Al-Qadisiyah Journal of Pure Science

Volume 26 | Number 4

Article 5

8-15-2021

Accounts For The Groups SL(2,U), U = 41 and 43

Sherouk Awad Khalaf

Ministry of Education, Directorate General of Education in Diyala, Iraq,
sherouk.awad1203a@ihcoedu.uobaghdad.edu.iq

Niran Sabah Jasim

Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Iraq,, niraan.s.j@ihcoedu.uobaghdad.edu.iq

Follow this and additional works at: https://qjps.researchcommons.org/home

Recommended Citation

Khalaf, Sherouk Awad and Jasim, Niran Sabah (2021) "Accounts For The Groups SL(2,U), U = 41 and 43," *Al-Qadisiyah Journal of Pure Science*: Vol. 26: No. 4, Article 5.

DOI: 10.29350/qjps.2021.26.4.1353

Available at: https://qjps.researchcommons.org/home/vol26/iss4/5

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Al-Qadisiyah Journal of Pure Science

DOI: /10.29350/jops.

http://qu.edu.iq/journalsc/index.php/JOPS

Accounts for the groups $SL(2,\mathfrak{U})$, $\mathfrak{U}=41$ and 43

Authors Names

- a. Sherouk Awad Khalaf
- b. Niran Sabah Jasim

Article History

Received on: 13 / 6/2021 Revised on: 1/6/2021 Accepted on: 2/7/2021

Keywords:

Circular retail, special linear group, ordinary character table, character table of raţional represenţations.

DOI: https://doi.org/10.29350/

jops. 2021.26. 4.1353

ABSTRACT

The circular retail for the groups $\mathcal{SL}(2,\mathcal{U})$ where $\mathcal{U}=41$ and 43 was compute in this paper from the ordinary character table and the character table (ch.t.) of rational representations (r.rep.) for each group.

1. Introduction

The $\mathcal{SL}(n,F)$ is the subgroup of GL (n,F) which contains all matrices of determinant one over the field F, [7,9]. By using the intellect which the authors gave it in [1,3-5,8,10-12], we find the circular retail for the groups $\mathcal{SL}(2,\mathfrak{U})$ where $\mathfrak{U}=41$ and 43.

2- Elementary Concepts

In this section some facts were mentioned.

Theorem 2.1: [6]

If G is any cyclic P-group, then $K(G) = Z_p$.

^a Ministry of Education, Directorate General of Education in Diyala, Iraq, E-Mail: sherouk.awad1203a@ihcoedu.uobaghdad.edu.iq

^b Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Iraq, E-Mail: niraan.s.j@ihcoedu.uobaghdad.edu.iq

Theorem 2.2: [6]

If G is any cyclic group of order Pn, then $K(G) = \bigoplus_{i=1}^{n} Z_{p^{i}}$.

Theorem 2.3: [2]
$$|\mathcal{SL}(2,p^k)| = p^k (p^{2k} - 1).$$

3. Primary account

We using the notion in [1,3-5,8,10-12] to find the circular retail for $\mathcal{SL}(2,\mathcal{U})$ where $\mathcal{U}=41$ and 43.

3.1 The account for SL(2,41)

$$|SL(2,41)| = 68880.$$

The (ch.t.) of (r.rep.) for $\mathcal{SL}(2,41)$ is

Cg	1	z	с	zc	a	a ²	a ⁴	b	b ²	<i>b</i> ³	<i>b</i> ⁶
C _g	1	1	840	840	1722	1722	1722	1640	1640	1640	1640
C _G (g)	68880	68880	82	82	40	40	40	42	42	42	42
1_{G}	1	1	1	1	1	1	1	1	1	1	1
Ψ	41	41	0	0	1	1	1	- 1	- 1	- 1	- 1
$\chi_{1} + \chi_{3} + \chi_{5} + \chi_{7} + \chi_{9} + \chi_{11} + \chi_{13} + \chi_{15} + \chi_{17} + \chi_{19}$	420	- 420	10	- 10	0	0	0	0	0	0	0
χ_{2} + χ_{4} + χ_{6} + χ_{8} + χ_{12} + χ_{14} + χ_{16} + χ_{18}	336	336	8	8	0	0	- 4	0	0	0	0
χ10	42	42	1	1	0	- 2	2	0	0	0	0
$\theta_1 + \theta_3 + \theta_5 + \theta_9 + \theta_{11} + \theta_{13} + \theta_{15} + \theta_{17} + \theta_{19}$	320	- 320	- 8	8	0	0	0	0	0	- 3	3
θ ₇	40	- 40	- 1	1	0	0	0	0	0	3	- 3
$\theta_2 + \theta_4 + \theta_6 + \theta_8 + \theta_{10} + \theta_{12} + \theta_{16} + \theta_{18} + \theta_{20}$	360	360	- 9	- 9	0	0	0	- 1	1	2	2
θ ₁₄	40	40	- 1	- 1	0	0	0	1	1	- 2	- 2
ξ ₁ + ξ ₂	42	42	1	1	- 2	2	2	0	0	0	0
$\eta_1 + \eta_2$	- 40	- 40	- 1	- 1	0	0	0	2	- 2	2	- 2

