[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 26](https://qjps.researchcommons.org/home/vol26) [Number 4](https://qjps.researchcommons.org/home/vol26/iss4) Article 21

8-15-2021

Solving Riccati Type q−Difference Equations via Difference Transform Method

Ahmed Y. Abdulmajeed Department of Mathematics, College of Science,University of Basrah, Basrah, Iraq, ay5010273@yahoo.com

Ayad R. Khudair Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq, ayadayad1970@yahoo.com

Follow this and additional works at: [https://qjps.researchcommons.org/home](https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss4%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Abdulmajeed, Ahmed Y. and Khudair, Ayad R. (2021) "Solving Riccati Type q−Difference Equations via Difference Transform Method," Al-Qadisiyah Journal of Pure Science: Vol. 26: No. 4, Article 21. DOI: 10.29350/qjps.2021.26.4.1318

Available at: [https://qjps.researchcommons.org/home/vol26/iss4/21](https://qjps.researchcommons.org/home/vol26/iss4/21?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss4%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

Solving Riccati type −**Difference Equations via Difference Transform Method**

Authors Names a: Ahmed Y. Abdulmajeed b: Ayad R. Khudair

Article History

Received on: 2/6/2021

Revised on: 15/7/2021

Accepted on:25/7/2021

Keywords:

Time scales calculus; Differential transform method; Riccati type −*difference equations*

DOI:*https://doi.org/10.293 50/ jops. 2021.26. 4.1318*

ABSTRACT

In this paper, we deal with a time scale that its delta derivative of graininess function is a nonzero positive constant. Based on the Taylor formula for this time scale, we investigate the difference transform method (DTM). This method has been applied successfully to solve Riccati type q -difference equations in quantum calculus. To demonstrate the ability and efficacy of this method, some examples have been provided.

1. Introduction

One of the simplest and more important type of nonlinear differential equations are Riccati differential equations [32]. Due to their close connection to the Bessel function, these equations have often appeared in many physical problems, likes; static Schrödinger equation [12], Newton's laws of motion [29], 3D-Gross-Pitaevskii equation [26], cosmology problem [33]. Also, it relates to many mathematical subjects, including; projective differential geometry [2], calculus of variations [41], optimal control [30], and dynamic programming [6]. Several techniques have been used to solve constant coefficients Riccati differential equations, such as; operation matrix method [31], variational iteration method [17], polynomial least squares method [9], homotopy perturbation method [1], Legendre wavelet method [3], and Adomian's decomposition method[15].

Riccati difference equations are not different from Riccati differential equations, as they have many applications in various fields. Where it arises in the filtering problem [27], the optimal control problem [5] and it has been studied by numerous scholars [4, 42, 38, 28]. In fact, the first study appeared on the difference Riccati equations was in 1905 by H. Tietze [39].

b Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq, E-Mail: ayadayad1970@yahoo.com

a Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq, E-Mail: ay5010273@yahoo.com

The q-difference equation (q-DEs)is a type of difference equation that is based on q-calculus. Indeed, the old references refer to the beginning of q-calculus was in the late 20th century to make links between mathematics and physics [16]. It has a variety of uses in mathematics, engineering and science, including basic hypergeometric functions [10, 11, 36, 35, 34], orthogonal polynomials [25], combinatorics [19], and quantum theory [21]. In recent years, several scholars have attempted to solve many types of q-DEs by using semi-analytic methods, including; the q-differential transformation method (q-DTM)[13, 14], variational iteration method [40], succes- sive approximation method, and homotopy analysis method [37].

In this paper, we deal on time scale TT that its delta derivative of graininess function is a nonzero positive constant, that is $\mu^2 = \zeta \zeta > 0$. Based on Taylor formula for this time scale, we introduce some fundamental theorems related to DTM in order to solve the following Riccati type q -difference equations on the time scale $TT = \overline{q^N} = \{0\} \cup \{q^t | t \in \mathbb{N}, 0 < q < 1\}$:

$$
\Psi^{\Delta}(t) = g_1(t)\Psi(t) + g_2(t)\Psi(t)^2 + g_3(t), \quad \Psi(t) = A. \tag{1}
$$

where $g_c(t)$, $r = 1,2,3$ are analytic function on TT.

