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  Application of strip domain and parabolic region on univalent 

holomorphic functions 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction  

Let   and   be real numbers with     and    .  

The function     ( ) defined by 

(1.1)     ( )    
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where   is the unit disk   *    | |   +, is analytic and univalent in   with     ( )   . (For 

more details see [2]). In addition the function     ( ) maps   onto the strip domain   such that 

    ( )   .  

The function     ( ) can be written as follow: 
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ABSTRACT 

 

In this paper, by using univalent functions connected with the strip domain, parabolic 

starlike and parabolic uniformly convex functions are introduced. Some relations 

between these classes are proved. 
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Also, it is easy to see that 

(1.3) 
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where 

(1.4)    
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We consider 

(1.5)  ( )      ( )      

We define the operator      ( ( ))       ( ) as follow: 

(1.6)       ( )  (     )   ∫
 ( )

 

 

 

    
 

Definition (1.1): A function  ( ) is said to be parabolic starlike function in   denoted by PS 

(1.7)  |
   

 
  |     (

   

 
)                       

 

Definition (1.2): A function  ( ) is said to be uniformly parabolic convex function in   denoted by 

UPC if, 

(1.8) |
    

  
  |     (  

     

  
)  

 

For other subclasses of univalent functions, one may refer to [1,3,4] and [5]. 

2. Main Results  

In this section we give some relations between PS an UPC. 

Theorem (2.1):  
   

 

  

( ) is in UPC if and only if  ( )    . 

Proof: By (1.6) after a simple calculation we have 
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where, 
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Since  
   

 

  

( )     , then by (1.8) we have: 
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or equivalently by putting (1.6) in the above inequality we have 
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or equivalently 
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then by definition 1.1,  ( )    . □ 

Definition (2.2): A function  ( ) defined by (1.5) is said parabolic of order   type   in the unit disk   

denoted by  (   ) if 

(2.3) |
 (     ( ))

  

(     ( )) 
   (   )|  (   )    *  

 (     ( ))
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where      ( ) is defined by (1.6). 

Theorem (2.3):  ( )   (   ) if and only if for every    , the values of 

 (     ( ))
  

(     ( )) 
   

lie in the interior of the parabolic region. 

Proof: By definition 2.2, if we pot the values of 

 (     ( ))
  

(     ( )) 
   

equal to  , we have 
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,  ( )-  , (   )   (   )-  ( )              

,  ( )-    ,  ( )   -  

and that is the interior of the parabolic region in the half-plane (right side) with vertex at (   ) and    

is the length of the latus rectum.  □ 

For more details about this region see [6]. 

Theorem (2.4): If  ( ) are      ( ) and defined by (1.5) and (1.6) respectively. Then  ( ) is 

univalently starlike of order   if and only if  
   

 

  

( ) is univalently convex of order  . 

Proof: Let  
   

 

  

( ) be univalently convex of order  , then 
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But by (1.6) we have 
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Thus by putting (2.5) and (2.6) in (2.4) we conclude 
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-     

So H(z) is univalently starlike of order ν. All the relations are reversible and so the proof is complete. 

 □ 

Theorem (2.5): Let     (     ) with       , ∑      
   ,       ,          , 

     (         ) and ∑      
   . Then 

(2.7)  ( )  ∏(  )
  

 

   

 
 

is in  (   ), where   ∑     
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   . 

Proof: We prove this theorem when   
 

  
. Since     (     ),          , then by definition 

2.2, we have 
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Now we must show 
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But by a direct calculation we obtain 
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With a simple calculation on (2.8) we obtain 
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so    (   ), (when   
 

  
). The proof is now complete.  
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