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1.Introduction  

In this paper, we study the following viscoelastic wave equation of Kirchhoff type: 

             (‖  ‖
   )  ∫  (   )  ( )   |  |

 ( )   

 
   | | ( )    (   )    (   )   (1)  

with the initial conditions  

 (   )    ( )   (   )    ( )                                                             (2) 

and boundary condition 

        (   )                                                                                             (3) 

where   is a bounded domain in    (   ) with smooth boundary   , and  ( )         

           Without loss of generality, we can assume that        

The variable exponents  ( ) and  ( ) are given as measurable functions on   satisfying 

      ( )         ( )                                                (4) 
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ABSTRACT 

 

In this paper, we consider a viscoelastic wave equation of Kirchhoff type with 

variable exponents. We show that under suitable conditions on the initial data 

and initial energy, the energy of solutions blow up in finite time with negative 

initial energy. 
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here  

              ( )    
             ( )    

              ( )    
             ( )    

and  

   {
        
  

   
     

 

We state some assumptions on  : 

(A1) Let      function satisfying  

  ∫  ( )       
 

 

 

(A2)  ( )    ,   ( )     and 

∫  ( )   
  (   )   

  (   )    
 

   (   )

 

 

        

The problems with variable exponents arises in many branches in sciences such as nonlinear 

elasticity theory, image processing, electrorheological fluids [2, 3, 15]. 

When  ( ) and  ( ) are constants, (1) become the following form 

     (‖  ‖
 )   ∫  (   )  ( )   |  |

    

 
   | |                                   (5) 

The problem (5) has been discussed by many authors and several results concerning blow up have 

been established for      See in this case, [6, 8]. 

When  (‖  ‖ )      (5) become the following form 

       ∫  (   )  ( )   |  |
    

 
   | |                                                 (6) 

In [9], the author proved blow up and global existence of solutions, for the equation (6). In [10], the 

same author extended this result in the case of positive initial energy. 

When  (‖  ‖ )    and     the problem (1) reduces to the following form 

       |  |
 ( )     | | ( )                                                                            (7) 

Messaoudi et al. [11] studied the local existence and blow up of the solutions of the equation (7). 

Recently, Pişkin [12] investigated (1) and established the blow up result with negative initial energy 

for      In [13] the same author investigated (1) and proved the blow up result for  (‖  ‖ )   . 

Motivated by the above results, in this work, we prove the blow up result of solutions (1) under 

some conditions. To the best our knowledge, this is the first paper that deals with blow up of solutions 

to problems involving a viscoelastic wave equations of Kirchhoff type with variable exponents. 
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The outline of this work is as follows. In part 2, we recall the definitions of the the variable 

exponent   ( )( ) Lebesgue space and     ( )( ) Sobolev space. In part 3, we state and prove the 

blow up results. 

 

 2. Preliminaries 

In this part, we state some results about the variable exponent Lebesgue and Sobolev spaces 

  ( )( ) and     ( )( ) (see [3, 4, 7, 14]). 

Let     ,   ) be a measurable function, where   is a domain of   . We define the variable 

exponent Lebesgue space by 

  ( )( )  8                           ∫ | | ( )    
 

9  

endowed with the Luxemburg norm 

‖ ‖ ( )     8    ∫ |
 

 
|
 ( )

    
 

9  

where   ( )( ) is a Banach space. 

The variable exponent Sobolev space     ( )( ) is defined by 

    ( )( )  {    ( )( )                |  |    ( )( )}  

Variable exponent Sobolev space is a Banach space with respect to the norm 

‖ ‖   ( )  ‖ ‖ ( )  ‖  ‖ ( )  

The space   
   ( )( ) is defined as the closure of   

 ( ) in     ( )( ) with respect to the norm 

‖ ‖   ( ). For     
   ( )( )  we can define an equivalent norm 

‖ ‖   ( )  ‖  ‖ ( )  

Let the variable exponent  ( ) satisfy the log-Hölder continuity condition: 

| ( )   ( )|  
 

   |
 

   
|
                    |   |                                  (8) 

where     and        

Lemma 2.1: [3] (Poincare inequality) Let   be a bounded domain of    and  ( ) satisfies log-Hölder 

condition, then  

‖ ‖ ( )   ‖  ‖ ( )             
   ( )( )  

where    (      | |)     

Lemma 2.2: [3] (Embedding) Let  ( )   ( ̅) and     ,   ) be a measurable and satisfy 
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      ̅   ( 
 ( )   ( ))     

Then the Sobolev embedding   
   ( )( )    ( )( ) is continuous and compact. Where 

  ( )  {

  ( )

      ̅   (   ( ))
          

                                               

 

The local existence and uniqueness of solutions for the problem (1) which can be established by 

combining arguments of [1, 5, 11]. 