2. Preliminaries

This section has provided a brief overview of time scale preliminary information and their relationship to q-calculus

Definition 2.1 [18] A time scale is a non-empty arbitrary closed subset of real numbers denoted by TT. Time *scale examples,* [0,1]*, the natural numbers set* ℕ*, the real numbers set* ℝ*,* [0,1] ⋃ [2,3] *and the cantor set whereas the set of rational numbers* \mathbb{Q} *, complex numbers* \mathbb{C} *, and* $[0,1)$ *,* $(0,1]$ *,* $(0,1)$ *,* $(0,1]$ *U* $\{2, b - a\}$ *are not time scales.*

Definition 2.2 [8] Let $T T$ be any time scale and $r \in T T$. Operator of a forward jump $\sigma: T T \rightarrow T T$ is given as:

$$
\sigma(r) = \inf\{s \in \mathbb{T} \colon s > r\} \tag{2}
$$

while, the Operator of a backward jump $\rho: TT \rightarrow TT$ at all $r \in TT$ is given as:

$$
\rho(r) = \sup\{s \in \mathbb{T} : s < r\} \tag{3}
$$

Definition 2.3 *[7]*

For $s \in \mathbb{T}$, the function $\mu: \mathbb{T} \to [0, \infty)$ defined by

$$
\mu(s) = \sigma(s) - s \tag{4}
$$

is called graininess function.

assume that

$$
\mathbb{TT} = q^{\mathbb{N}} = \{q^t | t \in \mathbb{N}, 0 < q < 1\} \cup \{0\}
$$

Let the q –shift factorial is given by

$$
(t; q)_0 = 1
$$
 and $(t; q)_m = \prod_{j=0}^{m-1} (1 - aq^{j j}), m = 1, ..., m$

such that t is real number.

Definition 2.4 [7] For $t \in \overline{q^N}$, the delta q –derivative of a function $g(t)$ on $T T = \overline{q^N}$ is given by

$$
g^{\Delta}(t) = \begin{cases} \frac{y_{\mathcal{G}}(qt) - y_{\mathcal{G}}(t)}{(q-1)t}, & \text{if } f \in \overline{q^{\mathbb{N}}} \\ \lim_{n \to \infty} \frac{y_{\mathcal{G}}(q^n) - y_{\mathcal{G}}(0)}{q^n}, & \text{if } f \in \overline{q} \end{cases}
$$
(5)

Definition 2.5 *[22] Let* $G: \overline{q^N} \to \mathbb{R}$ *a pre-antiderivative of the function* $g: \overline{q^N} \to \mathbb{R}$ *.such that* $G^{\Delta\Delta}(t) = g(t)$ *. The indefinite integral of the function is define by*

$$
\int g(t)\Delta t = G(t) + c,\tag{6}
$$

where c is a constant. Moreover, the definite integral is defined by

$$
\int_{b}^{dd} g(t)\Delta t = G(d) - g(b), \forall b, d \in \overline{q^{N}}
$$
\n(7)

Definition 2.6 *[8] The monomials* h_n : $TT \times TT \rightarrow \mathbb{R}$, $n \in \mathbb{N}_0$ *on a time scale* TT *are defined by*

$$
h_0(r,s) = 1
$$

\n
$$
h_n(r,s) = \int_s^r h_n(r,s)dr, \quad n \in \mathbb{N}, r, s \in \mathbb{T} \mathbb{T}.
$$

\n(8)

Hence, the Δ –derivative of $h_n(r, s)$ with respect to r given by

$$
h_1^{\Delta}(r,s) = h_{n-1}(r,s), n \ge 1
$$
\n(9)

Example 2.1 *[8]*

1. When $TT = \overline{q^N}$, we get

$$
h_n(t,s) = \prod_{\omega=0}^{n-1} \frac{t-sq^{\omega}}{\sum_{n=0}^{\omega} q^n}, \forall n \in \mathbb{N}
$$
 (10)

2. When $TT = \mathbb{R}$, we get

$$
h_n(t,s) = \frac{(t-s)^n}{n!}, \quad \forall n \in \mathbb{N}
$$
 (11)

3. When $TT = \mathbb{Z}$, we get

$$
t-s
$$

$$
h_n(t,s) = \bigoplus_{n=0}^{\infty} \forall n \in \mathbb{N}
$$
 (12)

Theorem 2.1 *[8] For all* $t, s \in \mathbb{T} \mathbb{T}$ *and* $j \in \mathbb{N}_0$ *, we have*

$$
0 \le h_{jj}(t,s) \le \frac{(t-s)^{jj}}{jj!}, \qquad \forall r \ge s \tag{13}
$$

Let $m \in \mathbb{N}$ and $g: \mathbb{T} \to \mathbb{R}$ is $m-t$ ümes differentiable function on $\mathbb{T}^{k^m}, t \in \mathbb{T}.$

Let $s \in \mathbb{T}^{k^{m-1}}$, then

$$
g(t) = \sum_{j=0}^{m-1} h_{jj}(t, \mathbf{y}) \, \Delta^{(j)}(s) + R_m(t) \tag{14}
$$

is called Taylors formula and the remainder term $R_m(t)$ is defined by

$$
R_m(t) = \int_s^t g^{\Delta^m}(r) h_{m-1}(t, \sigma(r)) \Delta r
$$

and it tends to zero as $m \to \infty$.

