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1. Introduction 

The quadruple sequence can be defined as a function             ( )    ,   and   

denote the set of natural numbers, real numbers and complex numbers, respectively in this study.   

Apostol (1978), Alzer, Karayannakis, and Srivastava (2006), Bor, Srivastava, and Sulaiman (2012), 

Choi and Srivastava (1991), Liu and Srivastava (2006), and Hardy (1917), Deepmala Subramanian, 

and Mishra (in press), Deepmala, Mishra, and Subramanian (2016), and many others have published 

early work on double sequence. Later work on triple sequence spaces can be found in Sahiner, Gurdal, 

and Duden (2007), Esi (2014), Esi and Necdet Catalbas (2014), Esi and Savas (2015), Subramanian 

and Esi (2015), and many other publications. The purpose of this paper is to introduce the   -fuzzy 

number, which is defined by an Orlicz function, and to investigate certain topological features, 

inclusion relations, and instances. Alzer et al. (2006), Bor et al. (2012), Choi and Srivastava (1991), 
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 In this paper, we illustrate the quadruple sequence spaces of fuzzy complex 

numbers and we explain several features such as   
   and   

   aren't symmetric 

, where as the   
   be a symmetric,   
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  , and   

    are solid ,   
   and 
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  , and   
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Liu and Srivastava (2012) all have some intriguing outcomes (2006). If        |     |
 

          , a 

sequence   (     ) is a quadruple analytic.    is used to indicate the vector space of all quadruple 

analytic sequences . If        |     |
 

           as           , a sequence   (     ) is a 

quadruple entire sequence . If ((       ) |     |)

 

       
   as           , a sequence 

  (     ) is a quadruple chi sequence. 

 

2.Definitons and Preliminaries  

 

Definition 2.1[19]  :   

               be a solid if (     )   
   whenever (     )    and |     |  |     | for everybody 

           .  

 

Definition 2.2[19]  :       

         Let's   = {(   ,          )     ,                ,            ,              , and      

          }    ×   ×  ×  . A  -step space of     be a quadruple sequence space   
    be a 

equals to the set {(     ) 
    (     ) 

  }, in which   ={(      )          }.  

Definition 2.3[19]  :   

          A canonical pre-image of any quadric sequence (     ) in     be a quadruple sequence (     ) 

be characterized by:  

                               = {
                 (       )   

                         
  . 

 

Definition 2.4[19]  :   

          A canonical pre-image of a step space   
    be a set of canonical pre-image of all elements in 

  
   . 
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Definition 2.5[19]  :   

              be a monotone if     contains the canonical pre-image of all its step spaces. 

 

Definition 2.6[19]  :   

               be a symmetric if (  ( )  ( )  ( )  ( ))       whenever (     )  
   .  

Definition 2.7[19]  :   

              be a convergent-free if (     )     whenever (     )      and           implies 

          

The classes of Quadruple sequence mentioned below have been defined: 

            
   = {(     )          ( ̅(     

 

         ̅))              ( )} .  

             
   ={(     )               ( ̅ ((((       )      )

 

       
  ̅))   }.  

Moreover, we define the classes of quadruple sequence   
   as follows :  

          (     )    
    if (     )    

   and the following limits hold 

       ( ̅ ((((       )      )

 

       
  ̅))    each and every     .  

       ( ̅ ((((       )      )

 

       
  ̅))    each and every     .  

       ( ̅ ((((       )      )

 

       
  ̅))    each and every     .  

       ( ̅ ((((       )      )

 

       
  ̅))    each and every     .  
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3.Main results : 

 

Proposition 3.1 :  

         
   and   

   aren't symmetric , where as the   
   be a symmetric . 

Proof :  

      This proposition can be explained by the following example: 

Example :  

          Consider the following   
  . Assume that  ( ) equals   and that the quadruple sequence 

(     )  has the description given below:  

     ( ) = 

{
 
 

 
 
(    )        

(       ) 
                               

(   )       

(       ) 
                                   

                                                  

 

for    , 

     ( ) = 

{
 
 

 
 
(   )        

(       ) 
                                 

(    )       

(       ) 
                                 

                                                  

 

let's assume (     ) be reorganization of (     ) is characterized with :  

     ( ) = 

{
 
 

 
 
(    )   

(  ) 
                                                                    

(   )  

(  ) 
                                                                        

                                                                                  

 

For        ,  

     ( ) = 

{
 
 

 
 
(   )        

(       ) 
                                      

(    )       

(       ) 
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  Then it's (     )    
   but (     )    

    As a result,   
   isn't symmetric.  

Proposition 3.2 :  

             
  ,   

  , and   
    are solid.  

Proof :  

           Consider the following   
  . Assume the following (     ) and (     )    

   to the extent 

that.  

 ̅ (((       )      )

 

       
  )    ̅ (((       )      )

 

       
  )     

As   that isn't decreasing, we've got, 

             ( ̅ (((       )      )

 

       
  ))                ( ̅ (((      

 )      )

 

       
  )  

 As a result,   
   be a solid.  

 

Proposition 3.3 :  

            
   and   

    aren't monotonous, and aren't solid.  

Proof :  

       This theorem can be explained by following example.  

Example :  

          Consider the following   
   and  ( ) equals  . 

Let's assume   equals to the set of values {(       ):        }          . Let's assume 

(     ) be characterized with 
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     ( ) = 

{
 
 

 
 

(   )        

(       ) 
                                                                                    

(  )       

(    )       (       ) 
 

(  )       

(    )       (       ) 
                         

 

 
 

                                                                                                              

 

 Then it's (     )    
  . Let's assume (     ) be the canonical pre-image of (     ) 

 for the   of 

the sequence of          Then ,  

        (     ) = {
                                (       )    

 ̅                                                    
,  

  Then it's (     )    
  . As a result   

   isn't monotonous .  

 

Proposition 3.4 :  

           
  ,   

  , and   
    aren't convergent-free.  

Proof :  

       This theorem can be explained by following example.  

Example :  

        Consider the following   
  . Assume that  ( ) equals   and (     ) for is the symbol for 

((       )      )

 

       
 = 0 . Other values include :   

      ( )  

{
 
 

 
 

( )        

(       ) 
                                                                                           

(   )       (   ) (       ) (    )       (   ) (       )

(       ) 
                          

 

 
 

                                                                                                                                 

  

Let's assume (     ) be characterized by ((       )      )

 

       
 =  ̅ , and for other values 

,  
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     ( ) = 

{
 
 

 
 
( )        

(       ) 
                                                                                                          

(   )       (   ) (       )

(       ) 
                                                                                

                                                                                                                                   

. 

 Then it's (     )    
   but (     )    

  . As a consequence,   
   aren't convergent-free.  
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