Theorem 2.3: (Local existence and uniqueness). Suppose that (A1), (A2), (4) and (8) holds. Then for 

any initial data (     )  (  
 ( )    ( ))    ( ), problem (1) has a solution  

   (,   )   
 ( )    ( ))        (,   )  

 ( ))    ( )(  (   ))  

for some       

 

3. Blow up 

In this part, we will consider the blow up of the solution for problem (1). Firstly, we give 

following lemmas: 

Lemma 3.1: [11] If     ,   ) is a measurable function and  

      ( )     
  

   
                                                                   (9) 

holds. Then, we have following inequalities: 

i) 

 
 ( )

 

  ( )   .‖  ‖    ( )( )/                                                             (10) 

  ) 

‖ ‖  
   (‖  ‖  ‖ ‖  

  
)                                                                 (11) 

iii)  

 
 ( )

 

  ( )   .| ( )|  ‖  ‖
    ( )( )/                                                 (12) 

iv) 

‖ ‖  
   (| ( )|  ‖  ‖

  ‖ ‖  
  )                                                  (13) 

v) 

 ‖ ‖  
     ( )( )                                                                              (14) 

for any     
 ( ) and         Where   ( )( )  ∫ | | ( )

 
    and     a positive constant and 
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 ( )   
 

 
‖  ‖

  
 

 
4  ∫  ( )

 

 

  5 ‖  ‖  
 

 (   )
 ‖  ‖ (   ) 

 
 

 
(    )( )  ∫

 

 ( ) 

| | ( )    

Lemma 3.2:  Assume that (A1), (A2), (4) and (8) hold. Then 

 ( )  
 

 
‖  ‖

  
 

 
4  ∫  ( )

 

 

  5 ‖  ‖  
 

 (   )
 ‖  ‖ (   ) 

 
 

 
(    )( )  ∫

 

 ( ) 
| | ( )                                                                (15) 

is a nonincreasing function and  

  ( )   ∫ |  |
 ( )

 

   
 

 
 ( )∫ |  ( )| 

 

     

 
 

 
∫   (   )
 

 

∫ ,  ( )    ( )- 

 

      

Proof. We multiply (1) by   , and integrate over  , we have 

 

  
6
 

 
‖  ‖

  
 

 
‖  ‖  ∫

 

 ( ) 

| | ( )   
 

 (   )
 ‖  ‖ (   )7 

 ∫ ∫  (   )
 

 

 
  ( )   ( )      ∫ |  |

 ( )
 

                                    (16) 

We estimate the last term in the left-hand side as follows 

∫ ∫  (   )
 

 

 

  ( )   ( )     

                                            ∫  (   ) ∫    ( ),  ( )    ( )    ( )- 

 

 
     

 ∫  (   )∫    ( ),  ( )    ( )-
 

 

 

     

 ∫  (   )∫    ( )  ( )
 

 

 

     

                                             
 

 
∫  (   )

 

  
0∫ ,  ( )    ( )-   
 

1
 

 
   

 
 

 
∫  ( ) 6

 

  
∫ ,  ( )-   
 

7
 

 

   

  
 

 

 

  
6∫  (   )∫ ,  ( )    ( )-     

 

 

 

7 

 
 

 
∫   (   )∫ ,  ( )    ( )-     
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0∫  ( ) ∫ ,  ( )-     

 

 

 
1  

 

 
 ( ) ∫ ,  ( )-    

 
                 (17) 

Inserting (17) into (16), we obtain 

 

  

[
 
 
 
 
 

 
‖  ‖

  
 

 
4  ∫  ( )

 

 

  5 ‖  ‖  
 

 
(    )( )

 ∫
 

 ( ) 

| | ( )   
 

 (   )
 ‖  ‖ (   )

]
 
 
 
 

 

  ∫ |  |
 ( )

 

   
 

 
 ( )∫ |  ( )| 

 

     

                                                  
 

 
∫   (   )
 

