Al-Qadisiyah Journal of Pure Science

Volume 26 | Number 4

Article 19

8-15-2021

A Quasi-Hilbert Space And Its Properties

Jawad Kadhim Al-Delfi Department of Mathematics, College of Science, Mustansiriyah University, Iraq, jawadaldelfi@uomustansiriyah.edu.iq

Follow this and additional works at: https://qjps.researchcommons.org/home

Recommended Citation

Al-Delfi, Jawad Kadhim (2021) "A Quasi-Hilbert Space And Its Properties," *Al-Qadisiyah Journal of Pure Science*: Vol. 26: No. 4, Article 19. DOI: 10.29350/qjps.2021.26.4.1388 Available at: https://qjps.researchcommons.org/home/vol26/iss4/19

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Al-Qadisiyah Journal of Pure Science Vol.(26) Issue (Special issue num.4) (2021) pp. 169-174

A Quasi-Hilbert Space and Its Properties

Author Name	ABSTRACT
Article History Received on: 22/6/2021 Revised on: 18/7/2021 Accepted on: 25/7/2021	This paper studies the concept of a quasi-inner product space and its completeness to get and prove some properties of quasi-Hilbert spaces. The best examples of this notion are spaces L_p , where $0 .$
<i>Keywords:</i> Quasi-metric space Quasi-Banach space Gâteaux derivative Quasi-inner product space Quasi-Hilbert space	
DOI: https://doi.org/10.29350/ Jops / https://doi.org/10.29350/ jops. 2021.26. 4.1388	

1. Introduction

The most important in functional analysis is the concept of normed space and its completeness which is related to other concepts such as a metric space, inner product space, and a quasi-normed space. The set of all measurable functions L_p [a,b], $0 , [a, b] <math>\subset \mathbb{R}$

is a good example on these concepts ([3,4,8]).

In the normed spaces, mathematicians have used $G\hat{a}$ teaux derivatives to introduce a notion of quasi- inner product space ([5,7]). This paper has used a quasi-normed space to give a quasi-inner product space and quasi-Hilbert space. It is studied the relationship between a notion of quasi-Hilbert space and others, with study some properties of it.

Section one of the paper includes definitions of a quasi-normed space, a quasi- Banach space and others with some valuable results. The second section presents a quasi- inner product space and quasi-Hilbert space with some essential properties.

2. Quasi-Banach Spaces

Definition (2.1). Quasi-metric space (U, d_q) , where U is a nonempty set X with a quasimetric d_q which differs from a metric function by the inequality :

$$d_q(u,v) \leq C \left(d_q(u,w) + d_q(w,v) \right)$$
 for all $u,v,w \in U$, where $1 \leq C < \infty$.

A function d_q be a metric if C = 1, thus it is generalization of a metric. Every a metric function is quasi-metric, but not the converse in generality [6].

Definition (2.2). A quasi-norm $_{q} \| \cdot \|$ on a vector space U over the field of real numbers \mathbb{R} is a function $_{q} \| \cdot \| \colon U \longrightarrow [0, +\infty)$ with the properties:

(1)
$$_{a}|v|| \ge 0, \forall v \in U, _{a}||v|| = 0 \iff v = 0.$$

(2)
$$_{q} \parallel \alpha v \parallel = \mid \alpha \mid_{q} \parallel v \parallel$$
, $\forall v \in U, \forall \alpha \in \mathbb{R}$.

(3) $_{q} \|v+w\| \leq C\left(_{q} \|v\|+_{q} \|w\|\right) \forall v, w, \in U$, where a constant $C \geq 1$.

If C = 1, then the quasi-norm is a norm function. A quasi-normed space is $(U, {}_{q} || . ||)$ or simply U. Since every quasi-normed space U is a quasi-metric space by $d_{q}(v, w) = {}_{q} || v - w ||$, the concept of completeness is given. A quasi-Banach space is a complete quasi-normed space ([3,6]).

Remark (2.3). It is clear, every quasi-normed space is a quasi-metric space, conversely may be not true, indeed,

Take (U, d_q) , where $d_q(u, v) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|u_k - v_k|}{1 + |u_k - v_k|}$ is a quasi-metric space, but it is not a quasi-normed space (see[8]).

Remark (2.4). It is obvious, any inner product function satisfies Definition (2.2) and generates a quasi - norm which is $_{q} || v || = (\langle v, v \rangle)^{1/2} \forall v \in U$.

Theorem (2.5) [1]. A quasi-normed space U is an inner product space iff equality:

 ${}_{q} \|v + w\|^{2} + {}_{q} \|v - w\|^{2} = 2 {}_{q} \|v\|^{2} + 2 {}_{q} \|w\|^{2} \qquad \forall u, v \in U,$ (2.1) is satisfied by the quasi-norm of *U*.

Definition (2.6) [4]. The vector space $L_p[a,b]$, $0 , <math>[a, b] \subset \mathbb{R}$ is a set of all measurable

functions f on [a, b] for which $\int_{a}^{b} |f(x)|^{p} dx < \infty$.

