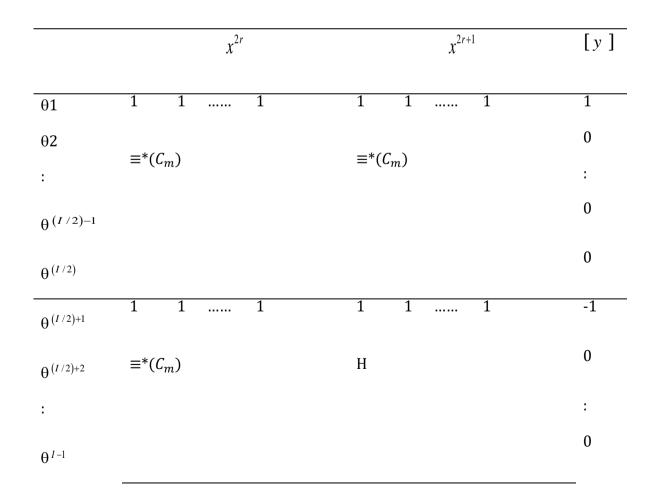
where its rank 2 represents the number of all distinct Γ -classes.

2.4 Definition [4]

For every positive integer m, The generalized Quaternion Group Q_{2m} of order 4m with two generators x and y then For every element in Q2m satisfies $x^m = y^2$, $y^1 x^m y^{-1} = x^{-m}$ which implies $x^m = y^4 = 1$ Any element $\lambda \in Q_{2m}$, can be expressed uniquely in the form $Q_{2m} = \{\lambda = x^h y^k \mid 0 \le h \le 2m - 1, k = 0, 1\}$

2.5 Proposition: [4]

The rational valued characters table of Q_{2m} when m is an odd number is given as follows:



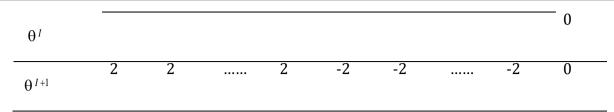


Table-2 The rational valued characters table of Q_{2m} when m is an odd number

Where 0 < r < m-1, I is the number of Γ - classes of C_{2m} , θ^{j} such that $1 < j^{j} < I+1$ are the rational valued characters of group Q_{2m} and if we denote Cij the elements $\stackrel{*}{\equiv}$ (Cm) and h_{ij} the elements of H as defined by :

$$h_{ij} = \begin{cases} C_{ij} & if \quad i = 1\\ -C_{ij} & if \quad i = 1 \end{cases}$$

and where I is the number of Γ - classes of C_{2m} .

2.6 Theorem: [4]

If m is an odd number, then $K(Q_{2m}) = K(C_{2m}) \oplus C_4$.

3. THE MAIN RESULTS

We study the rational valued characters table of $(Q_{14} \times \mathbf{C}_{2p})$ and find the cyclic decomposition $K(Q_{14} \times \mathbf{C}_{2p})$.

The group of $Q_{14} \times \mathbf{C}_{2p}$) is the direct product of the Quaternion group Q_{14} of order 28 (number), and the group \mathbf{C}_{2p} . which is cyclic of order 2p the order of $(Q_{14} \times \mathbf{C}_{2p})$. is 28p

3.1 Theorem

The rational valued character of the group $(Q_{14} \times \mathbf{C}_{2p})$, has the following form

$$\equiv^* (Q_{14} \times \mathbf{C}_{2p}) = \equiv^* (Q_{14}) \otimes \equiv^* (\mathbf{C}_{2p})$$

Proof

For each element $g_{khl} \in (Q_{14} \times \mathbf{C}_{2p})$, we have $g_{khl} = g_k g_h g_l$, such that $g_d \in Q_{14}, g_h \in C_{2,} = \langle r_2 \rangle$ = $\langle -1 \rangle$, $g_l \in \mathbf{C}_p = \langle r \rangle$.and $r = e^{2\pi/5}$ Then $g_k = x^t y^f, 0 \leq t \leq 14, f = 0,1$, and each irreducible character of $(Q_{14} \times \mathbf{C}_{2p})$ is $\chi_{ijk} = \chi_i \chi'_j \chi''_k$, where χ_i is an irreducible character of Q_{14}, χ'_j is an irreducible character of C_2 , and χ''_k is an irreducible character of \mathbf{C}_p