 $g(t) = \sum_{jj=0}^{\infty} a_{jj} h_{jj}(t,s)$. Then $g(t)$ is infinitely jj —times differentiable at s and $g^{\Delta \Delta^{jj}}(s) = a_{jj}$ **Proposition 2.1** *[8] Let* $g: \mathbb{T} \mathbb{T} \to \mathbb{R}$ *is an analytic function at s and at all* $t \in (s - \varepsilon \varepsilon, +\infty) \cap \mathbb{T} \mathbb{T}$ *holds that*

Theorem 2.2 [24] For any $t, s \in \mathbb{T} \mathbb{T}$ with $\mu^{\Delta \Delta} = \zeta \zeta > 0$ a constant. Then the product of monomials h_c and $h_{\kappa \kappa}$ *as follows*

$$
h_{c}(t,s)h_{\kappa K}(t,s)=\sum_{u=\kappa K}^{c+\kappa K}F(u,\kappa,r)h^{\sigma\sigma}(\kappa s)h_{\kappa K-u}(t,s),
$$
\n(15)

such that

$$
F(u,\kappa,r) = \sum_{u=1}^{\kappa} \sum_{\substack{l=1 \ l \neq j}}^{\kappa} (-1)^{c-1} \varphi_l(u) u^{l(\omega+1)-\frac{r(r+1)}{2}}, \quad \text{for} \quad u > r
$$
 (16)

$$
\varphi_l(u,r) = \prod_{\substack{s \neq l \\ 1 \leq s \leq r}} \frac{1}{(u^{-u} - u^{-s})}, \varphi_1(u) = 1 \quad \text{and} \quad u = 1 + \zeta \zeta \tag{17}
$$

Remark 2.1 $F(u, \kappa, r)$ in theorem(2.2) can be computed in another way according to the following *formula [24]*

$$
F(u, \kappa, r) = \sum_{j_{j_1}=0}^{u-\kappa\kappa} \sum_{j_{j_2}=j_{j_1}}^{u-\kappa\kappa} \sum_{j_{j_3}=j_{j_2}}^{u-\kappa\kappa} \cdots \sum_{j_{j_{\kappa\kappa-1}}=j_{j_{\kappa\kappa-2}}}^{u-\kappa\kappa} \sum_{j_{j_{\kappa\kappa}=j_{\kappa-1}}}^{u-\kappa\kappa} u^{\sum_{u=1}^{\kappa\kappa} j_{ju}} \tag{18}
$$

3. The −**differential transform method**

In 1986, Zhou proposed the DTM and applied it to analyze the electric circuit problems [43]. Inspired Zhou's idea and based on q-Taylor's formula, the q-DTM has been introduced [20]. In 2011, ElShahed has been extended the q-DTM to two dimensional for solving partial q-DEs [13]. In the same year, the damped q-DEs with strongly nonlinear has been used successfully by using the q-DTM [23]. This section devoted to derive some important formula related to DTM. Now, let $\psi \psi(t)$ be is $N - t$ *iimes* q-differentiable on $\overline{q^N}$, then by using theorem (2.1) with t_0 one can approximate the function $\psi \psi(t)$ as follows:

$$
\Psi(t) = \sum_{u=0}^{\infty} \Psi_q[u] h_u(t,0) \tag{19}
$$

where

$$
\Psi_q[u] = \Psi^{\Delta^u}(0), \forall u = 0, 1, 2, ... \tag{20}
$$

The Eq.((20)) is called the DTM, while Eq. ((19)) is called inverse of DTM.

Suppose that the functions $\Phi(t)$, $\Psi(t)$, and $\Xi(t)$ are approximate as $\Phi(t) = \sum_{\kappa=0}^{\infty} \Phi_q[\kappa] h_{\kappa}(t,0)$, $\Psi(t)=\sum_{\kappa=0}^{\infty}\Psi_q[\kappa]h_{\kappa}(t,0)$, and $\Xi(t)=\sum_{\kappa=0}^{\infty}\Xi_q[\kappa]h_{\kappa}(t,0)$ respectively, then the essential mathematical operations achieved by DTM are presented in the next theorems.