 
∫ ,  ( )    ( )-     
 

                                  (18) 

where 

(    )( )  ∫  (   )
 

 

∫ ,  ( )    ( )-      
 

 

 

Now, we state and prove the blow up result: 

Theorem 3.3: Suppose that the assumptions of Theorem 2.3 hold. If  ( )     then the solution (1) 

blows up in finite time     and 

   
   

   
 

   ( )
  

Proof.  We set 

 ( )    ( )  

By (18), we see that  ( )     By the definition  ( )  we obtain 

 ( )   
 

 
‖  ‖

  
 

 
4  ∫  ( )

 

 

  5 ‖  ‖  
 

 (   )
 ‖  ‖ (   ) 

                                      
 

 
(    )( )  ∫

 

 ( ) 
| | ( )   ∫

 

 ( ) 
| | ( )   

                                   
 

  
  ( )( )                                                                                                       (19) 

Let  

 ( )      ( )   ∫     
                                                      (20) 

for   small to be chosen later and  

       2
     

(    )  
 
    

   
3                                                          (21) 

By differentiating (20) and then using (1), we get 
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  ( )  (   )   ( )  ( )   ∫ (  
      )  

 

 

 (   )   ( )  ( )   ‖  ‖
   ‖  ‖  

  

  ‖  ‖ (   )   ∫  (   )
 

 

∫   ( )  ( )
 

     

  ∫ | | ( )

 

    ∫    
 

|  |
 ( )     

 (   )   ( )  ( )   ‖  ‖
   ‖  ‖   ‖  ‖ (   ) 

  ∫ | | ( )

 

    ∫    
 

|  |
 ( )     

  ∫  ( )  
 

 
‖  ‖   ∫  (   )

 

 
∫   ( ),  ( )    ( )-     
 

 (22) 

To estimate the last term of (22), we use Cauchy-Schwarz and Young’s inequalities 

∫  (   )
 

 

∫   ( ),  ( )    ( )-    
 

 

 ∫  (   )
 

 

‖  ( )‖‖  ( )    ( )‖   

  (    )( )  
 

  
∫  ( )  ‖  ‖         
 

 
                                    (23) 

Substituting (23) into (22), we have 

  ( )  (   )   ( )  ( )   ‖  ‖
   ‖  ‖   ‖  ‖ (   ) 

  ∫ | | ( )

 

    ∫    
 

|  |
 ( )      ∫  ( )  

 

 

‖  ‖  

   (    )( )  
 

  
∫  ( )  
 

 

‖  ‖   

By using the definition of the  ( )  it follows that 

    (   ) ( )  
   (   )

 
‖  ‖

  
   (   )

 
4  ∫  ( )

 

 

  5 ‖  ‖  

 
   (   )

 (   )
‖  ‖ (   )  

   (   )

 
(    )( ) 

    (   ) ∫
 

 ( ) 
| | ( )                                                                      (24) 

where        

Adding and subtracting (24) on the right hand side of (22), we have 
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   ( )  (   )   ( )  ( )     (   ) ( ) 

                                                         .
  (   )

 
  / ‖  ‖

   .
  (   )

 (   )
  / ‖  ‖ (   ) 

                                                         0
  (   )

 
.  ∫  ( )

 

 
  /    .  

 

  
/ ∫  ( )

 

 
  1 ‖  ‖  

  4
  (   )

 
  5 (    )( ) 

                                                         ∫ | | ( )    
 

∫     
|  |

 ( )                                       (25) 

Then, for   small enough, we obtain 

  ( )    [ ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )    ( )( )] 

 (   )   ( )  ( )   ∫     
|  |

 ( )                                                  (26) 

here 

     

{
 
 

 
   (   ) 

  (   )

 
   

  (   )

 
     

  (   )

 (   )
   

  (   )

 
4  ∫  ( )

 

 

  5    (  
 

  
)∫  ( )

 

 

  
}
 
 

 
 

   

and  

  ( )( )  ∫ | | ( )

 

    

By the following Young’s inequality, we have 

   
    

 
 
     

 
  

where                  such that 
 

 
 

 

 
    Consequently, applying the previous, we obtain 

∫  
 

|  |
 ( )     ∫

 

 ( ) 

  ( )| | ( )   ∫
 ( )   

 ( ) 

 
 

 ( )

 ( )  |  |
 ( )   

 
 

