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1. Introduction 

Regression analysis methods are fundamental in analyzing the relevant data by describing the 

relationship between a set of independent variables and the dependent variable (Kerlinger & 

Pedhazur, 1973). However, it is unable to describe and explain the relationships between the 

covariates and the response variable if the latter has binary value, where the nature of the 

response variable is required to be a continuous quantity and not a classification (Lea, 

1997)[1]. This is why the need has arisen for developing new statistical methods that have the 
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Lasso variable selection is an attractive approach to improve the 

prediction accuracy. Bayesian lasso approach is suggested to estimate 

and select the important variables for single index logistic regression 

model. Laplace distribution is set as prior to the coefficients vector and 

prior to the unknown link function (Gaussian process). A hierarchical 
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and MCMC algorithm is adopted for posterior inference. To evaluate 

the performance of the proposed method BSLLR is through comparing 

it to three existing methods BLR, BPR and BBQR. Simulation 
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that the proposed method get the smallest bias, SD, MSE and MAE in 

simulation and real data. The proposed method BSLLR performs better 

than other methods.   
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power of linear regression in reaching the best equations and dealing with them. Quite often, 

the outcome variable is discrete; taking on two possible values, it can have only two possible 

outcomes which will be denoted as 1 and 0. A problem with the regression model is that the 

predicted probabilities will not be limited between 0 and 1. Two relevant binary regression 

models, logit (logistic) and probit regression when the dependent variable is a binary response 

and take two values: 0 and 1 

 

 

 

 

  {
 
 

                   
                    

 

 

  is a response variable distributed as Bernoulli with probability of success    . 

The binary regression model is defined as   = F (x′       i=1, ……., N where   is a k X I vector of 

unknown parameters, x′= (   ………   ) is a vector of known covariates, and F ( ) is a known cdf, 

linking the probabilities p, with the linear structure (x′  . The logit model is obtained if F is the 

logistic cdf . Whereas the probit model is obtained if F is the standard Gaussian cdf.  

Sometimes the explanatory variables are non-linear, which led researchers to find another method 

that deals with the nonlinear effect of these variables or nonparametric regression. It was proposed 

by the researcher (Jacob) in 1942. Nonparametric regression suffers from some problems, 

including the problem of dimensions (the curse of dimensionality). Therefore, the attractive 

features of single index model have motivated the researchers to extend this model for modelling a 

binary data. Kong & Xia (2008)[2] suggest that the single-index model is one of the most general 

semiparametric models in econometrics. Single index models suppose that the response interest 

depends on a linear combination of covariates through an unknown link function (Hu, et al., 

2013)[3]. 

Subset selection by regularization has attracted much interest recently (see for example, lasso by 

Tibshirani, 1996). Tibshirani, R. (1996)[4] proposed that lasso estimates will be taken as posterior 

mode estimates once the regression parameters are assigned independent and corresponding 

standard. Park and Casella (2008) [5] introduced the Bayesian lasso regression, using a conditional 

Laplace prior distribution represented as a scale mixture of normal with an exponential mixing 

distribution. Bayesian analysis method has become very widely applicable, as a result of its ability 

to benefit from all available information in the analysis. Bayesian variable selection is a flexible 

method for translating prior information into a selection of variables (Fridley, 2009)[6]. Several 

variable selection methods are used with a Bayesian framework.  

 

In this paper the researchers also formulated the Bayesian lasso penalty approach for estimating 

and selecting variables in a single index logistic regression model. Nonetheless, to the best of our 

knowledge, no such research has been considered before.  
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2-Single Index Logistic regression model and prior assumption: 

 

Single-index model (SIM) introduce an efficient manner of handling high dimensional 

nonparametric estimation problems (Hardle et al., 1993; Yu and Ruppert, 2002)[7] and avert the 

‘curse of dimensionality’ (Bellman et al., 1966)[8]. Nonparametric problems assume that the 

response is just associated with a single linear set of the covariates. It's one of the most common 

and necessary semiparametric models in statistics as well as applied sciences like econometrics 

and psychology due to its ability to reduce dimensions (Ichimura, 1993)[9]. The semiparametric 

single index regression model is: 

   (  
  )                                                

where    is a response variable,   is a parameter vector (Parametric part),  : is an unknown link 

function (nonparametric part) and    = errors are assumed to be iid. 

