Al-Qadisiyah Journal of Pure Science

Volume 26 | Number 5

Article 7

10-7-2021

Application Of Strip Domain And Parabolic Region On Univalent Holomorphic Functions

Shahram Najafzadeh Department of Mathematics, Payame Noor University, Post Office Box: 19395-3697, Tehran, Iran, najafzadeh1234@yahoo.ie

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation

Najafzadeh, Shahram (2021) "Application Of Strip Domain And Parabolic Region On Univalent Holomorphic Functions," *Al-Qadisiyah Journal of Pure Science*: Vol. 26: No. 5, Article 7. DOI: 10.29350/qjps.2021.26.5.1436 Available at: https://qjps.researchcommons.org/home/vol26/iss5/7

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Application of strip domain and parabolic region on univalent holomorphic functions

Authors Names	ABSTRACT
a.Shahram Najafzadeh	
Article History Received on:10/8/2021 Revised on: 29/11/2021	In this paper, by using univalent functions connected with the strip domain, parabolic starlike and parabolic uniformly convex functions are introduced. Some relations between these classes are proved.
Accepted on: 12/12/2021	
Keywords: Univalent function strip domain parabolic region parabolic starlike function parabolic convex functions	
DOI: https://doi.org/10.29350/ jops.2021.26. 5.1436	

1. Introduction

Let α and β be real numbers with $\alpha < 1$ and $\beta > 1$.

The function $S_{\alpha,\beta}(z)$ defined by

$$S_{\alpha,\beta}(z) = 1 + \frac{\beta - \alpha}{\Pi} i \log\left(\frac{1 - e^{i\frac{\Pi(1-\alpha)}{(\beta-\alpha)}z}}{1 - e^{-i\frac{\Pi(1-\alpha)}{(\beta-\alpha)}z}}\right),\tag{1.1}$$

where z is the unit disk $\Delta = \{z \in \mathbb{C}, |z| < 1\}$, is analytic and univalent in Δ with $S_{\alpha,\beta}(0) = 1$. (For more details see [2]). In addition the function $S_{\alpha,\beta}(z)$ maps Δ onto the strip domain ω such that $\alpha < Re(\omega) < \beta$.

The function $S_{\alpha,\beta}(z)$ can be written as follow:

$$S_{\alpha,\beta}(z) = \frac{\alpha+\beta}{2} + \frac{\beta-\alpha}{\Pi} i \log\left(\frac{ie^{-i\frac{\Pi(1-\alpha)}{(\beta-\alpha)}z} + (-i)e^{i\frac{\Pi(1-\alpha)}{(\beta-\alpha)}z}e^{-i\frac{\Pi(1-\alpha)}{(\beta-\alpha)}z}}{1-e^{-i\frac{\Pi(1-\alpha)}{(\beta-\alpha)}z}}\right).$$
(1.2)

Also, it is easy to see that

$$S_{\alpha,\beta}(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$$

= 1 + B₁z + $\sum_{n=2}^{\infty} B_n z^n$, (1.3)

where

$$B_n = \frac{2(\beta - \alpha)}{n\Pi} \sin\left(\frac{n\Pi(1 - \alpha)}{\beta - \alpha}\right), \qquad (n = 1, 2, ...).$$
(1.4)

We consider

$$H(z) = S_{\alpha,\beta}(z) - 1.$$
 (1.5)

We define the operator $G_{B_1,\eta}(H(z)) = G_{B_1,\eta}(z)$ as follow:

$$G_{B_1,\eta}(z) = (i - B_1\eta)z + \eta \int_0^z \frac{H(t)}{t} dt.$$
 (1.6)

Definition (1.1): A function f(z) is said to be parabolic starlike function in Δ denoted by PS

$$\left|\frac{zf'}{f} - 1\right| < Re\left(\frac{zf'}{f}\right), \qquad z \in \Delta.$$
(1.7)

Definition (1.2): A function f(z) is said to be uniformly parabolic convex function in Δ denoted by UPC if,

$$\left|\frac{zf''}{f'} - 1\right| < Re\left(1 + \frac{zf'''}{f'}\right). \tag{1.8}$$

For other subclasses of univalent functions, one may refer to [1,3,4] and [5].

2. Main Results

In this section we give some relations between PS an UPC.

