Al-Qadisiyah Journal of Pure Science

Volume 27 | Number 1

Article 5

4-7-2022

The Cyclic Decomposition Of $cf(Q_4q \times C_5)/R(Q_4q \times C_5)$

Naseer Rasool Albakaa University of Kufa -Faculty of Education -Mathematics, Najaf, Iraq, naseer.mahmood@uokufa.edu.iq

Habeeb Kareem Al-Bdairi University of Kufa -Faculty of Education for Women-Mathematics, Najaf, Iraq, habeebk.abdullah@uokufa.edu.iq

Neeran Tahir Abd Alameer University of Kufa-Faculty of Education for Women-Mathematics, Najaf, Iraq, niran.abdulameer@uokufa.edu.iq

Follow this and additional works at: https://gjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation

Albakaa, Naseer Rasool; Al-Bdairi, Habeeb Kareem; and Abd Alameer, Neeran Tahir (2022) "The Cyclic Decomposition Of cf(Q_4q×C_5)/ R (Q_4q×C_5)," *Al-Qadisiyah Journal of Pure Science*: Vol. 27: No. 1, Article 5. DOI: 10.29350/qjps.2022.27.1.1476 Available at: https://qjps.researchcommons.org/home/vol27/iss1/5

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

The Cyclic Decomposition Of cf(Q_4q×C_5) / R⁻(Q_4q×C_5)

Authors Names	ABSTRACT
Naseer Rasool Albakaa ^a Habeeb Kareem Al-Bdairi ^{,b,} Neeran Tahir Abd Alameer ^c	In this paper, we propose the cyclic decomposition of the factor group $cf(Q_4q \times C_5),Z/R(Q_4q \times C_5)$, and the group $cf(Q_4q \times C_5)$ is Z-valued class functions of the direct product group ($Q_4q \times C_5$) under the operation of addition, and
Article History Received on:2/1/2022 Revised on: 21/1/2022 Accepted on: 26/1/2022	R(Q_4q×C_5) is the subgroup of the generalized characters of the group $cf((Q_4q×C_5))$, Z). Then $cf(Q_4q×C_5)/(Q_4q×C_5)$) is an abelian factor group denoted by $K(Q_4q×C_5)$ where $(Q_4q$ is the quaternion group of order8q and C_5 is the cyclic group of order 5. Also, we find the rational valued characters table of the group
<i>Keywords:</i> matrix representation, character tables, Quaternion groups, the cyclic decomposition of group.	$(Q_4q \times C_5)$ when q is prime numbers is given as follows : $\equiv^* (Q_4q \times C_5) = [\equiv] ^* (Q_4q) \otimes \equiv^* (C_5) $ (1) and find the cyclic decomposition of group ((Q_4q \times C_5)) in this paper and prove that
DOI: https://doi.org/10.29350/ jops.2022.27. 1.1476	$K(Q_4q \times C_5) = \bigoplus_{i=1}^2 [K(Q_4q)] \bigoplus_{i=1}^8 K(C_5) (2)$

1.Introduction

"Any two elements' of a finite group G are said to be Γ – conjugate if they generated conjugate cyclic subgroups in G. This relation is equivalence on G and its classes are called Γ -classes".

"The number of Γ – classes of G is equal to the rank of cf(G.Z) is the intersection of cf(G.Z) with the group R(G) which is a normal subgroup of cf(G.Z), then, cf(G.Z)/ \overline{R} (G) is a finite abelian factor group denoted by K(G)".

"Each element in $\overline{\mathbb{R}}(Q_{4q} \times C_5)$ can be written as" $v1\theta1 + v2\theta2 + \cdots + vr\theta r$, "where r is the number of Γ – classes. v1. v2. vr \in Z and , where χi is an irreducible character of the group G and σ is any element in Galios group Gal (Q(χi)/Q)".

^a University of Kufa - Faculty of Education - Mathematics, Najaf, Iraq, E-Mail: naseer.mahmood@uokufa.edu.iq

^b University of Kufa - Faculty of Education for Women- Mathematics, Najaf, Iraq, E-Mail: habeebk.abdullah@uokufa.edu.iq

^c University of Kufa - Faculty of Education for Women- Mathematics, Najaf, Iraq, E-Mail: niran.abdulameer@uokufa.edu.iq

"In 1982, Kirdar M. S. [3] studied the K(C_n). In 1994, Abass H. H. [1] studied the K(D_n) and found \equiv^* (D_n). In 1995, Mahmood N. R. [4] studied the factor group K(Q_{2m}) and foun \equiv^* (Q_{2m}). In 2008, Mahdi M. S. [5] studied the factor group K(Dnh) where n is an odd number."

