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ABSTRACT 

 

      In this paper, the continuous Boubaker scaling functions were 

constructed with the presentation on the interval [0,1], which obtained 

depending on Boubaker polynomials. In this study the Boubaker scaling 

polynomial has been applied for solving the n
th

 order integro–differential 

equations (IDE’s).The collocation method with the aid of Boubaker 

scaling functions together were utilized to transform the higher order 

integro–differential equations into a linear system algebraic equations.  

Some numerical examples were added to show the simplicity and 

accuracy of the proposed technique. The results have been compared 

with the exact solution using MATLAB and illustrated by graphs. 

 

DOI: https://doi.org/10.293 

50/ jops. 2022.27. 1.1478 

 

1. Introduction  

The linear or quasi-linear nth order volterra integro-differential equation of the second kind is 

 ( )( )   ( )  ∫  (   ) ( )( )   
 

 
        n ≥ s  , 0 ≤   ≤                             …   (1) 

where K (   x) and F ( ) are known functions, and u( ) is an unknown function. 

with initial conditions 

U
(n-i)

(0) =    ,          i =1,2,3,…,n                                                                          …   (2) 

Obviously, in recent decades there is a large interest in scaling functions and wavelets for solving 

linear and nonlinear problems in physics and engineering, many researchers worked in this field. 

David C. and Heil C. (1994), obtained a characterization of all dilation equations that have 

contains compactly supported solution [4]. Ghader pandah S. and Klasa S. presented a new 

http://qu.edu.iq/journalsc/index.php/JOPS
https://doi.org/10.293%2050/%20jops.%202022.27.%201.1478
https://doi.org/10.293%2050/%20jops.%202022.27.%201.1478
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discrete method for real polynomial scaling [9]. Yousefi, (2007), applied Legendre scaling 

function with their properties presented [15]. In [7, 8], [11-14], the researchers presented other 

methods for solving linear and nonlinear IDE’s.  

In this study, a scaling function for Boubaker polynomial was deduced. Then, it has been applied 

for solving integro-differential equations, presenting a numerical technique for solving nth
 
order 

Voltera IDE’s. Then we listed some numerical examples comparing their results with the exact 

solutions. The paper is arranged as follows, the next section gives a fundamental idea about 

Boubaker polynomials, the third section is concerned with the scaling of Boubaker polynomials, 

the fourth section introduced the approximate solution of nth order Volterra integro-differential 

equations with the present method. In the end utilized some numerical examples to illustrate the 

efficiency of the proposed technique.    

2 -Boubaker Polynomials 

 Boubaker polynomial is first utilized for solving heat equation in physical applications then 

many researchers concerning this polynomial have taken place in different proceedings [2, 5, 10, 

17].  

Boubaker polynomial Bom(τ) is presented as in the following equation  

   ( )  ∑
(    )

(   )
 (   

 
)(  )       

⌊
 

 
⌋

   ,  m=0,1 ,2,…                                             …(3) 

The first three terms of Boubaker polynomial are as follows 

Bo0(τ) = 1, 

Bo1(τ) =   , 

Bo2(τ) =      , 

And the recurrence relation is Bom(τ) =       ( )       ( ) ,        , 0 ≤ τ ≤ 1 

    

 

3- Boubaker Scaling Functions  

 The continuous Boubaker scaling function     ( ) is defined by the following, see [6, 15] 

             ( )  { 
 

     (          )         
    

    
   

  

    

                                                                             
                           ... (4) 

 where k is a non-negative integer number and m = 0,…, M -1, 

n = 0,1,…,    ,  m= M-1. 

Here,   ( ) were well-known Boubaker's polynomials of order m. 

Now choose k=1 and m=5, the five terms Boubaker scaling    ( ) were found by using 

equation (4) as follows 
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   ( )  √  , 

   ( )  √  (    ) , 

   ( )  √  (         ), 

   ( )  √  (               ), 

   ( )  √  (                      ), 

   

Now, the Boubaker scaling    ( ) was used for solving the integro-differential equation for 

varying order, the method will be introduced as in the following:   

  3-The proposed method for solving nth order integro-differential equation 

The Boubaker Scaling will be applied to solve Equation (1) the integro-differential equation n- 

th order, 

    
( )( )    ( )  ∫     (   )  

( )( )   
 

 
        n ≥ s                                                     ...(5) 

  with the following initial conditions   
( )( )       , i =1, …,    s = 0,1,2,…n-1. 