Theorem (2.1): $G_{B_1,\frac{1}{B_1}}(z)$ is in UPC if and only if $H(z) \in PS$. **Proof:** By (1.6) after a simple calculation we have

$$G_{B_1,\eta}(z) = z + \sum_{n=2}^{+\infty} A_n z^n,$$
 (2.1)

where,

$$A_n = \frac{B_n}{B_1 n}.$$
(2.2)

Since $G_{B_1,\frac{1}{B_1}}(z) \in UPC$, then by (1.8) we have:

$$\left|\frac{z(G_{B_{1},\frac{1}{B_{1}}}(z))''}{(G_{B_{1},\frac{1}{B_{1}}}(z))'}\right| < Re \left\{1 + \frac{z(G_{B_{1},\frac{1}{B_{1}}}(z))''}{(G_{B_{1},\frac{1}{B_{1}}}(z))'}\right\},$$

or equivalently by putting (1.6) in the above inequality we have

$$\left|\frac{Z(\frac{H(z)}{z})'}{\frac{H(z)}{z}}\right| < Re\left(1 + \frac{Z(\frac{H(z)}{z})'}{\frac{H(z)}{z}}\right),$$

or equivalently

$$\left|\frac{z(H(z))'}{H(z)} - 1\right| < Re\left(\frac{z(H(z))'}{H(z)}\right)$$

then by definition 1.1, $H(z) \in PS$.

Definition (2.2): A function H(z) defined by (1.5) is said parabolic of order γ type θ in the unit disk Δ denoted by $P(\gamma, \theta)$ if

$$\left|\frac{z(G_{B_1,\eta}(z))''}{(G_{B_1,\eta}(z))'} + 1 - (\gamma + \theta)\right| < (\theta - \gamma) + Re\left[1 + \frac{z(G_{B_1,\eta}(z))''}{(G_{B_1,\eta}(z))'}\right],$$
(2.3)

where $G_{B_1,\eta}(z)$ is defined by (1.6).

Theorem (2.3): $H(z) \in P(\gamma, \theta)$ if and only if for every $z \in \Delta$, the values of

$$\frac{z(G_{B_1,\eta}(z))''}{(G_{B_1,\eta}(z))'} + 1$$

lie in the interior of the parabolic region.

Proof: By definition 2.2, if we pot the values of

$$\frac{z(G_{B_1,\eta}(z))''}{(G_{B_1,\eta}(z))'} + 1$$

equal to ω , we have

$$\begin{split} |\omega - (\gamma + \theta)| &< (\theta - \gamma) + Re(\omega), \quad or \\ |Re(\omega) - (\gamma + \theta)|^2 + (Im(\omega))^2 &< [(\theta - \gamma) + Re(\omega)]^2, \quad or \\ (Re(\omega))^2 + (\gamma + \theta)^2 - 2(\gamma + \theta)Re(\omega) + (Im(\omega))^2 &< (\theta - \gamma)^2 \\ &+ (Re(\omega))^2 + 2(\theta - \gamma)Re(\omega), \quad or \end{split}$$

$$[Im(\omega)]^{2} < [2(\gamma - \theta) + 2(\theta - \gamma)]Re(\omega) - 4\gamma\theta, \text{ or}$$
$$[Im(\omega)]^{2} < 4\theta[Re(\omega) - \gamma],$$

and that is the interior of the parabolic region in the half-plane (right side) with vertex at (γ , 0) and 4 θ is the length of the latus rectum.

For more details about this region see [6].

Theorem (2.4): If H(z) are $G_{B_1,\eta}(z)$ and defined by (1.5) and (1.6) respectively. Then H(z) is univalently starlike of order ν if and only if $G_{B_1,\frac{1}{B_1}}(z)$ is univalently convex of order ν .

Proof: Let $G_{B_1,\frac{1}{B_1}}(z)$ be univalently convex of order ν , then

$$Re\left\{\frac{z(G_{B_1,\eta}(z))''}{(G_{B_1,\eta}(z))'}+1\right\} > \nu.$$
(2.4)

But by (1.6) we have

$$(G_{B_1,\frac{1}{B_1}}(z))' = B_1\left(\frac{H(z)}{z}\right),\tag{2.5}$$

and

$$(G_{B_1,\frac{1}{B_1}}(z))'' = B_1\left(\frac{H(z)}{z}\right)',$$
(2.6)

Thus by putting (2.5) and (2.6) in (2.4) we conclude

$$Re\left\{\frac{zH'(z)}{H(z)}\right\} > \nu.$$

So H(z) is univalently starlike of order v. All the relations are reversible and so the proof is complete.

