[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 26](https://qjps.researchcommons.org/home/vol26) [Number 4](https://qjps.researchcommons.org/home/vol26/iss4) Article 19

8-15-2021

A Quasi-Hilbert Space And Its Properties

Jawad Kadhim Al-Delfi Department of Mathematics, College of Science, Mustansiriyah University, Iraq, jawadaldelfi@uomustansiriyah.edu.iq

Follow this and additional works at: https://qjps.researchcommons.org/home

Recommended Citation

Al-Delfi, Jawad Kadhim (2021) "A Quasi-Hilbert Space And Its Properties," Al-Qadisiyah Journal of Pure Science: Vol. 26: No. 4, Article 19. DOI: 10.29350/qjps.2021.26.4.1388 Available at: [https://qjps.researchcommons.org/home/vol26/iss4/19](https://qjps.researchcommons.org/home/vol26/iss4/19?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss4%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

Al-Qadisiyah Journal of Pure Science Vol.(26) Issue (Special issue num.4) (2021) pp. 169–174

A Quasi-Hilbert Space and Its Properties

1. Introduction

The most important in functional analysis is the concept of normed space and its completeness which is related to other concepts such as a metric space, inner product space, and a quasi-normed space. The set of all measurable functions $\mathrm{L} _{\mathrm{p}}\;$ $[\mathrm{a},\mathrm{b}]$, 0<p< ∞ , $[\mathrm{a},\mathrm{b}]$

is a good example on these concepts ([3,4,8]).

In the normed spaces, mathematicians have used Gâteaux derivatives to introduce a notion of quasi- inner product space ([5,7]). This paper has used a quasi-normed space to give a quasi-inner product space and quasi-Hilbert space. It is studied the relationship between a notion of quasi-Hilbert space and others, with study some properties of it.

 Section one of the paper includes definitions of a quasi-normed space, a quasi- Banach space and others with some valuable results. The second section presents a quasi- inner product space and quasi-Hilbert space with some essential properties.

2. Quasi-Banach Spaces

Definition (2.1). Quasi-metric space (U, d_q) , where *U* is a nonempty set X with a quasimetric d_a which differs from a metric function by the inequality :

$$
d_q(u, v) \le C \left(d_q(u, w) + d_q(w, v)\right)
$$
 for all $u, v, w \in U$, where $1 \le C < \infty$.

A function d_a be a metric if $C = 1$, thus it is generalization of a metric . Every a metric

function is quasi-metric, but not the converse in generality [6].

Definition (2.2). A quasi-norm $_q||\cdot||$ on a vector space *U* over the field of real numbers $\mathbb R$ is a function $_{q}$ || .||: $U \rightarrow [0, +\infty)$ with the properties:

(1)
$$
q|v|| \ge 0, \forall v \in U, q||v|| = 0 \leftrightarrow v = 0.
$$

(2)
$$
{q}||\alpha v|| = |\alpha|{q}||v||
$$
, $\forall v \in U, \forall \alpha \in \mathbb{R}$.

 (3) $_q || v + w || \le C \left(\frac{d}{v} || v || + \frac{d}{v} || w || \right) \ \forall \ v, w, \in U$, where a constant $C \ge$

If $C = 1$, then the quasi-norm is a norm function. A quasi-normed space is $(U, q||.||)$ or simply *U*. Since every quasi-normed space *U* is a quasi- metric space by $d_q(v, w) = \sqrt{v - w}$, the concept of completeness is given. A quasi-Banach space is a complete quasi-normed space **(**[3,6]).

Remark (2.3). It is clear, every quasi-normed space is a quasi-metric space, conversely may be not true, indeed,

Take (U , d_q), where $d_q(u, v) = \sum_{n=1}^{\infty}$ $k = 1$ $\mathbf{1}$ 2^k I $\frac{|u_k - v_{k}|}{1 + |u_k - v_k|}$ is a quasi-metric space, but it is not a quasinormed space **(** see[8]**).**

Remark (2.4). It is obvious, any inner product function satisfies Definition (2.2) and generates a quasi - norm which is $\|y\| = (\langle v, v \rangle)^{1/2}$ \forall $v \in U$.