Theorem 3.1 *For any real constants a, and b , if* $\mathbf{P}(t) = a \phi(t) + b \mathbf{T}(t)$ *, then* $\mathbf{P}_q^{\star}[\kappa] = a \phi_q[\kappa] + b \mathbf{T}(t)$ $b T_q[\kappa]$, $\forall \kappa = 0, 1, 2, ...$

Lemma 3.1 *If* $0 \in \mathbb{T}$ *and* $\mu^{\Delta} = \zeta \zeta$ *is nonzero constant, then multiplying any two monomials,* $h_c(t, 0)$ *and* $h_{\kappa\kappa}(t, 0)$, *is given as follows:*

$$
h_c(t,0)h_{\kappa\kappa}(t,0) = F(r + \kappa, \kappa, r)h_{c+\kappa\kappa}(t,0), \quad \kappa, r \neq 0, \quad \forall t \in \mathbb{T}\mathbb{T}
$$
 (21)

Proof. Since $\sigma^m(0) = 0$ for all $m = 0,1,2, ...$, we have

$$
h_{\mathcal{C}}^{m}(0,0) = \bigoplus_{i=1}^{n} h_{\
$$

Using theorem(2.2), one can get

$$
h_{c}(t,0)h_{\kappa\kappa}(t,0)=\sum_{u=\kappa\kappa}^{c+m}F(u,\kappa,r)h^{\sigma^{\kappa}}_{c+\kappa\kappa-u}(0,0)h_{u}(t,0), \qquad (23)
$$

The result can be get it by substitute Eq.((22)) in Eq.((23)).

Theorem 3.2 *If* $T(t) = ≥4A(t)$ *, then* $T_q[k] = ≥_{\bar{q}[K+1]} ∇ K = 0,1,2, ...$

Theorem 3.3 *If* $T(t) = \frac{1}{2}$ *(t)* $\phi(t)$ *, then*

$$
\Psi_{q}[0] = \Xi_{q}[0] \Phi_{q}[0]
$$

\n
$$
\Psi_{q}[1] = \Xi_{q}[1] \Phi_{q}[0] + \Xi_{q}[0] \Phi_{q}[1]
$$

\n
$$
\Psi_{q}[r] = \Xi_{q}[r] \Phi_{q}[0] + \Xi_{q}[0] \Phi_{q}[r] + \sum_{\kappa=1}^{c-1} \Xi_{q}[r-\kappa] \Phi_{q}[\kappa] F(r,r-\kappa,\kappa), \quad r = 2,3,4,...
$$

Proof. Let $\Psi(t) = \Xi(t)\Phi(t)$ so one can have

$$
\sum_{\kappa\kappa=0}^{\infty} \Psi_q[\kappa]h_{\kappa}(t,0) = \mathbf{C}^{\infty}_{\kappa\kappa=0} \ \Xi_q[\kappa]h_{\kappa}(t,0) \mathbf{\mathbf{\hat{W}}}^{\infty}_{\kappa\kappa=0} \ \Phi_q[\kappa]h_{\kappa}(t,0) \mathbf{\mathbf{\hat{\Phi}}}
$$
\n
$$
= \sum_{\nu\nu=0}^{\infty} \sum_{\kappa\kappa=0}^{\infty} \Xi_q[\nu] \Phi_q[\kappa]h_{\kappa}(t,0)h_{\nu}(t,0)
$$

By using lemma(3.1), one can have

$$
\sum_{\kappa=0}^{\infty} \Psi_q[\kappa] h_{\kappa}(t,0) = \sum_{\kappa=0}^{\infty} \Xi_q[\kappa] \Phi_q[0] h_{\kappa}(t,0) + \sum_{\kappa=1}^{\infty} \Xi_q[0] \Phi_q[\kappa] h_{\kappa}(t,0) \n+ \sum_{c=1}^{\infty} \sum_{\kappa=1}^{\infty} \Xi_q[r] \Phi_q[\kappa] F(\kappa+r,r,\kappa) h_{\kappa+c}(t,0)
$$
\n(24)