"The aim of this paper to find" $\equiv^* (Q_{4q} \times C_5)$ "and to determine the cyclic decomposition of the group" $K(Q_{4q} \times C_5)$, when q is prime numbers

A finite group G has a finite number of conjugacy classes and a finite number of distinct kirreducible representations, the group character of a group representation is constant on a conjugacy class $CL \propto (1 \leq \propto \leq k)$, the values of the characters can be written as a table known as the characters table which is denoted by \equiv (G). "Let $T_1: G_1 \rightarrow GL(n. K)$ and $T_2: G_2 \rightarrow GL(m. K)$ are two matrix representations of the groups G_1 and G_2 . χ_1 and χ_2 be two characters of T_1 and T_2 respectively, then the character of $T_1 \otimes T_2$ is $\chi_1 \chi_2$.

2 -Basic Concepts

2.1 Definition [2]

A rational valued character θ of G is a character whose values are in Z, which is θ (g) \in Z. for all g \in G

2.2 Proposition:[3]

The rational valued characters

$$\theta_i = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_i)/\mathcal{Q})} \sigma(\chi_i)$$
(3)

form basis for $\overline{R}(G)$, where χ_i are the irreducible characters of *G* and their numbers are equal to the number of all distinct Γ - classes of *G*.

2.3 Proposition: [3]

The rational valued characters table of the cyclic group C_p of the rank 2 where *p* is a prime number which is denoted by ($\equiv^* (C_p)$), is given as follows:

Γ – classes	[I]	[r]
$ heta_1$	1	1
$ heta_2$	p - 1	-1

Table 1. The Rational Valued Characters Table Of The Cyclic Group $\mathbf{C}_{\mathbf{p}}$

where its rank 2 represents the number of all distinct Γ -classes.

2.4 Definition [4]

For every positive integer m, The generalized Quaternion Group Q_{2m} of order 4m with two generators x and y then For every element in Q2m satisfies $x^m = y^2$,

 $y^1 x^m \ y^{-1} = x^{-m}$ which implies $x^m = y^4 = 1$ Any element $\lambda \in Q2m$,

can be expressed uniquely in the form $Q2m = \{\lambda = x^h y^k | 0 \le h \le 2m - 1, k = 0, 1\}$

2.5 Lemma [4]

The rational valued characters table of Q_{2m} when m is an even number is given in table(2.2) $\equiv^* (Q_{2m}) =$

Γ -classes of C_{2m}														
	x2r						x2r+1							[xky]
θ1	1	1		1	1	1	1		1	1			1	1
θ2	1	1		1	1	-1	-1		-1	-1			-1	1
													0	0
:													0	0
:	≡*((C_{2m})											:	:
													:	:
θl-1													0	0
Θl													0	0
θl+1	1					1	1					1	-1	-1
θl+2	1					1	-1					-1	1	-1

Table-2 The rational valued characters table of Q_{2m} when m is an even number

Where $0 \le r \le m-1$, l is the number of Γ -classes of C_{2m} , θj such that $1 \le j \le l+2$ are the rational valued characters of the group Q_{2m}

3. THE MAIN RESULTS

We study the rational valued characters table of $(Q_{4q} \times C_5)$. and find the cyclic decomposition of $K((Q_{4q} \times C_5))$. The group of $(Q_{4q} \times C_5)$ is the direct product of the Quaternion group Q_{4q} of order 8q (number), and the group C_5 . which is cyclic of order 5 the order of $((Q_{4q} \times C_5))$. is = 8q

3.1 Theorem:

The rational valued character table of the group $(Q_{4q} \times C_5)$ has the following form

$$\equiv^* (Q_{4q} \times C_5) = \equiv^* (Q_{4q}) \otimes \equiv (C_5)$$

Proof

For each element $g_{dh} \in (Q_{4q} \times C_5)$, we have $g_{dh} = g_d g_h$ such that $g_d \in Q_{4q}, g_h \in C_5 = \langle r \rangle$ Then $g_d = x^t y^k, 0 \le t \le 4q, k = 0, 1$, and each irreducible character of $(Q_{4q} \times C_p)$ is $\chi_{ij} = \chi_i \chi'_j$, where χ_i is an irreducible character of C_5 ,

by proposition(2.2)

$$\theta_{ij}=\theta_{ij(\mathbf{g}_{dh})}=\left[\left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ij}(\mathbf{g}_{khl}))/\mathcal{Q})}\sigma(\chi_{ij}(\mathbf{g}_{dh}))\right]\right]$$
$$=\left[\left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})}\sigma\left(\chi_{i}(\mathbf{g}_{d})\right)\left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{j}(\mathbf{g}_{h}))/\mathcal{Q})}\sigma\left(\chi_{j}(\mathbf{g}_{h})\right)\right]\right]$$