Theorem (2.7) [3,4]. A space $L_p[a,b]$, with the function $_q \| f \| = \left(\int_a^b |f(x)|^p dx \right)^{1/p}$ is a

quasi-Banach space when $0 , a Banach space when <math>1 , and <math>L_2[a,b]$ is only a Hilbert space.

3. Some Properties of Quasi-Iinner Product Spaces.

Definition(3.1) [1]. Aquasi-normed space *U* is called a quasi-inner product space, if :

$${}_{q} \| v + w \|^{4} - {}_{q} \| v - w \|^{4} = 8 \left({}_{q} \| v \|^{2} \tau (v, w) + {}_{q} \| w \|^{2} \tau (w, v) \right), \forall v, w \in U, \quad (3.1)$$

is satisfied, where $\tau(v, w)$ and $\tau(w, v)$ are Gateaux derivatives, A Gâteaux derivative of ||v||,

 $\tau(v, w)$ at $v \in U$ in the direction $w \in U$ is defined as:

$$\tau(v,w) = \frac{-\frac{q}{v} \|v\|}{2} \left(\lim_{h \to +0} \frac{-\frac{q}{v} \|v+hw\|_{-q} \|v\|}{h} + \lim_{h \to -0} \frac{-\frac{q}{v} \|v+hw\|_{-q} \|v\|}{h} \right), \text{ where } h \in \mathbb{R}.$$

Similarly, $\tau(w, v)$ at $w \in U$ in the direction v is defined. If U is a quasi-Banach space then it is called a quasi-Hilbert space.

Proposition (3.2). If *U* is a quasi-normed space then $\forall v, w \in U$,

(1) $\tau(v,w) \ge 0$, $\tau(0,w) = \tau(v,0) = 0$, and $\tau(v,v) = \frac{1}{2} \|v\|^{2}$.

(2) If the right limit = the left limit then: $\tau(v, w) = {}_{q} ||v|| \lim_{h \to 0} h^{-1} \left({}_{q} ||v+hw|| - {}_{q} ||v|| \right)$.

Proof:

The proof is obvious from Definition (3.1).

Proposition (3.3). If *U* is an inner-product space then $\tau(v, w) = \langle v, w \rangle$ and $\tau(w, v) = \langle w, v \rangle$

 $\forall v, w \in U$.

Proof:

From Definition (3.1), $\forall v, w \in U$.

$$\tau(v,w) = \frac{-\frac{q}{2} \left(\left(\lim_{h \to +0} \frac{q \|v + hw\|^{2} - q \|v\|^{2}}{h_{q} \|v + hw\|_{+q} \|v\|} \right) + \left(\lim_{h \to -0} \frac{q \|v + hw\|^{2} - q \|v\|^{2}}{h_{q} \|v + hw\|_{+q} \|v\|} \right) \right).$$
Using Pomark (2.4) we get $\tau(u,w) = \langle u,w \rangle$. Similarly, $\tau(w,v) = \langle w,w \rangle$

Using Remark (2.4), we get $\tau(v, w) = \langle v, w \rangle$. Similarly, $\tau(w, v) = \langle w, v \rangle$.

Remark (3.4). Using the proof of Proposition (3.3) with the binomial theorem [2] in Definition (3.1) to get the functional τ (*f*,*g*) of the following:

(1) $\forall f,g \in L_1[a,b]$, we have $\tau(f,g) = {}_{q} || f || \int_a^b (\operatorname{sng} f(x))g(x) dx$. where, $\operatorname{sng} f(x) = \begin{cases} 1, & f(x) > 0 \\ 0, & f(x) = 0 \\ -1, & f(x) < 0 \end{cases}$.

(2) $\forall f, g \in L_4[a,b]$, we have $\tau(f,g) = ||f||^{-2} \int_a^b |f(x)|^3 (\operatorname{sng} f(x))g(x) dx$.

Similarly, $\tau(g, f)$ is defined for (1) and (2).

Example (3.5). If $f, g \in L_1[0,1]$, such that $f(x) = x \quad \forall x \in [0, \frac{1}{2}]$ and $g(x) = x \quad \forall x \in [\frac{1}{2}, 1]$.

From Remark (3.4), $\tau(f,g) = \tau(w,v) = \frac{3}{64}$ and the right hand of equation(3.1) $= \frac{15}{32}$, but the left hand $= \frac{3}{64}$, thus L_1 [0,1] is not a quasi-inner product space. Also, it is not an inner product space, since 1 = the right hand of equation (2.1) \neq the left hand $= \frac{5}{16}$.

Theorem (3.6). A quasi-inner product space *U* is an inner-product space if and only if the equality (2.1) is satisfied.

Proof:

If *U* is a quasi-inner product space such that the equality (2.1) is satisfied, then by Theorem (2.5), it is an inner product space.