Now, change the index in the third sum of Eq.((24)), we have

$$
\sum_{\kappa=0}^{\infty} \Psi_{q}[\kappa] h_{\kappa}(t,0) = \sum_{\kappa=0}^{\infty} \Xi_{q}[\kappa] \Phi_{q}[0] h_{\kappa}(t,0) + \sum_{\kappa=1}^{\infty} \Xi_{q}[0] \Phi_{q}[\kappa] h_{\kappa}(t,0) \n+ \sum_{c=2}^{\infty} \sum_{\kappa=1}^{c-1} \Xi_{q}[r-\kappa] \Phi_{q}[\kappa] F(r,r-\kappa,\kappa) h_{c}(t,0)
$$
\n(25)

Finally, the coefficients of $h_c(t, 0)$ are compared, and the result is obtained directly.

Theorem 3.4 *If* $|f|(t)$ *is analytic function on time scale* $T = \overline{q^N}$ *and* $T(t) = f(t)$ $\phi(t)$ *, then* $\Psi_q[0] = ff(0) \Phi_q[0]$

$$
\Psi_{q}[1] = f f^{\Delta}(0) \Phi_{q}[0] + f f(0) \Phi_{q}[1]
$$

$$
\Psi_{q}[r] = f f^{A^{r}}(0) \Phi_{q}[0] + f f(0) \Phi_{q}[r] + \sum_{\kappa=1}^{c-1} f f^{A^{r-\kappa\kappa}}(0) \Phi_{q}[\kappa] F(r, r - \kappa, \kappa), \quad r = 2, 3, 4, \cdots
$$

Proof. Since $ff(t)$ is analytic function on time scale $TT = q^N$, one can get $ff(t) = \sum_{\kappa \kappa = 0}^{\infty} \int f^{\Delta^M}(0) h_{\kappa \kappa}(t, 0)$. Therefore, the result can be obtained directly using theorem(3.3).

Theorem 3.5 *If* $f(f(t))$ *is analytic function on time scale* $T = q^N$ *and* $T(t) = f(f(t))\phi^2(t)$ *, then*

$$
\Psi_{q}[0] = ff(0) \Phi_{q}^{2}[0]
$$
\n
$$
\Psi_{q}[1] = ff^{\Delta}(0) \Phi_{q}^{2}[0] + 2ff(0) \Phi_{q}[1] \Phi_{q}[0]
$$
\n
$$
\Psi_{q}[r] = \begin{cases}\n\Delta^{r} (0) \Phi_{q}^{2}[0] + ff(0) \Phi_{q}[r] \Phi_{q}[0] + ff(0) \Phi_{q}[0] \Phi_{q}[r] + ff(0) \sum_{\kappa \kappa = 1}^{c-1} \Phi_{q}[r - \delta_{\kappa}] \\
\int_{\kappa \kappa = 1}^{c} \Phi_{q}^{2}[r] \Delta^{r - \kappa} (0) \Phi_{q}[k] \Phi_{q}[0] F(r, r - \kappa, \kappa) + \sum_{\kappa \kappa = 1}^{c-1} \delta_{\kappa \kappa = 1}^{r - \kappa} (0) \Phi_{q}[0] \Phi_{q}[k] F(r, r - \kappa, \kappa) \\
\int_{\kappa \kappa = 1}^{c} \sum_{\kappa = 1}^{c} \sum_{u=1}^{c} \int_{u=1}^{c} \int_{\kappa = 1}^{\kappa} f(\Delta^{r - \kappa} (0) \Phi_{q}[k - u] \Phi_{q}[u] F(\kappa, \kappa - u, u) F(r, r - \kappa, \kappa) , r = 2,3,4, \cdots\n\end{cases}
$$

Proof. According to theorem (3.3), we find $\Phi^2(t) = \sum_{c=0}^{\infty} Y_q[r] h_c(t, 0)$

Where $Y_q[r]$ define as follows:

$$
\begin{aligned} \Upsilon_q[0] &= \Phi_q^2[0] \\ \Upsilon_q[1] &= 2\Phi_q[1]\Phi_q[0] \\ \Upsilon_q[r] &= \Phi_q[r]\Phi_q[0] + \Phi_q[0]\Phi_q[r] + \sum_{\kappa=1}^{c-1} \Phi_q[r-\kappa]\Phi_q[\kappa]F(r,r-\kappa,\kappa), r = 2,3,4,\cdots \end{aligned}
$$