The basic assumptions of logistic regression model are based on that the dependent variable (y) is 

binary take either of the two values (1, 0), with a success probability (  ) and failure probability 

(1-  ).  Therefore, the response variable (y) is distributed as Bernoulli distribution and can be 

expressed as follows:  

       
  

      
                                              

   
                       

                         
 

     

 

                         
 

where   is a binary independent variable (1,0),               is covariates variables,    is the 

probability of success when y=1,      is the probability of failure when y=0, and            

is unknown coefficients vector of the logistic regression model. 

In the linear regression model the researchers assume that an observation of the outcome variable 

may be expressed as y = E(Y|x) + ε. The most common assumption is that the error term ε follows 

a normal distribution with mean zero and some variance which is constant across levels of the 

independent variable. It follows that the conditional distribution of the outcome variable given x is 

normal with mean E(Y|x), and a variance that is constant. This is not the case with a dichotomous 

outcome variable. 

In this situation, we may express the value of the outcome variable given x as y =     + ε. Here 

the quantity ε may assume one of two possible values. If y = 1 then ε = 1 −      with probability 

     , and if y = 0 then ε = −     with probability 1 −     . Thus, ε has a distribution with mean 

zero and variance equal to  (x)[1 −  (x)]. That is, the conditional distribution of the outcome 

variable follows a binomial distribution with probability given by the conditional mean  (x).  
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      (    
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   : represent the probability of the response that can be expressed:  

            
  

      (    
  ) 

 

                                     

      represent the probability of non-response that can be expressed.   

The likelihood function is the probability density function of the data which is seen as a function 

of the parameter treating the observed data as fixed quantities. For a given sample size n, the 

likelihood function is given as: 

 

         ∏     

 

   

 

 

         ∏  
        

    

 

   

 

Therefore, the likelihood function can be described as follows:                     

          ∏ 
         

    

      (    
  ) 

    
  

      (    
  ) 

     

 

   

                          

Following Choi et al. (2011)[10] and Gramacy and Lian (2012)[11], the researchers will set 

Gaussian process as the prior distribution for the unknown link function  (.). Therefore, the 

distribution of       is a Gaussian process with zero mean and square exponential 

covariance function. It is written as follows: 

    (        )                              
       

 
     

 

where   and   are hyperparameters, so that this framework of single-index model can use the 

observed covariates, which can be shown as: 

 

              [  ]
   ⁄    { 

  
    

     

 
} 

where    is the covariance matrix with the dimension (n x n) and elements E (., .) as given in the 

equation: 
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 (  
    

 )          (     )
 
   (     )  

As same as Gramacy and Lian (2012)[11], when the Gaussian process is considered as a prior 

distribution to the unknown function, 
 

√ 
 is identifiable without the necessity for the constraint 

‖ ‖   . Therefore, the researchers will, instead of 
 

√ 
  by  , reformulate the covariance function 

as follows: 

 (  
    

 )      { (   
      

  )
 
}                             

The inverse gamma distribution is considered as prior, where it implies that                ) 

where    and   are the hyperparameters. Following Park and Casella (2008) and Hu et al. (2013) 

conditional Laplace distribution is set as prior for the parameter vector and can be formed as:  

          ∏
 

  
       |  |

 

   

                    

Where the prior distribution for        are set as follows  

                              ) 

3-Hierarchical model Posterior distribution 

Bayesian hierarchical model for single index logistic regression model regularize by lasso is 

provided as follows: 

                  ∏ 
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  ) 

           
         

    

      (    
  ) 

        

        (        )           

       ∏
 

  
       |  |

 
                                                            (5) 

               ) 

                ) 

             

By using MCMC algorithm the researchers have found the conditional distribution for all 

parameters. The conditional posterior distribution for all parameters has been derived as follows: 
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 link function         
              can be sample from the following conditional 

distribution:  
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  the conditional distribution of the parameter vector can be shown as: 
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 The conditional distribution function of    can be written as:  

       
             ∏

 

  
       |  |

 

   

                  

Therefore, the conditional posterior of    is Gamma distribution (      ∑ |  |  ⁄ ). 

 The conditional distribution of    is given as:  

       
                 [  ]

   ⁄    { 
  

    
     

 
}  (

 

 
)
     

     
  

 
  

 The conditional distribution   is given as:  

       
             ∏

 

  
       |  |

 

   

    (
 

  
)
   

      
 

  
  

The posterior distribution of    is Inverse Gamma (       ∑|  |) 

An efficient Gibbs sampler algorithm is considered to sample   and    whereas a Metropolis-

Hastings algorithm is used to sample        and  . The researchers set the initial values for the 

hyperparameters              and    as (0.1). 