The diagonalization matrix of it is

Thus

 $K(\mathcal{SL}\ (2,\!41))\ =\ Z_{68880}\ \oplus\ Z_{17220}\ \oplus\ Z_{4}\ \oplus\ Z_{2}\ \oplus\ Z_{5}\ \oplus\ Z_{4}\ \oplus\ Z_{7}\ \oplus\ Z_{2}\ \oplus\ Z_{6}\ \oplus\ Z_{1}\ \oplus\ Z_{7}$

3.2 The account for SL(2,43)

 $|\mathcal{SL}(2,43)| = 79464.$

The (ch.t.) of (r.rep.) for $\mathcal{SL}(2,43)$ is

Cg	1	z	c	zc	а	a ²	a ³	a ⁶	ь	<i>b</i> ²	<i>b</i> ⁴
C _g	1	1	924	924	1892	1892	1892	1892	1806	1806	1806
C _G (g)	79464	79464	86	86	42	42	42	42	44	44	44
1 _G	1	1	1	1	1	1	1	1	1	1	1
Ψ	43	43	0	0	1	1	1	1	- 1	- 1	- 1
χ1+ χ3 + χ5+ χ7+ χ9+ χ11+ χ13+ χ15 + χ17+ χ19	396	- 396	9	- 9	0	0	3	- 3	0	0	0
χ ₇	44	- 44	1	- 1	1	- 1	- 2	2	0	0	0
$\chi_{2}+\chi_{4}+\chi_{6}+\chi_{8}+\chi_{10}+\chi_{12}+\chi_{16}+\chi_{18}+\chi_{20}$	396	396	9	9	0	0	- 3	- 3	0	0	0
χ14	44	44	1	1	- 1	- 1	2	2	0	0	0
$\theta_1 + \theta_3 + \theta_5 + \theta_9 + \theta_{11} + \theta_{13} + \theta_{15} + \theta_{17} + \theta_{19} + \theta_{21}$	420	- 420	- 10	10	0	0	0	0	0	- 2	2
θ_{11}	42	- 42	- 1	1	0	0	0	0	0	2	- 2
$\theta_2 + \theta_4 + \theta_6 + \theta_8 + \theta_{10} + \theta_{12} + \theta_{16} + \theta_{18} + \theta_{20}$	420	420	- 10	- 10	0	0	0	0	0	2	2
ξ ₁ + ξ ₂	44	- 44	1	- 1	- 2	2	- 2	2	0	0	0
$\eta_1 + \eta_2$	42	42	- 1	- 1	0	0	0	0	2	- 2	- 2

The diagonalization matrix of it is

Thus

 $K(SL (2,43)) = Z_{79464} \oplus Z_{19866} \oplus Z_2 \oplus Z_7 \oplus Z_2 \oplus Z_4 \oplus Z_2 \oplus Z_{11} \oplus Z_1 \oplus Z_3 \oplus Z_2$

References

- [1] Farah F. G., Rasha I. K. & Niran Sabah Jasim, 2020, Estimating Marriage and Divorces and Comparing Them Using Numerical Method, Al-Qadisiyah Journal of Pure Science, Vol. 25, issue (2), pp.60-66. DOI: https://doi.org/10.29350/jops.2020.25.2.1107.
- [2] Gehles K.E.; 2002, Ordinary Characters of Finite Special Linear Groups, M.Sc. Dissertation, University of ST. Andrews.
- [3] Haytham, R.H. & Niran, S.J. 2018. On free resolution of Weyl module and zero characteristic resolution in the case of partition (8,7,3), Baghdad Science Journal, Vol.15(4)pp. 455-465.

- [4] Haytham Razooki Hassan & Niran Sabah Jasim, (2021), Weyl Module Resolution Res (6,6,4;0,0) in the Case of Characteristic Zero, Iraqi Journal of Science, Vol. 62, No. 4, pp: 1344-1348.DOI: 10.24996/ijs.2021.62.4.30.
- [5] Haytham Razooki Hassan & Niran Sabah Jasim, (2021), Exactness for complex sequence in the skew shape (8,8)/(1,0), Journal of Interdisciplinary Mathematics, DOI: 10.1080/09720502.2021.1892271.
- [6] Kirdar M.S.; 1982, The Factor Group of the Z-Valued Class Function Module The Group of the Generalized Characters, Ph.D.Thesis, University of Birmingham.
- [7] Niran S.J., 2009, The Cyclic Decomposition of SL(2,p), where p = 9, 25 and 27, Journal of the College of Basic Education / Al-Mustansiriya University, Vol.15, No.60, pp.1-9.
- [8] Niran S.J., Results of the Factor Group CF(C,Z)/R(G), M.Sc. Thesis, University of Technology, 2005.
- [9] Niran S.J., Haytham R.H., 2020, Results for Some Groups of PSL (2, F), Technology Reports of Kansai University, Vol. 62(3), pp.2017-2022.
- [10] Niran Sabah Jasim, Hadeel Hussein Luaibi & Rana Noori Majeed, (2021), Computations for the special linear group (2, 49), Journal of Interdisciplinary Mathematics, DOI: 10.1080/09720502.2021.1892273.
- [11] Niran Sabah Jasim, Sawsan Jawad Kadhum & Ahmed Issa Abdul-Nabi (2021): Enforcement for the partition (7,7,4;0,0), Journal of Interdisciplinary Mathematics, DOI: 10.1080/09720502.2021.1892272
- [12] Rana.N.M., Rasha.I.K. and NiranS.J., Results for Some of the Projective Special Linear Groups, International Journal of Science and Research (IJSR), Vol.7(1), pp.1868-1872, 2018.