by Proposition (2-2) we get

$$\begin{aligned} \theta_{ijk=} \theta_{ijk}(\mathbf{g}_{dhl}) &= \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right] \\ &= \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma\left(\chi_{i}(\mathbf{g}_{d})\right) \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{j}(\mathbf{g}_{h}))/\mathcal{Q})} \sigma\left(\chi_{j}(\mathbf{g}_{h})\right) \left\{ \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{k}^{''}(\mathbf{g}_{l}))/\mathcal{Q})} \sigma\left(\chi_{k}^{''}(\mathbf{g}_{l})\right) \right\} \right] \right] \end{aligned}$$

• If j = 1, and k = 1, then for all $g_h \in C_2$ and for all $g_l \in \mathbf{C}_p$ such that $\theta'_j(g_h) = \sum \chi'_j(g_h) = 1, \theta''_k(g_l) = \sum \chi''_k(g_l) = 1.$ Then

$$\theta_{ijk(\mathbf{g}_{dhl})} = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma(\chi_{i}(\mathbf{g}_{d})) [1\{1\}] \right]$$
$$= \theta_{i}(\mathbf{g}_{d}) * \theta_{j}'(\mathbf{g}_{h}) * \theta_{k}''(\mathbf{g}_{l})$$

• If j = 1, and k = 2,3,.., p, for Avery $g_h \in C_2$ and g_l is the identity of \mathbf{C}_p that $\theta'_j(g_h) = \sum \chi'_1(g_h) = 1, \theta''_k(g_l) = \sum_{k=2}^p \chi''_k(g_l) = p - 1$ Then

$$\theta_{ijk(g_{dhl})} = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(g_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(g_{dhl})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_i(g_d))/\mathcal{Q})} \sigma(\chi_i(g_d)) [1\{4\}] \right]$$
$$= \theta_i(g_d)(1)(p-1) = \theta_i(g_d) * \theta_i'(g_h) * \theta_k''(g_l)$$

• If j = 1, and k = 2,3,4,5, for Avery $g_h \in C_2$ and g_l is not identity of C_5 that $\theta'_1(g_h) = \sum \chi'_1(g_h) = 1, \theta''_k(g_l) = \sum_{k=2}^p \chi''_k(g_l) = (\varepsilon + \varepsilon^2 + \dots + \varepsilon^{p-1})_{=} -1$

$$\theta_{ijk(\mathbf{g}_{dhl})} = \left\| \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right\| = \left\| \sum_{\sigma \in Gal(\mathcal{Q}(\chi_i(\mathbf{g}_d))/\mathcal{Q})} \sigma(\chi_i(\mathbf{g}_d)) [1\{-1\}] \right\|$$

$$\theta_{ijk} = (1)(-1) = \theta_i(g_d)(1)(-1) = \theta_i(g_d) * \theta'_j(g_h) * \theta''_k(g_l)$$

• If j = 2 and k = 1, g_h is the identity of C_2 and for all $g_l \in \mathbf{C}_p$

$$\theta_{i}(\mathbf{g}_{d}) = \sum \chi_{i}(\mathbf{g}_{d}), \quad \theta_{j}'(\mathbf{g}_{h}) = \chi_{2}'(\mathbf{g}_{h}) = 1, \qquad \theta_{k}''(\mathbf{g}_{l}) = \chi_{k}''(\mathbf{g}_{l}) = 1$$
$$\theta_{ijk}(\mathbf{g}_{dhl}) = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma(\chi_{i}(\mathbf{g}_{d})) [1\{1\}] \right]$$

$$= \theta_i(\mathbf{g}_d)(1)(1) = \theta_i(\mathbf{g}_d) * \theta_j'(\mathbf{g}_h) * \theta_k''(\mathbf{g}_l)$$