However, since $ff(t)$ is analytic function on time scale $\mathbb{TT}=q^{\mathbb{N}},$ we can get $ff(t)=\sum_{\kappa\kappa=0}^\infty\int f^{\Delta^{\kappa}}(0)h_{\kappa\kappa}(t,0).$ Using theorem(3.4), we have

$$
\Psi_{q}[0] = ff(0) Y_{q}[0]
$$

\n
$$
\Psi_{q}[1] = ff^{\Delta}(0) Y_{q}[0] + ff(0) Y_{q}[1]
$$

\n
$$
\Psi_{q}[r] = ff^{ \Delta^{r}}(0) Y_{q}[0] + ff(0) Y_{q}[r] + \frac{\sum_{\kappa\kappa=1}^{c-1} ff^{\Delta^{r-\kappa\kappa}}}{(0) Y_{q}[\kappa]F(r,r-\kappa,\kappa), r = 2,3,4,...
$$

Now, replace the values of $Y_q[r]$ in the above equations by its equivalent values in terms $\Phi_q[r]$, we get the result directly.

4. Illustrated Examples

Example 4.1 *Consider the Riccati q-difference equation as follows:*

$$
\Psi^{\Delta}(t) = 1 - \Psi(t)^2 \tag{26}
$$

$$
\Psi(0) = 0 \tag{27}
$$

When q tends to 1, the solution exactly has the form

$$
\Psi(t) = \tanh(t) \tag{28}
$$

Applying DTM to Eq.((26)) , we have

$$
\Psi_{q}[1] + \Psi^{2}{}_{q}[0] - 1 = 0
$$
\n
$$
\Psi_{q}[2] + 2\Psi_{q}[1]\Psi_{q}[0] = 0
$$
\n
$$
\Psi_{q}[r+1] = -\Psi_{q}[r]\Psi_{q}[0] - \Psi_{q}[0]\Psi_{q}[r] - \sum_{\kappa=1}^{c-1} \Psi_{q}[r-\kappa]\Psi_{q}[\kappa]F(r,r-\kappa,\kappa), \quad r = (29)
$$

Again apply DTM to the initial conditions in Eq. $((27))$, one can have

$$
\Psi_q[0] = 0. \tag{30}
$$

Using the Maple software, one can solve the recurrence relation in Eq.((29)) with Eq.((30)) to have the value of the unknown coefficients as follows:

$$
\Psi_{q}[1] = 1
$$
\n
$$
\Psi_{q}[2] = 0
$$
\n
$$
\Psi_{q}[3] = -3 + q
$$
\n
$$
\Psi_{q}[4] = 0
$$
\n
$$
\Psi_{q}[5] = 2(q^{2} - 4q + 5)(-3 + q)^{2}
$$
\n
$$
\Psi_{q}[6] = 0
$$
\n
$$
\Psi_{q}[7] = (-3 + q)^{3}(q^{2} - 3q + 3)(q^{4} - 9q^{3} + 35q^{2} - 69q + 59)(q^{2} - 4q + 5)
$$
\n
$$
\Psi_{q}[8] = 0
$$
\n
$$
\Psi_{q}[9] = 2(q^{2} - 4q + 5)^{2}(q^{2} - 3q + 3)(-3 + q)^{4}(2q^{6} - 26q^{5} + 143q^{4} - 427q^{3} + 737q^{2} - 711q + 313)(q^{4} - 8q^{3} + 24q^{2} - 32q + 17)
$$
\n
$$
\vdots
$$

So, $\Psi(t) \simeq \sum_{c=0}^{9} \Psi_q[r] h_c(t,0)$ is the first ten terms of the solution of this problem. Moreover, when $q \to 1$ this solution is given by

$$
\lim_{q \to 1} \Psi(t) = t - \frac{1}{3}t^3 + \frac{2}{15}t^5 - \frac{17}{315}t^7 + \frac{62}{2835}t^9 + \dotsb \tag{31}
$$

When $q \rightarrow 1$, the solution in Eq.((31)) agrees exactly with the Taylor series of the given solution. Also, Eq.((31)) is agreement with the result in, Example(1) [37].