Theorem (2.5): Let $H_k \in P(\gamma_k, \theta_k)$ with $0 \le \gamma_k < 1$, $\sum_{k=1}^m \gamma_k < 1$, $0 < \theta_k < \infty$, k = 1, 2, ..., m, $r_k > 0$ (k = 1, 2, ..., m) and $\sum_{k=1}^m r_k = 1$. Then

$$F(z) = \prod_{k=1}^{m} (H_k)^{r_k}$$
(2.7)

is in $P(\gamma, \theta)$, where $\gamma = \sum_{k=1}^{m} r_k \gamma_k$ and $\theta = \sum_{k=1}^{m} r_k \theta_k$.

Proof: We prove this theorem when $\eta = \frac{1}{B_1}$. Since $H_k \in P(\gamma_k, \theta_k)$, k = 1, 2, ..., m, then by definition 2.2, we have

$$\left| \frac{z(G_{B_{1},\frac{1}{B_{1}}}^{k}(z))''}{(G_{B_{1},\frac{1}{B_{1}}}^{k}(z))'} + 1 - (\gamma_{k} + \theta_{k}) \right| < Re\left(1 + \frac{z(G_{B_{1},\frac{1}{B_{1}}}^{k}(z))''}{(G_{B_{1},\frac{1}{B_{1}}}^{k}(z))'} \right) + (\theta_{k} - \gamma_{k}).$$
(2.8)

Now we must show

$$\left|\frac{z(\mathcal{F}_{B_{1},\frac{1}{B_{1}}}(z))''}{(\mathcal{F}_{B_{1},\frac{1}{B_{1}}}(z))'} + 1 - (\gamma + \theta)\right| < Re\left(1 + \frac{z(\mathcal{F}_{B_{1},\frac{1}{B_{1}}}(z))''}{(\mathcal{F}_{B_{1},\frac{1}{B_{1}}}(z))'}\right) + (\theta - \gamma).$$

where

$$\mathcal{F}_{B_{1},\frac{1}{B_{1}}}(z) = \mathcal{F}_{B_{1},\frac{1}{B_{1}}}(z)(F(z)) = \mathcal{F}_{B_{1},\frac{1}{B_{1}}}(z)\left(\prod_{k=1}^{m}(H_{k})^{r_{k}}\right).$$

But by a direct calculation we obtain

$$\begin{aligned} \left| \frac{z(\mathcal{F}_{B_1,\frac{1}{B_1}}(z))''}{(\mathcal{F}_{B_1,\frac{1}{B_1}}(z))'} + 1 - (\gamma + \theta) \right| &= \left| \frac{zF'}{F} - (\gamma + \theta) \right| \\ &= \left| \sum_{k=1}^m r_k \left(\frac{zH'_k}{H_k} - (\gamma_k + \theta_k) \right) \right| \\ &\leq \sum_{k=1}^m \left[r_k \left| \frac{zH'_k}{H_k} - (\gamma_k + \theta_k) \right| \right]. \end{aligned}$$

With a simple calculation on (2.8) we obtain

$$\left|\frac{zH'}{H} - (\gamma_k + \theta_k)\right| < Re\left(\frac{zH'}{H}\right) + (\theta_k - \gamma_k),$$

and so

$$\begin{aligned} \left| \frac{z(\mathcal{F}_{B_1,\frac{1}{B_1}}(z))''}{(\mathcal{F}_{B_1,\frac{1}{B_1}}(z))'} + 1 - (\gamma + \theta) \right| &< \sum_{k=1}^m \left[r_k \left(\frac{zH'_k}{H_k} \right) + (\gamma_k + \theta_k) \right] \\ &= Re\left(\frac{zF'}{F} \right) + (\theta - \gamma), \end{aligned}$$

so $F \in P(\gamma, \theta)$, (when $\eta = \frac{1}{B_1}$). The proof is now complete.

References

[1] B. A. Frasin, N. Magesh and S. Porwal, Univalence criteria for general integral operator, Analele Universității din Oradea - Fascicola Matematică, Tom XX, (2013), Issue No. 1, 153-164

[2] K. Kuroki and S. Owa, New class for certain analytic functions concerned with the strip domains, Advances in Mathematics: Scientific Journal, 2 (2), (2013), 63-70

[3] Sh. Najafzaded and S. R. Kulkarni, Convex subclass of starlike functions in terms of combination of integral operators, The International Review of Pure & Applied Mathematics, 2 (1), (2006),

[4] F. Rønning, On starlike functions associated with parabolic regions, Annales Universitatis Mariae Curie-Sklodowska, Sectio A, 45. (1991), 117-122.

[5] H. M. Srivastava, A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computers & Mathematics with Applications, 39 (3/4), (2000), 57-69.

[6] H. M. Srivastava, A. K. Mishra and M. K. Das, A class of parabolic starlike functions, Fractional Calulus and Applied Analysis, 6 (3), (2003).