Theorem (2.5) [1]. A quasi-normed space *U* is an inner product space iff equality:

 $\|q\|v+w\|^2 + \frac{1}{q}\|v-w\|^2 = 2\frac{1}{q}\|v\|^2 + 2\frac{1}{q}\|w\|^2 \quad \forall u, v \in U,$ (2.1) is satisfied by the quasi-norm of *U*.

Definition (2.6) [4]. The vector space L_p [a, b], 0<p< ∞ , [a, b] $\subset \mathbb{R}$ is a set of all measurable

functions f on [a, b] for which $\int |f(x)|^p dx < \infty$ *b a* $|f(x)|^p dx < \infty$. **Theorem (2.7) [3,4].** A space L_p [a, b], with the function $\int_q || f ||$ *b* $\lambda^{1/p}$ *a* $f(x)$ ^p *dx* 1/ $\left| \int f(x) \right|^p dx$ $\bigg)$ \setminus $\overline{}$ \setminus ſ $=\left|\int |f(x)|^p dx\right|$ is a

quasi-Banach space when $0 < p < \infty$, a Banach space when $1 < p < \infty$, and L_2 [a,b] is only a Hilbert space.

3. Some Properties of Quasi-Iinner Product Spaces.

Definition(3.1) [1]. Aquasi-normed space *U* is called a quasi-inner product space, if:

$$
{}_{q}\|\nu+w\|^{4}-{}_{q}\|\nu-w\|^{4}=8\left(\begin{array}{cc}1&\nu\end{array}\right)^{2}\tau\left(\nu,w\right)+{}_{q}\|\nu\|^{2}\tau\left(w,\nu\right),\,\,\forall\ \, \nu,w\in U\,,\tag{3.1}
$$

is satisfied, where $\tau(v, w)$ and $\tau(w, v)$ are Gateaux derivatives, A Gâteaux derivative of $\frac{1}{q}\|v\|$,

 $\tau(v, w)$ at $v \in U$ in the direction $w \in U$ is defined as:

$$
\tau(v,w) = \frac{\int_{q}^{\|v\|} \left(\lim_{h \to +0} \frac{\int_{q}^{\|v+hw\|_{-q} \|v\|}{h} + \lim_{h \to -0} \frac{\int_{q}^{\|v+hw\|_{-q} \|v\|}{h} \right)}{h}, \text{where } h \in \mathbb{R}.
$$

Similarly, $\tau(w, v)$ at $w \in U$ in the direction v is defined. If U is a quasi-Banach space then it is called a quasi-Hilbert space.

Proposition (3.2). If *U* is a quasi-normed space then \forall v, $w \in U$,

 $(1) \tau (v, w) \ge 0$, $\tau(0, w) = \tau(v, 0) = 0$, and $\tau(v, v) = |v|$ $\overline{\mathbf{c}}$.

(2) If the right limit = the left limit then: $\tau(v, w) = \int_{q} ||v|| \lim_{h \to 0} h^{-1} \left(\int_{q} ||v + hw|| - \int_{q} ||v|| \right)$.

Proof:

The proof is obvious from Definition (3.1)**.**

Proposition (3.3). If *U* is an inner-product space then $\tau(v, w) = \langle v, w \rangle$ and $\tau(w, v)$ $=$

$$
\forall \ \ v,w \in U.
$$

Proof:

From Definition (3.1), $\forall v, w \in U$.

$$
\tau(v,w) = \frac{e^{\|v\|}}{2} \left(\left(\lim_{h \to +0} \frac{e^{\|v+hw\|^{2} - e^{\|v\|^{2}}}}{h_{q} \|v + hw\|_{+q} \|v\|} \right) + \left(\lim_{h \to -0} \frac{e^{\|v+hw\|^{2} - e^{\|v\|^{2}}}}{h_{q} \|v + hw\|_{+q} \|v\|} \right) \right).
$$

Using Remark 6.3.4) we get $\tau(u,w) = \langle u, w \rangle$. Similarly, $\tau(u,w) = \langle w, w \rangle$.

Using Remark (2.4), we get $\tau(v, w) = \langle v, w \rangle$. Similarly, $\tau(w, v) = \langle w, v \rangle$.