If U is an inner-product space, using Remark (2.4) we get :

$$_{q} \|v+w\|^{2} = \langle v+w, v+w \rangle = _{q} \|v\|^{2} + 2\langle v, w \rangle + _{q} \|w\|^{2} \Rightarrow (_{q} \|v+w\|^{2})^{2} = (_{q} \|v\|^{2} + _{q} \|w\|^{2})^{2} + 4\langle v, w \rangle (_{q} \|v\|^{2} + _{q} \|w\|^{2}) + 4\langle \langle v, w \rangle)^{2}, \forall v, w \in U.$$
Also, $_{q} \|v-w\|^{2} = _{q} \|v\|^{2} - 2\langle v, w \rangle + _{q} \|w\|^{2} \Rightarrow _{q} \|v-w\|^{4} = (_{q} \|v\|^{2} + _{q} \|w\|^{2})^{2} - 4\langle v, w \rangle (_{q} \|v\|^{2} + _{q} \|w\|^{2}) + 4\langle \langle v, w \rangle)^{2}.$
This implies that, $_{q} \|v+w\|^{4} - _{q} \|v-w\|^{4} = 8(_{q} \|v\|^{2} + _{q} \|w\|^{2}) \langle v, w \rangle.$

Thus, from Proposition (3.3), an equation (3.1) is satisfied, and the proof is finished.

Example (3.7). Since the right hand of an equation (3.1) = the left hand = $8(\int_a^b |f(x)|^3(\operatorname{sng} f(x))g(x) dx + \int_a^b |g(x)|^3(\operatorname{sng} g(x))f(x) dx)$ with $L_4[a,b]$, then it is a quasi-inner product spaces, but an equation(2.1) fails, indeed,

173

If we take L_4 [-1,1] such that $f(x) = -x \quad \forall x \in [-1,0]$ and $g(x) = x \quad \forall x \in [0,1]$, then it is not an inner product space, since 1 = the right hand of equation(2.1) \neq the left hand \cong 1. 265.

Proposition (3.8). A quasi-inner product space U is an inner-product space if and only if the following equivalence holds:

 ${}_{a} \| v + w \| = {}_{a} \| v - w \| \leftrightarrow \tau(v, w) = 0, \forall v, w \in U$ (3.2)

Proof:

The proof of this proposition proceeds in a same way into version in a normed space [5].

Remark (3.9). (1)Since a space L_p [a,b] is a quasi-Banach space, then it is a quasi-Hilbert space if it is a quasi-inner product space for example a space L_4 [a,b] is a quasi-Hilbert space, while L_1 [a,b] is not.

(2) A space $L_2[a,b]$ is one only which be a quasi-Hilbert space and Hilbert space together, as shown in the following:

Theorem (3.10). $L_2[a,b]$, $[a,b] \subset \mathbb{R}$, is a quasi-Hilbert space.

Proof:

Since a space $L_2[a,b]$ is Hilbert space from Theorem(2.6), then $\forall f, g \in L_2[a,b]$, $< f, g > = \tau(f,g) = \int_a^b |f(x)| \quad (\operatorname{sng} f(x)) g(x) dx$, and $< g, f > = \tau(g, f)$ $= \int_a^b |g(x)| \quad (\operatorname{sng} g(x)) f(x) dx$, according to Proposition (3.3) and application the binomial theorem in Definition (3.1). Thus, the right hand of equation (3.1) is $8(\int_a^b |f(x)|^3 (\operatorname{sng} f(x)) g(x) dx \int_a^b |g(x)|^3 (\operatorname{sng} g(x)) f(x) dx$) which is the same value of its left hand. Therefore, $L_2[a,b]$ is a quasi-Hilbert space.

References

[1] J.K. Al-Delfi, Continuous Linear Operators On Infinite Quasi-Sobolev Spaces ℓ_{∞}^m . Journal of Physics: Conference Series (IOP Publishing), Sixth International Scientific Conference for Iraqi Al Khwarizmi Society (FISCAS), Cairo, Egypt. 1897 (2021) 012044. doi:10.1088/1742-6596/1897/1/012044. 1-6.

[2] P. R. Halmose, Polynomials. Springer-Verlag, Inc. New York, (1989).

[3] N. Kalton, Linear Operators on Lp for 0 < p <1. Transaction of The American Mathematical Society, Missouri. Vol. 259, No. 2 (1980). 319-355.

[4] E. Kreyszig, Introductory Functional Analysis with Applications. John Wiley and Sons, Inc (1978).

[5] P.M. Milicic, On The Quasi-Inner Product Spaces. Mat Bulletin. Skopje, Macedonia, 22

(XLVIII) (1998). 19-30.

[6] G. Rano and T. Bag, Quasi-Metric Space and Fixed Point Theorems. International Journal of Mathematics and Scientific Computing (ISSN: 2231-5330), VOL. 3, NO. 2 (2013). 27-31.

[7] R . A . Tapia, A characterization of inner product spaces. Proc. Amer. Math. Soc., 41(1973). 569-574.

[8] A. H. Siddiqi, Functional Analysis with Applications. Tata McGraw-Hill Publishing Company, Ltd. New Delhi, India, (1986).