4-Simulation study 
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Simulation examples are considered in this section to evaluation our proposed method Bayesian 

semiparametric lasso logistic regression (BSLLR). In this study, the researchers will compare our 

proposed methods (BSLLR) with some other existing methods, i.e., Bayesian Logistic Regression 

(BLR) and Bayesian Probit Regression (BPR). These methods are included in MCMC package. R 

package and Bayesian Binary Quantile Regression (BBQR) are included in Bayesian QR package. 

Two examples are reported in this study which are already used by many papers and researchers 

for instance (Hu et al. (2013), Alshaybawee et al. (2016)[12], Zhao and Lian (2015)[13], Alkenani 

and Yu (2013)[14], Lv et al. (2014)[15] and Kuruwita (2015))[16]. R code is constructed to 

implement MCMC algorithm and the algorithm is run 15000 iterations where the first 3000 

remove as burn in.  

4.1 Example One 

The following regression model is considered to generate three samples size (n=50,150 and 250) 

each with 100 replication: 

  
      

    √(   (  
  )   )            {

               
        

                    
 

where                   ,                 are the explanatory variables from a normal 

distribution with [      ⁄   ],   
 

√ 
              , and   is the error term distributed as standard 

normal. 

In Table (1) the researchers summarize the bias to the parameters that are estimated by all the 

methods under study, i.e., the existing methods BLR, BPR and BBQR and the proposed method 

BSLLR. At the three samples size it can be seen that the proposed method, very clearly, get the 

smallest values of bias for all estimated parameters. This means that the estimated parameters are 

very close to the true parameters. On the other hand, it can be seen that the BBQR method gets the 

largest values of bias for most estimated parameters and at all samples size. For the other methods 

it can be seen that the BPR method gets bias values smaller than the BLR methods for most 

estimated parameters and at all samples size.  

Table (1): The average bias of the parameter estimates of BSLLR, BLR, BPR and BBQR methods 

for the samples (Simulated Example 1) 

N Methods                                                 

50 

BSLLR 

0.161897

2 

0.098358

1 

0.096763

2 
0.163808 

0.067258

7 

0.161897

2 

BLR 
0.629777

5 

6.097163

9 

4.663128

3 
3.818511 

7.129293

6 

0.629777

5 

BPR 
0.359777

5 

5.607163

9 

4.058128

3 
3.438511 

6.772957

8 

0.359777

5 

 
BBQR 

0.425564

5 

4.995664

5 

5.209519

4 
4.530049 

7.633390

1 

0.425564

5 
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150 

BSLLR 

0.139242

5 

0.126395

5 

0.055396

6 

0.101121

8 

0.436631

3 

0.139242

5 

BLR 2.503743 
7.240679

6 

0.125008

1 

2.211346

8 

7.415853

9 
2.503743 

BPR 2.123743 
6.363089

6 

0.118256

1 

2.051346

8 

6.633616

9 
2.123743 

 
BBQR 

1.741303

2 

7.851445

9 

0.057857

9 

1.959614

4 

6.878479

5 

1.741303

2 

250 

BSLLR 

0.211270

8 

0.064856

6 

0.021410

8 

0.136484

8 

0.426010

9 

0.211270

8 

BLR 
1.767413

1 

5.969013

2 

1.442476

6 

0.782155

8 

5.691795

8 

1.767413

1 

BPR 
1.530893

1 

5.184573

2 

1.275693

6 

0.669777

8 

4.827219

3 

1.530893

1 

 
BBQR 

2.027117

6 

6.774516

3 

1.772298

5 

1.412511

8 

6.074630

2 

2.027117

6 

Based on 100 replications shown in Figure (1) the standard division for the parameters estimate by 

all proposed and existing methods. It can be seen the SD for the proposed method BSLLR are the 

smallest compared to the other methods and over all samples size. BBQR method gets small 

values compared to the other two methods BLR and BPR when the sample size 50, whereas these 

values are increase and exceed that for BLR and BPR at (n=150 and 250). The SD values for BLR 

method are larger than SD values for BPR method at all cases. 
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Figure 1. show the SD values for BSLLR, BLR, BPR and BBQR methods at three samples size 

(Example 1).   