Example 4.2 *Consider the Riccati q-difference equation as follows:*

 $\Psi^{\Delta}(t) = 1 + 2\Psi(t) - \Psi^2(t)$ (32)

$$
\Psi(0) = 0 \tag{33}
$$

When q tends to 1, the solution exactly has the form

$$
\Psi(t) = \sqrt{2} \tanh(\sqrt{2t} + \frac{1}{2} \log(\frac{\sqrt{2}-1}{\sqrt{2}+1})) + 1
$$
\n(34)

Applying DTM to Eq.((32)) , we have

$$
\Psi_{q}[1] = 2\Psi_{q}[0] - \Psi_{q}^{2}[0] + 1
$$

\n
$$
\Psi_{q}[2] = 2\Psi_{q}[1] - 2\Psi_{q}[1]\Psi_{q}[0]
$$

\n
$$
\Psi_{q}[r+1] = 2\Psi_{q}[r] - 2\Psi_{q}[r]\Psi_{q}[0] - \sum_{\kappa=1}^{c-1} \Psi_{q}[r-\kappa]\Psi_{q}[\kappa]F(r,r-\kappa,\kappa), \ \forall r = 2,3,4,...
$$

\n(35)

Again apply DTM to the initial conditions in Eq.((33)) , one can have

$$
\Psi_q[0] = 0. \tag{36}
$$

Using the Maple software, one can solve the recurrence relation in Eq.((35)) with Eq.((36)) to have the value of the unknown coefficients as follows:

$$
\Psi_{q}[1] = 1
$$
\n
$$
\Psi_{q}[2] = 2
$$
\n
$$
\Psi_{q}[3] = 1 + q
$$
\n
$$
\Psi_{q}[4] = -4q^{2} + 22q - 26
$$
\n
$$
\Psi_{q}[5] = -2(q - 3)(q^{3} - 9q^{2} + 31q - 37)
$$
\n
$$
\Psi_{q}[6] = -4q^{7} + 56q^{6} - 352q^{5} + 1276q^{4} - 2832q^{3} + 3732q^{2} - 2536q + 548
$$
\n
$$
\Psi_{q}[7] = q^{11} - q^{10} - 239q^{9} + 3230q^{8} - 21721q^{7} + 91686q^{6} - 262608q^{5} + 524197q^{4}
$$
\n
$$
-725540q^{3} + 669551q^{2} - 373085q + 95377
$$
\n
$$
\Psi_{q}[8] = 8q^{15} - 228q^{14} + 2956q^{13} - 22836q^{12} + 114738q^{11} - 375506q^{10} + 685838q^{9}
$$
\n
$$
+144320q^{8} - 5305474q^{7} + 18573384q^{6} - 38811708q^{5} + 55564898q^{4} - 55575960q^{3}
$$
\n
$$
+37593290q^{2} - 15612662q + 3034030
$$
\n
$$
\Psi_{q}[9] = -20q^{20} + 888q^{19} - 18662q^{18} + 247048q^{17} - 2312130q^{16} + 16272346q^{15} - 1214
$$

89406344¹⁴

$$
+392904980q^{13}-1403278564q^{12}+4115164306q^{11}-9966897976q^{10}+
$$

19979418384⁹

$$
-33100759636q^8+45089744554q^7-50018425772q^6+44494246668q^5- \\ 30993249576q^4
$$

$$
+16286776898q^3 - 6068996878q^2 + 1427426744q - 158832042
$$

⋮

Therefore $\Psi(t) \simeq \sum_{c=0}^{9} \Psi_{q}[r] h_{c}(t,0)$ is the first ten terms of the solution of the given problem. When $q \rightarrow 1$ this solution is given by

$$
\lim_{q \to 1} \Psi(t) = t + t^2 + \frac{1}{3}t^3 - \frac{1}{3}t^4 - \frac{7}{15}t^5 - \frac{7}{45}t^6 + \frac{53}{315}t^7 + \frac{71}{315}t^8 + \frac{197}{2835}t^9 + \dots
$$
 (37)

When $q \rightarrow 1$, the solution in Eq.((37)) agrees exactly with the Taylor series of the given solution.

Example 4.3 *Consider the Riccati q-difference equation as follows:*

$$
\Psi^{\Delta}(t) = 2\Psi^2(t) - t\Psi(t) + 1 \tag{38}
$$

$$
\Psi(0) = 0 \tag{39}
$$

When q tends to 1, the solution exactly has the form

$$
\Psi(t) = \frac{t}{1 - t^2} \tag{40}
$$

Applying DTM to Eq.((38)) , we have

$$
\Psi_{q}[1] = 2\Psi_{q}^{2}[0] + 1
$$

\n
$$
\Psi_{q}[2] = 4\Psi_{q}[1]\Psi_{q}[0] + \Psi_{q}[0]
$$

\n
$$
\Psi_{q}[r+1] = 4\Psi_{q}[r]\Psi_{q}[0] + \Psi_{q}[r-1]F(r, 1, r-1)
$$

\n
$$
+2\sum_{kk=1}^{c-1} \Psi_{q}[r-k]\Psi_{q}[k]F(r, r-k, \kappa), \ \forall r = 2, 3, 4, \cdots
$$
\n(41)