 A function   
( )( )  is defined on the interval τ  [0,1] can be expanded into the Boubaker 

Scaling functions  

  
( )( ) =∑      ( )

   
    .                                                                                               ... (6) 

Where    are Boubaker scaling coefficients, integrate Equation (6) n- times yields 

 ( )  ∑   
   
   ∫  ∫    ( )    ∑

  

  

   
   

 

 

 

 
                                                       … (7) 

Using the following formula  

∫ ∫   

 

 

 

 

( )    
 

(   ) 
∫(   )      

 

 

( )    

Therefore Equation (7) becomes 

 ( )  ∑   
   
   

 

(   ) 
∫ (   )      

 

 
( )    ∑

  

  

   
       . 

   let    (   )  
(   )   

(   ) 
, 

  and   
  ∫   (   )   

 

 
( )       i=0, …,M.        

 ( )  ∑   
 
     

  ∑
  

  

   
                                                                                      …  (8) 
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in the same way we can get   
( )( ) 

 ( )  ∑   
 
     

    ∑
  

  

     
          .                                                                   … (9) 

 Substituting Equation(8) and (9) in Equation (5), we get  

∑   
 
     ( )  ∑

  

  

   
          ( )  ∫     (   ) [∑     

    ∑
  

  
      

     
   

 
   ]   

 

 
 .     

… (10) 

  Next, the interval τ  [0,1] is divided into    
 

 
  and         ,  

and  ( )    (initial condition) then       , i=0,1,2,…,n 

Then, using the collocation method with different value of   in Equation (10) the results are 

algebraic equations. Solve the system utilizing the Gaussian elimination, the unknown 

coefficients will be found of  ( ).  

4-Numerical Examples: 

 In this section, we give some numerical examples to illustrate the method for solving n-th order 

integro-differential equations with Boubaker scaling functions. The exact solution was used to 

compare with our approximate solution, we used Matlab to solve the examples.  

Example1: Consider the following second order Volterra integro-differential equation [3] 

       ( )      ∫   (   )  ( )  
 

 
  

with       ( )       ( )     

The exact solution of equation is   ( )            

Solution: 

Table 1 shows the numerical results for Example 1 with M=5 and M=7 compared with exact 

solution and graphically illustrated in Figure 1. 

when M=5. 

      ( )  (             )    (            )    (            )    

 (            )     (            )     

when M=7. 

      ( )  (             )    (            )    (            )    

(            )    (            )    (           )    (            )   . 



              64                         Eman Hassan Ouda, , Al-Qadisiyah Journal of Pure  Science 27,1(2022)) Math.pp. 60-69 

 

  u exact (  )  uappr.( )  M =5 Error uappr.( )  M=7  Error 

0 0 0 0 0 0 

0.1 0.00534617 0.005292333 5.3e-5 0.0053451220 1.0e-6 

0.2 0.022877793 0.022895291 1.7e-5 0.0228781686 3.7e-7 

0.3 0.055098834 0.055145293 4.6e-5 0.0550995061 6.7e-7 

0.4 0.104905181 0.104914179 8.8e-6 0.1049054824 3.0e-7 

0.5 0.175639364 0.175609187 3.0e-5 0.1756395190 1.5e-7 

0.6 0.271152479 0.271172954 2.0e-5 0.2711528061 3.2e-7 

0.7 0.395874187 0.396083518 2.0e-4 0.3958746029 4.1e-7 

0.8 0.554891814 0.555354317 4.6e-4 0.5548921410 3.2e-7 

0.9 0.754039688 0.754534191 4.9e-4 0.7540401317 4.4e-7 

1.0 1.000000000 0.999707380 2.9e-4 0.9999998780 1.2e-7 

 

                                                        Table 1. Numerical results for Example1 

 
Figure1. 

 

 Example 2: Consider the following fifth order Volterra integro-differential equation [16] 

    ( )( )        ( )       ( )    ∫ (   ) ( )( )  
 

 
  

    ( )       ( )       ( )       ( )( ) = 0,  ( )( )     

 The exact solution of equation is :  ( )     ( )   

Solution: 

Table 2 shows the numerical results for Example 2 compared with exact solution and 

graphically illustrated in Figure 2. 



        Eman Hassan Ouda, , Al-Qadisiyah Journal of Pure  Science 27,1(2022)) Math.pp. 60-69                  65 

 

when M=5. 

      ( )  (            )    (             )    (             )   

 (            )    (            )     

 

when M=7. 