• If j = 1, then for all
$$g_h \in C_5$$
 such that $\theta'_j(g_h) = \sum \chi'_j(g_h) = 1$. Then
 $\theta_{ij(g_{dh})} = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ij}(g_{kh}))/\mathcal{Q})} \sigma(\chi_{ij}(g_{dh})) \right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_i(g_d))/\mathcal{Q})} \sigma(\chi_i(g_d)) \right]$

 $= \theta_i(\mathbf{g}_d) * \theta'_j(\mathbf{g}_h)$

• If j = 2,3,4,5, and
$$g_h$$
 is the identity of C_5 that
 $\theta'_2(g_h) = \sum_{i=2}^p \chi'_2(g_h) = \sum_{k=2}^5 1 = \underbrace{1 + 1 + \dots + 1}_{(4) \text{ times}} 4$ Then

$$\theta_{ij(\mathbf{g}_{dh})=}\left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ij}(\mathrm{dh}))/\mathcal{Q})} \sigma(\chi_{ij}(\mathbf{g}_{dh}))\right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma(\chi_{i}(\mathbf{g}_{d}))[4]\right]$$
$$= \theta_{i}(\mathbf{g}_{d})(4) = \theta_{i}(\mathbf{g}_{d}) * \theta'_{j}(\mathbf{g}_{h})$$

• If j = 2,3,4,5, and g_h is not identity of C_5 that $\theta'_2(g_h) = \sum_{i=2}^5 \chi'_2(g_h) = (\varepsilon + \varepsilon^2 + \varepsilon^2 + \cdots + \varepsilon^4)'_{=} - 1$

Then

$$\theta_{ij(\mathbf{g}_{dh})=}\left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{ij}(\mathrm{dh}))/\mathcal{Q})} \sigma(\chi_{ij}(\mathbf{g}_{dh}))\right] = \left[\sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i}(\mathbf{g}_{d}))/\mathcal{Q})} \sigma(\chi_{i}(\mathbf{g}_{d}))[-1]\right]$$
$$= \theta_{i}(\mathbf{g}_{d})(-1) = \theta_{i}(\mathbf{g}_{d}) * \theta_{i}(\mathbf{g}_{d})$$

Where $\theta_{ij}(g_{dh})$, $\theta_i(g_d)$, and $\theta_i(g_d)$ are the rational valued characters of the groups $(Q_{4q} \times C_5), (Q_{4q})$ and (C_5) respectively.

Then we get
$$(\theta_{ij}(\mathbf{g}_{dh}) = \theta_i(\mathbf{g}_d) * \theta'_j(\mathbf{g}_h)$$
 for all i,j, $\mathbf{g}_{dh} \in (Q_{4q} \times C_5), \mathbf{g}_d \in Q_{4q}\mathbf{g}_h \in C_5$
 $\equiv^* (Q_{4q} \times C_5) \equiv^* (Q_{4q}) \otimes \equiv^* (C_5) \square$

To calculate the rational valued characters table of ($Q_{4q} \times C_5$)

$$\begin{split} \theta_{11} &= \psi_{11} \ , \theta_{12} = \sum_{i=2}^{5} \psi_{1i} \ , \theta_{21} = \psi_{41} \ , \theta_{22} = \sum_{i=2}^{6} \psi_{4i} \ , \\ \theta_{71} &= \psi_{21} \ , \theta_{72} = \sum_{i=2}^{5} \psi_{2i} \ , \theta_{81} = \psi_{31} \ , \theta_{82} = \sum_{i=2}^{5} \psi_{3i} \ , \\ \theta_{51} &= \chi_{51} \ , \theta_{52} = \sum_{i=2}^{5} \chi_{5i} , \end{split}$$