Remark (3.4). Using the proof of Proposition (3.3) with the binomial theorem [2] in Definition (3.1) to get the functional τ (*f ,g*) of the following:

(1) ∀ $f,g ∈ L_1[a,b]$, we have τ $(f,g) = \int_a^b |f| \int_a^b (s \log f(x)) g(x)$ \int_a^b (sng $f(x)$) $g(x)$ dx. where, $\operatorname{sng} f(x) = \{$ 1, $f(x) >$ $f(x) =$ -1 , $f(x)$ $\}$.

(2) $\forall f, g \in L_4$ [a,b], we have $\tau(f,g) = \int_{g}^{\infty} |f|^{2} \int_{a}^{b} |f(x)|^{3} (\text{sng } f(x)) g(x)$ $\int_{a}^{b} |f(x)|^{3}$ (sng $f(x)$)g(x) dx.

Similarly, $\tau(g, f)$ is defined for (1) and (2).

Example (3.5). If $f, g \in L_1[0,1]$, such that $f(x) = x \quad \forall x \in [0, \frac{1}{2}]$ $\frac{1}{2}$] and $g(x) = x \quad \forall x \in$ $\left[\frac{1}{2}\right]$ $\frac{1}{2}$, 1].

From Remark (3.4), $\tau(f,g) = \tau(w,v) = \frac{3}{6}$ $rac{5}{64}$ and the right hand of equation(3.1) = $rac{15}{32}$, but the left hand $=\frac{3}{6}$ $\frac{3}{64}$, thus L_1 [0,1] is not a quasi-inner product space. Also, it is not an inner product space, since $1 =$ the right hand of equation $(2.1) \neq$ the left hand $= \frac{3}{16}$.

Theorem (3.6). A quasi-inner product space *U* is an inner-product space if and only if the equality (2.1) is satisfied.

Proof:

If *U is* a quasi-inner product space such that the equality (2.1) is satisfied, then by Theorem (2.5), it is an inner product space.

If *U* is an inner-product space, using Remark (2.4) we get : $|q| |v+w||^2 = \langle v+w, v+w \rangle = |q||v||^2 + 2 \langle v, w \rangle + |q||w||^2 \Rightarrow (q||v+w||^2)$ $\overline{\mathbf{c}}$ = $\left(\begin{array}{c} | \\ |q| | \nu | \vert^2 + |q| |w| |^2 \end{array} \right)$ 2 + 4 < *v*, *w* > $\left(\int_{q}^{2} ||v||^{2} + \int_{q}^{2} ||w||^{2} \right) + 4 \left(\langle v, w \rangle \right)^{2}, \forall v, w \in U.$ Also, $\int_{a}^{a} \|v - w\|^2 = \int_{a}^{a} \|v\|^2 - 2 < v$, $w > + \int_{a}^{a} \|w\|^2 \Rightarrow$ $\mathcal{L}_{q} \|\mathbf{v} - \mathbf{w}\|^{4} = \left(\int_{q} \|\mathbf{v}\|^{2} + \int_{q} \|\mathbf{w}\|^{2}\right)^{2} - 4 < \mathbf{v}, \mathbf{w} > \left(\int_{q} \|\mathbf{v}\|^{2} + \int_{q} \|\mathbf{w}\|^{2}\right) + 4 < (\mathbf{v}, \mathbf{w} >)^{2}.$ This implies that, $\int_{q} ||v+w||^{4} - \int_{q} ||v-w||^{4} = 8(\int_{q} ||v||^{2} + \int_{q} ||w||^{2})$ $_q \Vert v \Vert^2 + \frac{1}{q} \Vert w \Vert^2$) < v, w >.

Thus, from Proposition (3.3), an equation (3.1) is satisfied, and the proof is finished.