  
∫   ( )| | ( )   

    

   
∫  

 
 ( )

 ( )  
 

|  |
 ( )                          (27) 

where   is constant depending on the time   and specified later. Inserting (27) into (26), we have 

  ( )    [ ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )    ( )( )] 

 (   )   ( )  ( ) 

  
 

  
∫   ( )
 

| | ( )    
    

  
∫  

 
 ( )

 ( )  
 

|  |
 ( )                               (28) 

Let us choose  , so that  
 

 ( )

 ( )      
  ( )  where      is specified later, we get 
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  ( )    [ ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )    ( )( )] 

 (   )   ( )  ( ) 

  
 

  
∫   

   ( )  ( ( )  )( )
 

| | ( )    
    

  
∫     ( )|  |

 ( )

 

   

   [ ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )    ( )( )] 

 (   )   ( )  ( ) 

  
  
    

  
  (    )( )∫ | | ( )

 

    4
    

  
5    ( )∫ |  |

 ( )

 

   

   [ ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )    ( )( )] 

6(   )   4
    

  
5 7   ( )  ( )   

  
    

  
  (    )( )∫ | | ( )

 

    

Using (14) and (19), we obtain 

  (    )( )∫ | | ( )

 

     (    )( ) 6∫ | | 
 
   ∫ | | 

 
  

    

7 

   (    )( ) [4∫ | | 
 
  

  

5

  

  

 4∫ | | 
 
  

  

5

  

  

] 

   (    )( ) 0‖ ‖  
   ‖ ‖  

  1 

  (
 

  
  ( )( ))

 (    )

[.  ( )( )/

  

  
 .  ( )( )/

  

  
] 

   [.  ( )( )/

  

  
  (    )

 .  ( )( )/

  

  
  (    )

]                                     (29) 

where     .
 

  
/
 (    )

       *    | |   + and    *    | |   +  

By Lemma 3.1 and (21), for  

        (    )     

or 

        (    )      

to deduce, from (29),  

  (    )( ) ∫ | | ( )
 

     [‖  ‖
    ( )( )]                                      (30) 

Thus, inserting estimate (30) into (26), we obtain 
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  ( )   4  
    

 

  
  5 [ ( )  ‖  ‖

  ‖  ‖  ‖  ‖ (   )  (    )( )    ( )( )] 

 0(   )   .
    

  
/  1   ( )  ( )                                                                        (31) 

Let us choose   large enough so that     
    

 

  
      and picking   small enough such that 

(   )   .
    

  
/     

and  

 ( )   ( )      ( )   ∫    
                                                       (32) 

Consequently, (31) yields 

  ( )    [ ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )    ( )( )] 

   [ ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )  ‖ ‖  

  ]               (33) 

due to (14). Therefore we get 

 ( )   ( )                 

On the other hand, applying Hölder’s inequality, we have 

|∫      
 

|

 

   

 ‖ ‖
 

   ‖  ‖
 

    

  4‖ ‖  
 

   ‖  ‖
 

   5  

Using Young’s inequality gives 

|∫       
|

 

   
  (‖ ‖  

 

    ‖  ‖
 

   )                                        (34) 

for 
 

 
 

 

 
    We take    (   )  to obtain 

 

   
 

 

    
    by (21). Therefore, (34) becomes 

|∫      
 

|

 

   

  (‖  ‖
  ‖ ‖  

  )  

Thus, 

 
 

   ( )  6    ( )   ∫      7

 

   

 

  
 

   : ( )   
 

   |∫      
 

|

 

   

; 
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  .‖  ‖
  ‖ ‖  

    ( )/ 

  ( ( )  ‖  ‖
  ‖  ‖  ‖  ‖ (   )  (    )( )  ‖ ‖  

  )    (35) 

where 

(   )      (     ) 

is used. By combining of (33) and (35), we have 

  ( )    
 

   ( )                                                                    (36) 

where   is a positive constant. 

A simple integration of (36) over (   ) yields  
 

   ( )  
 

 
 

 
   ( ) 

   

   

  which implies that the solution 

blows up in a finite time     with 

   
   

   
 

   ( )
  

This completes the proof of the theorem. 

 

Conclusion 

In this work, we considered a viscoelastic wave equations of Kirchhoff type with variable 

exponents. Under the suitable conditions, we showed the blow up of solutions in a finite time with 

negative initial energy. 
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