Table (2) shows MSE and MAE values for all methods in this study. The proposed method 

BSLLR gets the smallest values of MSE and MAE compared to the other methods. The existing 

method BBQR gets the largest values of MSE and MAE compared to the other two methods BLR 

and BPR when the samples size (150 and 250) but it is smaller than these methods when the 

sample size is 50. BPR method gets MSE and MAE values smaller than BLR method at all cases. 

Table (2). The values of MSE and MAE of BSLLR, BLR, BPR and BBQR methods for each 

sample (Simulated Example 1) 

N Methods MSE MAE 

50 

BSLLR 0.4993051 0.5153148 
BLR 1.0330221 0.8555687 
BPR 0.9283775 0.8063997 

 BBQR 0.7734473 0.7924135 

150 
 

BSLLR 0.4864899 0.4976007 
BLR 0.8336368 0.6803427 
BPR 0.7721769 0.6334271 

BBQR 0.8651809 0.7119312 

250 BSLLR 0.5066259 0.5217550 

B1 B2 B3 B4 B5 B6

0

2

4

6

8

N= 50

Coefficients

S
D

BSLLR BLR BPR BBQR

B1 B2 B3 B4 B5 B6

0

2

4

6

N= 150

Coefficients

S
D

BSLLR BLR BPR BBQR

B1 B2 B3 B4 B5 B6

0

1

2

3

4

N= 250

Coefficients

S
D

BSLLR BLR BPR BBQR
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 BLR 0.6785633 0.6574913 
BPR 0.6347043 0.6027816 

BBQR 0.8846936 0.7447513 

4.2 Example Two 

Three samples size (n=50, 150 and 250) with 100 replications are generated from the following 

regression model: 

  
   (  

  )            {
               

        

                    
   

where             ,               , where the independent variables are generated from 

                        
  

 

√ 
            and the error term generated from standard 

normal distribution. 

Table (3) show the bias values to all parameters that estimate by the methods in this study. The 

proposed method gets the smallest values of bias compared to the other methods for all the 

estimated parameters at all samples size. BBQR methods gets the largest values of bias compared 

to the other methods. The bias for the BPR is smaller than that for the BLR method for most of the 

parameters estimated and at all samples size.  Figure (2) summarizes the SD values for the 

proposed and existing methods. This figure shows that the proposed method gets the smallest 

values of SD compared to the other methods in all samples size. In the other side, the BBQR 

method gets the largest values of SD for most of the parameters estimated and at the samples size. 

The BPR method gets small values of SD compared to the BLR method.  

Table (3): The average bias of the parameter estimates of BSLLR, BLR, BPR and BBQR methods 

for the samples (Simulated Example 2) 

N Methods                                         

50 

BSLLR 

0.589849
8 

0.187926
9 

0.034003
8 

0.157039
1 

0.572352
2 

BLR 
1.421379
8 

1.323198
6 

0.082593
6 

0.877199
4 

1.541804
4 

BPR 
1.151379
8 

1.133198
6 

0.077593
6 

0.697199
4 

1.181804
4 

 
BBQR 1.793648 

1.355460
7 

0.114627
6 

0.268297
8 

1.905546
1 

150 

BSLLR 

0.588823
7 

0.253712
9 

0.147194
1 

0.211417 
0.348675
5 

BLR 0.390086 
0.383836
5 

2.675861
7 

0.627500
7 

0.540025
7 

BPR 0.310086 
0.293836
5 

2.275861
7 

0.467500
7 

0.470025
7 

 BBQR 1.121888 0.394885 2.448246 1.527586 2.287903
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5 6 6 8 2 

250 

BSLLR 

0.425359
2 

0.270206
2 

0.070886
1 

0.180545
7 

0.481855
8 

BLR 
0.926599
8 

0.481000
2 

1.011724
4 

0.518726
1 

0.466505
5 

BPR 
0.806599
8 

0.441000
2 

0.881724
4 

0.438726
1 

0.401955
5 

 
BBQR 

0.543017
6 

0.244063
1 

2.622775
5 

1.364628
7 

0.044507
7 

 

 

 

Figure 2. show the SD values for BSLLR, BLR, BPR and BBQR methods at three samples size 

(Example 2).   