• If j = 2 and k = 2,3,4,5, g_h is the identity of C_2 and g_l is the identity \mathbf{C}_p

$$\theta_i(\mathbf{g}_d) = \sum \chi_i(\mathbf{g}_d), \quad \theta_j'(\mathbf{g}_h) = \sum_{k=2}^2 \chi_j'(\mathbf{g}_h) = 1, \qquad \theta_k''(\mathbf{g}_l) = \sum_{k=2}^p \chi_k''(\mathbf{g}_l) = \sum_{k=2}^5 1 = p-1$$

$$\theta_{ijk(\mathbf{g}_{dhl})} = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_i(\mathbf{g}_d))/\mathcal{Q})} \sigma(\chi_i(\mathbf{g}_d)) [1\{p-1\}] \right]$$
$$= \theta_i(\mathbf{g}_d)(1)(p-1) = \theta_i(\mathbf{g}_d) * \theta'_j(\mathbf{g}_h) * \theta''_k(\mathbf{g}_l)$$

• If j = 2 and k = 2,3, ..., p, g_h is the identity of C_2 and g_l is not identity of \mathbf{C}_p

$$\theta_{i}(\mathbf{g}_{d}) = \sum \chi_{i}(\mathbf{g}_{d}), \quad \theta_{j}'(\mathbf{g}_{h}) = \sum_{k=2}^{2} \chi_{j}'(\mathbf{g}_{h}) = 1,$$
$$\theta_{k}''(\mathbf{g}_{l}) = \sum_{k=2}^{p} \chi_{k}''(\mathbf{g}_{l}) = (\varepsilon + \varepsilon^{2} + \dots + \varepsilon^{p-1}) = -1$$

$$\theta_{ijk}(\mathbf{g}_{dhl}) = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl}))\right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_i(\mathbf{g}_d))/\mathcal{Q})} \sigma(\chi_i(\mathbf{g}_d)) [1\{-1\}]\right]$$

$$= \theta_i(\mathbf{g}_d)(1)(-1) = \theta_i(\mathbf{g}_d) * \theta'_j(\mathbf{g}_h) * \theta''_k(\mathbf{g}_l)$$

• If j = 2 and k = 1, g_h is the not identity of C_2 and for all $g_l \in \mathbf{C}_p$

$$\theta_i(\mathbf{g}_d) = \sum \chi_i(\mathbf{g}_d), \quad \theta_j'(\mathbf{g}_h) = \sum_{k=2}^2 \chi_j'(\mathbf{g}_h) = -1, \qquad \theta_k''(\mathbf{g}_l) = \sum_{k=2}^p \chi_k''(\mathbf{g}_l) = 1$$

$$\theta_{ijk(\mathbf{g}_{dhl})=} \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma(\chi_{i}(\mathbf{g}_{d})) [1\{1\}] \right]$$
$$= \theta_{i}(\mathbf{g}_{d})(-1)(1) = \theta_{i}(\mathbf{g}_{d}) * \theta_{j}^{'}(\mathbf{g}_{h}) * \theta_{k}^{''}(\mathbf{g}_{l})$$
$$\bullet \quad \text{If } j = 2 \text{ and } k = 2,3, \dots, p \text{ , } \mathbf{g}_{h} \text{ is not identity of } C_{2} \text{ and } \mathbf{g}_{l} \text{ is the identity of } \mathbf{C}_{p}$$

$$\begin{aligned} \theta_{i}(\mathbf{g}_{d}) &= \sum \chi_{i}(\mathbf{g}_{d}), \quad \theta_{j}'(\mathbf{g}_{h}) = \chi_{2}'(\mathbf{g}_{h}) = -1, \qquad \theta_{k}''(\mathbf{g}_{l}) = \sum_{k=2}^{p} \chi_{k}''(\mathbf{g}_{l}) = \sum_{k=2}^{p} 1 = 4 \\ \theta_{ijk}(\mathbf{g}_{dhl}) &= \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma(\chi_{i}(\mathbf{g}_{d})) \left[-1\{4\} \right] \right] \\ &= (-1)(4) \ \theta_{i}(\mathbf{g}_{d}) = \theta_{i}(\mathbf{g}_{d}) * \theta_{j}'(\mathbf{g}_{h}) * \ \theta_{k}''(\mathbf{g}_{l}) \end{aligned}$$