Example (3.7). Since the right hand of an equation (3.1) = the left hand = $8(\int_a^b |f(x)|^3 (\text{sng } f(x)))$ $\int_{a}^{b} |f(x)|^{3} (\text{sng } f(x)) g(x) dx + \int_{a}^{b} |g(x)|^{3} (\text{sng } g(x)) f(x)$ $\int_a^b |g(x)|^3(\text{sing } g(x))f(x) dx$ with L_4 [a,b], then it is a quasi-inner product spaces, but an equation(2.1) fails, indeed,

If we take L_4 [-1,1] such that $f(x) = -x$ $\forall x \in [-1,0]$ and $g(x) = x$ $\forall x \in [0,1]$, then it is not an inner product space, since 1 = the right hand of equation(2.1) \neq the left hand \cong 1. 265.

Proposition (3.8). A quasi-inner product space *U* is an inner-product space if and only if the following equivalence holds:

$$
{a}||v+w|| ={a}||v-w|| \leftrightarrow \tau(v,w) = 0, \forall v, w \in U
$$
 (3.2)

Proof:

The proof of this proposition proceeds in a same way into version in a normed space [5].

Remark (3.9). (1)Since a space L_p [a, b] is a quasi-Banach space, then it is a quasi-Hilbert space if it is a quasi-inner product space for example a space L_4 [a,b] is a quasi-Hilbert space, while L_1 $[a,b]$ is not.

(2) A space L_2 [a,b] is one only which be a quasi-Hilbert space and Hilbert space together, as shown in the following:

Theorem (3.10). L_2 $[a,b]$, $[a,b] \subset \mathbb{R}$, is a quasi-Hilbert space .

Proof:

Since a space L_2 [a,b] is Hilbert space from Theorem(2.6), then \forall f, $g \in L_2$ [a,b], $(f, g) = \tau(f, g) = \int_{a}^{b} |f(x)| (\text{sng } f(x))$ $\int_{a}^{b} |f(x)| \, (\text{sng } f(x)) g(x) \, dx$, and $\lt g, f \gt \lt = \tau (g, f)$ $=\int_{a}^{b} |g(x)| \, \text{(sng } g(x) \text{)} f(x)$ $\int_{a}^{b} |g(x)|$ (sng $g(x)$) $f(x)$ dx, according to Proposition (3.3) and application the binomial theorem in Definition (3.1). Thus, the right hand of equation (3.1) is $8(\int_a^b |f(x)|^3 (\text{sng } f(x)))$ $\int_{a}^{b} |f(x)|^{3} (\text{sng } f(x)) g(x) dx \int_{a}^{b} |g(x)|^{3} (\text{sng } g(x)) f(x)$ $\int_a^b |g(x)|^3$ (sng $g(x)$) $f(x) dx$) which is the same value of its left hand . Therefore, $|L_2| [a, b]$ is a quasi-Hilbert space.

References

[1] J.K. Al-Delfi, Continuous Linear Operators On Infinite Quasi-Sobolev Spaces ℓ_{∞}^m . Journal of Physics: Conference Series (IOP Publishing), [Sixth International Scientific Conference for Iraqi](https://iopscience.iop.org/issue/1742-6596/1897/1) [Al Khwarizmi Society \(FISCAS\), Cairo, Egypt.](https://iopscience.iop.org/issue/1742-6596/1897/1) 1897 (2021) 012044. doi:10.1088/1742- 6596/1897/1/012044. 1-6.

[2] P. R. Halmose, Polynomials. Springer-Verlag, Inc. New York, [1989].

[3] N. Kalton, Linear Operators on Lp for $0 < p < 1$. Transaction of The American Mathematical Society, Missouri. Vol. 259, No. 2 (1980) . 319-355.

[4] E. Kreyszig, Introductory Functional Analysis with Applications. John Wiley and Sons, Inc (1978).

[5] P.M. Milicic , On The Quasi-Inner Product Spaces. Mat Bulletin. Skopje, Macedonia, 22

(XLVIII) (1998). 19-30.

 [6] G. Rano and T. Bag , Quasi-Metric Space and Fixed Point Theorems. International Journal of Mathematics and Scientific Computing (ISSN: 2231-5330), VOL. 3, NO. 2 (2013). 27-31.

[7] R. A. Tapia, A characterization of inner product spaces. Proc. Amer. Math. Soc., 41(1973). 569-574.

 [8] A. H. Siddiqi, Functional Analysis with Applications. Tata McGraw-Hill Publishing Company, Ltd. New Delhi, India, (1986).