      ( )  (            )    (             )    (             )   

 (            )    (            )    (             )   

 (             )     

  u exact (  ) uappr.( )  M =5 Error uappr.( )  M =7  Error 

0 1.0000000000 1.0000000000 0 1.0000000000 0 

0.1 0.9950041652 0.9951205585 1.1e-4
 0.9950047095 5.4e-7 

0.2 0.9800665778 0.9802154689 1.4e-4 0.9800672548 6.7e-7 

0.3 0.9553364891 0.9554791154 1.4e-4 0.9553371380 6.4e-7 

0.4 0.9210609940 0.9211866824 1.2e-4 0.9210615895 5.9e-7 

0.5 0.8775825618 0.8776941549 1.1e-4 0.8775831076 5.4e-7 

0.6 0.8253356149 0.8254383184 1.0e-4 0.8253360936 4.7e-7 

0.7 0.7648421872 0.7649367583 9.4e-5 0.7648425794 3.9e-7 

0.8 0.6967067093 0.6967878610 8.1e-5 0.6967070509 3.4e-7 

0.9 0.6216099682 0.6216708127 6.0e-5 0.6216103637 3.9e-7 

1.0 0.5403023058 0.5403456003 4.3e-5 0.5403027544 4.4e-7 

 

Table2. Numerical results for Example2 

 

 
Figure 2. 
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 Example 3: Consider the following integro-differential equation [13] 

     ( )       ( )  ∫  ( )   
 

 
 

  with initial condition    ( )      

  The exact solution is      ( )  
 

 
   

 

 
    

 

 
   ( )   

 Solution: 

Table 3 shows the numerical results for Example 3 compared with exact solution and graphically 

illustrated in Figure 3. 

when M=5. 

      ( )  

(             )    (            )    (            )    (            )    

(             )   . 

when M=7. 

      ( )  

(            )    (            )    (           )    (           )    

(             )    (            )    (           )   . 

 

  u exact (  )  uappr.( )  M=5 Error uappr.( )  M=7  Error 

0 -1.0000000000 -1.0000000000 0.0 -1.0000000000 0.0 

0.1 -0.8998374166 -0.9001224091 2.8e-4 -0.8998384865 1.0e-6 

0.2 -0.7987306641 -0.7991071168 3.7e-4 -0.7987319440 1.2e-6 

0.3 -0.6958172081 -0.6962033170 3.8e-4 -0.6958185192 1.3e
-6
 

0.4 -0.5903143571 -0.5906938654 3.7e-4 -0.5903157023 1.3e-6 

0.5 -0.4815089580 -0.4818952798 3.8e-4 -0.4815103556 1.3e-6 

0.6 -0.3687468344 -0.3691577395 4.1e-4 -0.3687482972 1.4e-6 

0.7 -0.2514218946 -0.2518650859 4.4e-4 -0.2514234398 1.5e-6 

0.8 -0.1289648456 -0.1294348221 4.6e-4 -0.1289664851 1.6e-6 

0.9 -0.0008314511 -0.0013181132 4.8e-4 -0.0008331733 1.7e-6 

1.0 0.13350972330  0.1330002138  5.0e-4  0.1335079119 1.8e-6 

 

Table 3. Numerical results for Example3 
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Figure 3. 
 

 

Example 4: Consider the following first order integro-differential equation [1] 
 

      ( )   ( )       ∫  ( )  
 

 
 ∫  ( )  

 

 
  

with conditions   ( )     ( )  ∫  ( )    
 

 
  

and     ( )          
Solution: 

Table 4 shows the numerical results for Example 4 compared with exact solution and graphically 

illustrated in Figure 4. 
      ( )  

(            )    (           )    (            )      (            )     
(            )    . 

when M=7. 
         ( )  (          )    (            )    (            )    (            )   

 (            )    (            )    (            )     

 

  u exact (  )  uappr.( )  M=5 Error uappr.( )  M=7  Error 

0 1.0000000000 1.0000000000 0 1.0000000000 0 

0.1 1.1051709180 1.1045607812 6.1e-4 1.1051676194 3.2e-6 

0.2 1.2214027581 1.2204789529 9.2e-4 1.2213984894 4.2e-6 

0.3 1.3498588075 1.3487411235 1.1e-3 1.3498540696 4.7e-6 

0.4 1.4918246976 1.4905234716 1.3e-3 1.4918194751 5.2e-6 

0.5 1.6487212707 1.6471917457 1.5e-3 1.6487154960 5.7e-6 

0.6 1.8221188003 1.8203012644 1.8e-3 1.8221124190 6.3e-6 

0.7 2.0137527074 2.0115969164 2.1e-3 2.0137456496 7.0e-6 

0.8 2.2255409284 2.2230131605 2.5e-3 2.2255331376 7.7e-6 

0.9 2.4596031111 2.4566740256 2.9e-3 2.4595946031 8.5e-6 

1.0 2.7182818284 2.7148931105 3.3e-3 2.7182725646 9.2e-6 
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Table 4. Numerical results for Example4 

 

Figure 4.  
 

5- Conclusions 

 The main purpose of this paper to use an efficient and accurate method to solve different order 

of integro-differential equation with the initial conditions by using collocation method together 

with Boubaker Scaling functions. A new approach method was used to reduce the problem into 

the solution of algebraic equations. Illustrated examples are included to show the validity and 

powerful method with good approximate results and rapid convergence are achieved. 
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