• If j = 2 and k = 2,3, ..., p, g_h is not identity of C_2 and g_l is not identity of \mathbf{C}_p

$$\theta_{i}(\mathbf{g}_{d}) = \sum_{k=2} \chi_{i}(\mathbf{g}_{d}), \quad \theta_{j}'(\mathbf{g}_{h}) = \chi_{2}'(\mathbf{g}_{h}) = -1,$$
$$\theta_{k}''(\mathbf{g}_{l}) = \sum_{k=2}^{p} \chi_{k}''(\mathbf{g}_{l}) = (\varepsilon + \varepsilon^{2} + \dots + \varepsilon^{p-1}) = -1$$
$$\theta_{ijk}(\mathbf{g}_{dhl}) = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ijk}(\mathbf{g}_{dhl}))/\mathcal{Q})} \sigma(\chi_{ijk}(\mathbf{g}_{dhl})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma(\chi_{i}(\mathbf{g}_{d})) [-1\{-1\}] \right]$$
$$\theta_{i}(\mathbf{g}_{d})(-1)(-1) = \theta_{i}(\mathbf{g}_{d}) * \theta_{j}'(\mathbf{g}_{h}) * \theta_{k}''(\mathbf{g}_{l})$$

We have $\theta_{ijk}(\mathbf{g}_{dhl}) = \theta_i(\mathbf{g}_d) * \theta'_i(\mathbf{g}_h) * \theta''_k(\mathbf{g}_l)$ for all i, j, k and for all $\mathbf{g}_d, \mathbf{g}_h, \mathbf{g}_l$ where $\theta_{ijk}(\mathbf{g}_{dhl}), \theta_i(\mathbf{g}_d), \theta'_j(\mathbf{g}_h)$ and $\theta''_k(\mathbf{g}_l)$ are the rational valued character of the group $(Q_{14} \times C_{2p}), (Q_{14}), (C_2)$ and, (\mathbf{C}_p) respectively and e is the identity of group

$$\theta_{ijk}(\mathbf{g}_{dhl}) = \begin{cases} \theta_{i}(\mathbf{g}_{d}), \text{if } j = 1, \land k = 1, \land \forall \mathbf{g}_{h} \in C_{2} \land \forall \mathbf{g}_{l} \in \mathbf{C}_{p} \\ (4)\chi_{i}(\mathbf{g}_{d}), \text{if } j = 1, \land k = 2,3,4,5, \land \forall \mathbf{g}_{h} \in C_{2} \land \mathbf{g}_{l} = e \\ -\theta_{i}(\mathbf{g}_{d}), \text{if } j = 1, \land k = 2,3,4,5, \land \forall \mathbf{g}_{h} \in C_{2} \land \mathbf{g}_{l} \neq e \\ \theta_{i}(\mathbf{g}_{d}), \text{if } j = 2, \land k = 1, \mathbf{g}_{h} = e \land \forall \mathbf{g}_{l} \in \mathbf{C}_{p} \\ (4)\chi_{i}(\mathbf{g}_{d}), \text{if } j = 2, \land k = 2,3,4,5, \land \mathbf{g}_{h} = e \land \mathbf{g}_{l} = e \\ -\chi_{i}(\mathbf{g}_{d}), \text{if } j = 2, \land k = 2,3,4,5, \land \mathbf{g}_{h} = e \land \mathbf{g}_{l} \neq e \\ -\chi_{i}(\mathbf{g}_{d}), \text{if } j = 2, \land k = 1, \mathbf{g}_{h} \neq e \land \forall \mathbf{g}_{l} \in \mathbf{C}_{p} \\ (-4)\chi_{i}(\mathbf{g}_{d}), \text{if } j = 2, \land k = 2,3,4,5, \neq e \land \mathbf{g}_{l} = e \\ \chi_{i}(\mathbf{g}_{d}), \text{if } j = 2, \land k = 2,3,4,5, \neq e \land \mathbf{g}_{l} = e \\ \chi_{i}(\mathbf{g}_{d}), \text{if } j = 2, \land k = 2,3,4,5, \mathbf{g}_{h} \neq e \land \mathbf{g}_{l} \neq e \end{cases}$$

then

$$\equiv^* \left(Q_{14} \times \mathbf{C}_{2p} \right) = \equiv^* \left(Q_{14} \right) \otimes \equiv^* \left(\mathbf{C}_{2p} \right) \quad \Box$$