Table (4) shows the MSE and MAE values for the model that is estimated by the proposed and 

existing method. It is clear that the proposed method BSLLR gets the smallest values of MSE and 

MAE compared to the other methods. The existing method BBQR gets the largest values of MSE 

B1 B2 B3 B4 B5

0

1

2

N= 50

Coefficients

S
D

BSLLR BLR BPR BBQR

B1 B2 B3 B4 B5

0

1

N= 150

Coefficients

S
D

BSLLR BLR BPR BBQR

B1 B2 B3 B4 B5

0

1

N= 250

Coefficients

S
D

BSLLR BLR BPR BBQR
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and MAE compared to all the other methods in this study. The MSE and MAE values for the BLR 

method are bigger than that values for the BPR method at all samples size.  

Table (4). The values of MSE and MAE of BSLLR, BLR, BPR and BBQR methods for each 

sample (Simulated Example 2) 

N Methods MSE MAE 

50 

BSLLR 0.5597303 0.7260386 
BLR 6.6902721 2.5322350 
BPR 6.0944381 2.1389660 

 BBQR 7.4845307 2.6566942 

150 
 

BSLLR 0.2845815 0.5161062 
BLR 2.0601757 1.1752145 
BPR 1.8675441 1.0045329 

BBQR 4.0915452 1.6901830 

250 
 

BSLLR 0.3556246 0.5836441 
BLR 0.2050050 0.3706665 
BPR 0.1845571 0.2976875 

BBQR 4.3777821 1.8898055 

 

5-Real Data Example 

The real data that is considered in this study is (churn) data. This dataset is included in bayesQR 

package in R. This dataset describes a random sample of the active customers at the end of June 

2006 of a EFS company. This dataset consists of four explanatory variables ‘gender’: which shows 

the gender of customer (female=0, male=1), ‘Social-Class-Score’: which shows the social class of 

customer. ‘lor’: which shows the length of relationship with the customer, ‘recency’: which shows 

the number of days since last purchase, whereas the independent variables are ‘churn’: churn 

(yes/no). This data is constructed with 400 observations. The proposed and existing methods are 

employed to modelling this dataset. The results are reported as follows: 

Table (5): The parameter estimates of BSLLR, BLR, BPR and BBQR methods for the real data 

example. 

Methods             

BSLLR - 0.01398 0.001937 -0.21524 0.57435 

BLR -0.02847 0.022106 -0.61732 0.56903 

BPR -0.02098 0.016402 -0.37823 0.34526 

BBQR -0.03578 0.012224 -0.81171 0.75725 

 

Table (5) shows the parameters estimates by the methods in this study. This table shows that the 

parameter estimate for the second independent variable is so small compared to the mean. This 

variable is not important. While in the proposed method, the parameter is closer to the zero.  



             56                                Zainab Sami,Taha Alshaybawee , Al-Qadisiyah  Journal of Pure  Science  26 ,5(2021) pp. Math. 44–57                          

 

Table (6). The values of MSE and MAE of BSLLR, BLR, BPR and BBQR methods for the real 

data example. 

Methods MSE MAE 

BSLLR 0.5458904 0.6239342 
BLR 0.9924065 0.7866441 
BPR 0.7384185 0.7081966 
BBQR 1.0645598 0.8367619 

 

In Table (6) the MSE and MAE values are summarized. It can be seen that the proposed method 

gets the smallest values of MSE and MAE compared to other methods. The largest values of MSE 

and MAE are for BBQR method. As same as the results in simulation examples, BLR method gets 

MSE and MAE values larger than BPR. 

1- Conclusion 

In this paper, Bayesian estimation and variable selection approach are suggested to estimate the 

parameters and link function and select the important variables for single index logistic regression 

model. Laplace distribution is set as prior to the coefficients vector and prior to the unknown link 

function (Gaussian process). A hierarchical Bayesian lasso semiparametric logistic regression 

model is constructed and MCMC algorithm is adopted for posterior inference. 

Three existing methods BLR, BPR and BBQR are considered to be compared with the proposed 

method BSLLR. Real data and two simulation examples are used to compare the performance of 

BSLLR with the existing methods BLR, BPR and BBQR. The results indicate that the proposed 

method gets the smallest bias, SD, MSE and MAE in simulation and real data. In most cases 

BBQR method gets the largest values of bias compared to the other existing methods, i.e., SD, 

MSE and MAE. In addition, it can be seen that the existing method is doing better than BLR 

method and gets small values of bias. The researchers conclude that the proposed method BSLLR 

performs better than the other methods, i.e., SD, MSE and MAE. 
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