The elements of Gal ($\lambda 1i$) / Q are :

$$\left\{ \begin{array}{l} \sigma_{1i} \ , \sigma_{3i} \ , \dots \ , \sigma_{2q-1i} \end{array} \right\}$$

$$\sigma_{1i}(\chi_{1i}) = \chi_{1i} \ , \sigma_{3i}(\chi_{1i}) = \chi_{3i}, \dots, \sigma_{2q-1i}(\chi_{1i}) = \chi_{2q-1i}$$

$$\text{and } i = 1 \ , 2 \ , 3,4,5$$

$$\theta_{6i} = \sigma_{1i}(\chi_{11}) + \sigma_{3i}(\chi_{1i}) + \dots + \sigma_{2q-1i}(\chi_{1i}), \quad \theta_{61} = \chi_{11} + \chi_{3i} + \dots + \chi_{2q-11}, = \theta_{61} = \chi_{11} + \chi_{3i} + \dots + \chi_{2q-11}, \quad \theta_{62} = \sum_{i=2}^{5} \sigma_{1i}(\chi_{11}) + \sigma_{3i}(\chi_{1i}) + \dots + \sigma_{2q-1i}(\chi_{1i})$$

$$\theta_{4i} = \sigma_{2i}(\chi_{1i}) + \sigma_{6i}(\chi_{1i}) + \dots + \sigma_{2q-2i}(\chi_{1i}), \quad + \dots + \chi_{2q-2i}, = \qquad , , \theta_{41} = \chi_{2i} + \chi_{6i} + \dots + \chi_{2q-2i}, \quad \theta_{42} = \sum_{i=2}^{5} \sigma_{2i}(\chi_{1i}) + \sigma_{6i}(\chi_{1i}) + \dots + \sigma_{2q-4i}(\chi_{1i})$$

$$\theta_{3i} = \sigma_{4i}(\chi_{1i}) + \sigma_{8i}(\chi_{1i}) + \dots + \sigma_{2q-4i}(\chi_{1i}), \quad = \theta_{31} = \chi_{4i} + \chi_{8i} + \dots + \chi_{2q-4i}, \quad , \quad \theta_{32}$$

$$= \sum_{i=2}^{5} \sigma_{4i}(\chi_{1i}) + \sigma_{8i}(\chi_{1i}) + \dots + \sigma_{2q-4i}(\chi_{1i})$$

	(I , I)	(I , r)	x ² , <i>I</i>)	x ² , <i>r</i>)	x ⁴ , <i>I</i>	$X^4, r)$	x ^{2q} , I) x ^{2q} ,r	• X, I)	X, r	Х ³ , <i>I</i>)	x ³ , r	у,І	I,r	xy ,I	xy, r
Г- classes/	1	4	<i>q-1</i>	4q-4	q-1	4q-4	1	4	q-1	4q-4	q-1	4q-4	2q	8q	2q	8q
$ heta_{11}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$ heta_{12}$	4	-1	4	-1	4	-1	4	-1	4	-1	4	-1	4	-1	4	-1
$ heta_{21}$	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1
$ heta_{22}$	4	-1	4	-1	4	-1	4	-1	-4	1	-4	-1	-4	1	4	-1
θ_{31}	q-1	<i>q-1</i>	-1	-1	-1	-1	q-1	q-1	-1	-1	q-1	q-1	0	0	0	0
$ heta_{32}$	4q-4	1-q	-4	1	-4	1	4q-4	1-q	-4	1	4-4q	1-q	0	0	0	0
$ heta_{41}$	q-1	<i>q-1</i>	-1	-1	-1	-1	q-1	q-1	1	1	1-q	1-q	0	0	0	0
$ heta_{42}$	4q-4	1-q	-4	1	-4	1	4q-4	1-q	4	-1	4-4q	q-1	0	0	0	0
θ_{51}	2	2	-2	-2	2	2	-2	-2	0	0	0	0	0	0	0	0
$ heta_{52}$	8	-2	-8	2	8	- 2	-8	2	0	0	0	0	0	0	0	0
$ heta_{61}$	2q-2	2q-2	2	2	-2	-2	2-2q	2-2q	0	0	0	0	0	0	0	0
$ heta_{62}$	8q-8	2-2q	2q-2	-2	2- 2q	2	8-8q	2q-2	0	0	0	0	0	0	0	0
θ71	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1
$ heta_{72}$	4	-1	4	-1	4	-1	4	-1	4	-1	4	-1	-4	1	-4	1
Θ_{81}	1	1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	-1	-1
$\boldsymbol{\varTheta}_{82}$	4	-1	4	-1	4	-1	4	-1	-4	1	-4	1	4	-1	-4	1

We can write the rational valued characters table of $\equiv^* (Q_{4q} \times C_5)$ as follows:

Table-3 The rational valued characters table of the group $(Q_{4q} \times C_5)$

The Cyclic Decomposition of the Group $K(Q_{4q} \times C_5)$

3.2 Theorem:

If m = 2q, q is prime numbers and $q \neq 5$, then the cyclic decomposition of $K(Q_{4q} \times C_5)$ is :

$$K(Q_{4q.} \times C_5) = \bigoplus_{i=1}^2 K(Q_{4q.}) \bigoplus_{i=1}^8 C_5$$

Proof:

Let A and B be matrices defined as follows

$$:A = \begin{bmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 1 & \dots & 0 & 0 & 1 \end{pmatrix} \quad B = \begin{bmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 1 & \dots & 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

Such that (I) is an identity matrix dimension which is equal to the

dimension of $\equiv^* (C_{2q})$. We will define two matrices L_p and W_p where

$$L_{5} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} , \equiv^{*} (C_{5}) = \begin{bmatrix} 1 & 1 \\ 4 & -1 \end{bmatrix} , W_{5} = \begin{bmatrix} 1 & 0 \\ 4 & -1 \end{bmatrix}$$
$$L_{5} \equiv^{*} (C_{5}) \cdot W_{5} = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$$

By using Remark (2.3.9) and proposition (2.3.13) we get:

Such that *E* is a matrix of degree $\equiv^* (C_{2m})$, and if we denote c_{ij} as the

elements of $\equiv^* (C_m)$ which defined by:

$$(A \times L_5) \equiv^* (Q_{4q} \times C_5) \cdot (B \times W_5)$$

the invariant factors of the matrix $(A \times L_5) \equiv^* (Q_{4q} \times C_5) \cdot (B \times W_5)$ will be the same invariant factors of the following matrix:

Then
$$E = \begin{bmatrix} 2(q-1) & 2 & -(q-1) & -1 & (q-1) & 1 \\ 2 & 0 & -1 & 0 & 1 & 0 \\ (q-1) & 1 & (q-1) & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ (q-1) & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$L_q = \begin{bmatrix} -1 & -2 & -2 & -2 & -2 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 0 & -1 \end{bmatrix}, W_q = \begin{bmatrix} 2(q-1) & 2 & -(q-1) & -1 & (q-1) & 1 \\ 2 & 0 & -1 & 0 & 1 & 0 \\ (q-1) & 1 & (q-1) & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ (q-1) & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Such that

$$L_{q} \cdot E \cdot W_{q} = diag\{8q, 4, 2q, 2, q, 1\}, 2, 2$$

$$L_{q} \cdot (-pE) \cdot W_{q} = diag\{-40q, -20, -10q, -10, -5q, -5\}, 10, 10$$

$$K(Q_{4q} \times C_{p}) = \bigoplus_{i=1}^{8} C_{5} \bigoplus_{i=1}^{6} C_{q} \bigoplus_{i=1}^{2} C_{8} \bigoplus_{i=1}^{2} C_{4} \bigoplus_{i=1}^{8} C_{2})$$

$$K(Q_{4q} \times C_{5}) = \bigoplus_{i=1}^{2} K(C_{4q}) \bigoplus_{i=1}^{8} C_{5} \bigoplus_{i=1}^{6} C_{q} \bigoplus_{i=1}^{2} C_{8} \bigoplus_{i=1}^{4} C_{2} / \bigoplus_{i=1}^{2} C_{4})$$

$$K(Q_{4q} \times C_{5}) = \bigoplus_{i=1}^{2} K(Q_{4q}) \bigoplus_{i=1}^{8} C_{5}$$

References

[1] H.H. Abass," On The Factor Group of Class Functions Over The Group of Generalized Characters of Dn", M.Sc thesis, Technology University, 1994.

[2] C. Curits and I. Reiner, "Methods of Representation Theory with Application to Finite Groups and Order ", John wily& sons, New York, 1981.

[3] M.S. Kirdar, " The Factor Group of The Z-Valued Class Function Modulo The Group of The Generalized Characters", Ph.D. thesis, University of Birmingham, 1982.

[4] N. R. Mahamood " The Cyclic Decomposition of the Factor Group $cf(Q_{2m},Z)/\overline{R}(Q_{2m})$ ", M.Sc. thesis, University of Technology, 1995.

[5] M. S. Mahdi ,(2008) "The Cyclic Decomposition of The Factor Group $cf(Dnh,Z)/\overline{R}$ (Dnh) When n is an Odd Number", M.Sc. Thesis, University of Kufa.

[6] N. A. Rahi ,(2013) "On Cyclic Decomposition of The Group $cf(Q2m \times C5,Z)/\overline{R}(Q2m \times C5)$ When m is An odd Number", M.Sc. Thesis, University of Kufa.

[7] J. P. Serre, "Linear Representation of Finite Groups ", Springer- Verlage, 1977.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an

open access article distributed under the terms and conditions of attribution

-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).