Then, the rational characters table of $(Q_{14} \times C_{2p})$ is given in the following table

Г- classes	[I , I]	$\begin{bmatrix} I, \\ r_2 \end{bmatrix}$	[I , r]	[I, r r_2]	[x ² , I]	$[x^2, r_2]$	[x², r]	$\begin{bmatrix} x^2, \\ r r_2 \\ \end{bmatrix}$	[x ^q , I]	$[x^q, r_2]$	[x ^q , r]	[x ^q , r r ₂]	[x, I]	$\begin{bmatrix} x, \\ r_2 \end{bmatrix}$	[x, r]	$\begin{bmatrix} x \\ r \\ r_2 \\ \end{bmatrix}$	[y, I]	[y, r ₂]	[y, r]	[y,r r ₂]
$ cl_{\alpha} $	1	1	р- 1	p-1	6	6	6(p- 1)	6(p- 1)	1	1	р- 1	р- 1	6	6	6(p- 1)	6(p- 1)	14	14	14(p- 1)	14(p- 1)
θ_{11}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
θ_{13}	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-
θ_{13}	p-1	p-1	-1	-1	p-1	p-1	-1	-1	p-1	p-1	-1	-1	p-1	p-1	-1	-1	р- 1	р- 1	-1	-1
θ_{14}	p-1	1-p	-1	1	p-1	1-p	-1	1	p-1	1-p	-1	1	p-1	1-p	-1	1	р- 1	1- p	-1	1
θ_{21}	6	6	6	-6	-1	-1	-1	-1	6	6	6	6	-1	-1	-1	-1	0	0	0	0
θ_{22}	6	-6	6	-6	-1	1	-1	1	6	-6	6	-6	-1	1	-1	1	0	0	0	0
θ_{23}	6(p- 1)	6(p- 1)	-6	-6	1-p	1-p	1	1	6(p-1)	6(p- 1)	-6	-6	1-p	1-p	1	1	0	0	0	0
θ_{24}	6(p- 1)	6(1	-6	6	1-p	p-1	1	-1	6(p-1)	6(1- p)	-6	6	1-p	p-1	1	-1	0	0	0	0
θ_{31}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1
θ_{32}	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-	1	1-	-1	1	-1	1
θ_{33}	p-1	p-1	-1	-1	p-1	p-1	-1	-1	p-1	p-1	-1	-1	p-1	p-1	-1	-1	1- p	1- p	1	1
θ_{34}	p-1	1-p	-1	1	p-1	1-p	-1	1	p-1	1-p	-1	1	p-1	1-p	-1	1	1- p	p- 1	1	-1
θ_{41}	6	6	6	6	-1	-1	-1	-1	-6	-6	-6	-6	1	1	1	1	0	0	0	0
θ_{42}	6	-6	6	-6	-1	1	-1	1	-6	6	-6	6	1	-1	1	-1	0	0	0	0
θ_{43}	6(p- 1)	6(p- 1)	-6	-6	1-p	1-p	1	1	6(1-p)	6(1- p)	6	6	p-1	p-1	-1	-1	0	0	0	0
θ_{44}	6(p- 1)	6(1- p)	-6	6	1-p	p-1	1	-1	6(1-p)	6(p- 1)	6	-6	p-1	1-p	-1	1	0	0	0	0
θ_{51}	2	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	-2	-2	0	0	0	0
θ_{52}	2	-2	2	-2	2	-2	2	-2	-2	2	-2	2	-2	2	-2	2	0	0	0	0
θ_{53}	2(p- 1)	2(p- 1)	-2	-2	2(p- 1)	2(p- 1)	-2	-2	2(1-p)	2(1- p)	2	2	2(1- p)	2(1- p)	2	2	0	0	0	0
θ_{54}	2(p- 1)	2(1- p)	-2	-2	2(p- 1)	2(1- p)	-2	2	2(1- p)2(1- p)	2(p- 1)	2	-2	-8	2(p- 1)	2	-2	0	0	0	0

Table-3 the rational characters table of $(Q_{14} \times C_{2p})$

3.2 Theorem

the cyclic decomposition of the group $(Q_{14} \times C_{2p})$ is given by

$$K(Q_{14} \times C_{10}) = \bigoplus_{i=1}^{4} K(C_{14}) \bigoplus_{i=1}^{4} C_4 \bigoplus_{i=1}^{10} C_2 \bigoplus_{i=1}^{10} C_p$$

 $K(Q_{2m} \times C_{2p}) = \bigoplus_{i=1}^{4} K(Q_{14}) \bigoplus_{i=1}^{5} K(\boldsymbol{C}_{2p})$

Proof: Let A and B be matrices defining as follows:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \quad , B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} A & A & A & A \\ 0 & A & 0 & A \\ 0 & 0 & A & A \\ 0 & 0 & 0 & A \end{bmatrix} \equiv^* (Q_{2m} \times C_{2p}) \begin{bmatrix} B & 0 & 0 & 0 & 0 \\ B & B & 0 & 0 & 0 \\ (p-1)B & 0 & B & 0 \\ (p-1)B & (p-1)B & B & B \end{bmatrix} = \begin{bmatrix} E_3 & 0 & 0 & 0 \\ 0 & E_2 & 0 & 0 \\ 0 & 0 & E_1 & 0 \\ 0 & 0 & 0 & E_0 \end{bmatrix}$$

Such that $E_{0,}E_{1}$, E_{2} , E_{3} of degree *A* and *B* the invariant factors of the matrix $\equiv^{*} (Q_{14} \times C_{10})$ it's the same invariant factors of the matrices $E_{0,}E_{1}$, E_{2} , E_{3} , so as will the proof

$$E_0 = \begin{bmatrix} -4 & -4 & 0 & 0 & 0 \\ 2 & -12 & 0 & 0 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ 0 & 0 & 1 & -6 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

such a $(E_3 = -2pE_0)$, $(E_2 = -pE_0)$, $(E_1 = 2E_0)$ And we will defined two matrices Lp and Wp, such that :

$$L_q = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, W_q = \begin{bmatrix} 6 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Such that; $L_q. E_0. W_q = diag(-28, 2, -14, 1, -1)$

 $L_q. E_1. W_q = diag(-56, 4, -28, 2, -2)$ $L_q. E_2. W_q = diag(28p, -2p, 14p, -p, p)$ $L_q. E_3. W_q = diag(56p, 4p, 140, -2p, 2p)$ Then: $K(Q_{14} \times C_{10}) = \bigoplus_{i=1}^{4} K(C_{14}) \bigoplus_{i=1}^{4} C_4 \bigoplus_{i=1}^{10} C_p \bigoplus_{i=1}^{10} C_2$ $K(Q_{14} \times C_{10}) = \bigoplus_{i=1}^{4} K(Q_{14}) \bigoplus_{i=1}^{5} K(\mathbf{C}_{2p})$

References

[1] H.H. Abass," On The Factor Group of Class Functions Over The Group of Generalized Characters of Dn", M.Sc thesis, Technology University, 1994.

[2] C. Curits and I. Reiner," Methods of Representation Theory with Application to Finite Groups and Order ", John wily& sons, New York, 1981.

[3] M.S. Kirdar, " The Factor Group of The Z-Valued Class Function Modulo The Group of The Generalized Characters", Ph.D. thesis, University of Birmingham ,1982.

[4] N. R. Mahamood " The Cyclic Decomposition of the Factor Group $cf(Q_{2m},Z)/\overline{R}(Q_{2m})$ ", M.Sc. thesis, University of Technology, 1995.

[5] M. S. Mahdi ,(2008) "The Cyclic Decomposition of The Factor Group $cf(Dnh,Z)/\overline{R}$ (Dnh) When n is an Odd Number", M.Sc. Thesis, University of Kufa.

[6] N. A. Rahi ,(2013) "On Cyclic Decomposition of The Group $cf(Q2m \times C5,Z)/\overline{R}(Q2m \times C5)$ When m is An odd Number", M.Sc. Thesis, University of Kufa.

[7] J. P. Serre, "Linear Representation of Finite Groups ", Springer- Verlage, 1977.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of attribution -NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).