Again apply DTM to the initial conditions in Eq.((39)) , one can have

$$
\Psi_q[0] = 0. \tag{42}
$$

Using the Maple software, one can solve the recurrence relation in Eq.((41)) with Eq.((42)) to have the value of the unknown coefficients as follows:

$$
\Psi_q[1] = 1
$$

\n
$$
\Psi_q[2] = 0
$$

\n
$$
\Psi_q[4] = 0
$$

\n
$$
\Psi_q[4] = 0
$$

\n
$$
\Psi_q[5] = 15(q^2 - 4q + 5)(q - 3)^2
$$

\n
$$
\Psi_q[6] = 0
$$

\n
$$
\Psi_q[7] = -3(q^2 - 3q + 3)(q^2 - 4q + 5)(6q^4 - 54q^3 + 211q^2 - 419q + 361)(q - 3)^3
$$

\n
$$
-725540q^3 + 669551q^2 - 373085q + 95377
$$

\n
$$
\Psi_q[8] = 0
$$

 $\Psi_{q}[9] = 15(12q^{6} - 156q^{5} + 858q^{4} - 2562q^{3} + 4423q^{2} - 4271q + 1885)(q^{2} - 3q + 3)$ $\times (q^4 - 8q^3 + 24q^2 - 32q + 17)(q^2 - 4q + 5)^2(q - 3)^4$ ⋮

Therefore $\Psi(t) \simeq \sum_{c=0}^{9} \Psi_{q}[r] h_{c}(t,0)$ is the first ten terms of the solution of the given problem. When $q \rightarrow 1$ this solution is given by

$$
\lim_{q \to 1} \Psi(t) = t + t^3 + t^5 + t^7 + t^9 + \cdots
$$
\n(43)

When $q \rightarrow 1$, the solution in Eq.((43)) agrees exactly with the Taylor series of the given solution.

5. Conclusions

In this study, we introduce the difference transform method (DTM) based on Taylor formula for any time scale with its delta derivative of graininess function is a nonzero positive constant. Riccati type q –difference equations on quantum calculus have been successfully solved and the results coincide exactly with the Taylor series of the exact solution when q – tends to 1. In fact, this method is applicable to solving any nonlinear difference equations on any time scale with $\mu^2 > 0$.

References

[1] S. Abbasbandy, Iterated he's homotopy perturbation method for quadratic riccati differential equation, *Applied Mathematics and Computation*, 175 (2006), pp. 581–589.

[2] D. D. Alessandro, Invariant manifolds and projective combinations of solutions of the riccati differential equation, *Linear Algebra and its Applications*, 279 (1998), pp. 181–193.

[3] S. Balaji, Legendre wavelet operational matrix method for solution of fractional order riccati differential equation, *Journal of the Egyptian Mathematical Society*, 23 (2015), pp. 263–270.

[4] K. Balla, Asymptotic behavior of certain riccati difference equations, *Computers & Mathematics with Applications*, 36 (1998), pp. 243–250.

[5] A. Beghi and D. D'alessandro, Discrete-time optimal control with control dependent noise and generalized riccati difference equations, *Automatica*, 34 (1998), pp. 1031–1034.

[6] R. Bellman and R. Vasudevan, Dynamic programming and solution of wave equations, in Wave Propagation, *Springer Netherlands*, 1986, pp. 259–309.

[7] M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, *Springer Science & Business Media*, 2001.

[8] M. Bohner and A. C. Peterson, Advances in dynamic equations on time scales, Springer Science & Business Media, 2002.

[9] C. Bota and B. Căruntu, Analytical approximate solutions for quadratic riccati differential equation of fractional order using the polynomial least squares method, *Chaos, Solitons & Fractals,* 102 (2017), pp. 339–345.

[10] W. Y. Chen and H. L. Saad, On the gosper–petkovšek representation of rational functions, *Journal of Symbolic Computation*, 40 (2005), pp. 955–963.

[11] W. Y. C. Chen, H. L. Saad, and L. H. Sun, An operator approach to the al-salam–carlitz polynomials, *Journal of Mathematical Physics*, 51 (2010), p. 043502.

[12] M. Dehghan and A. Taleei, A compact split-step finite difference method for solving the nonlinear schr¨ odinger equations with constant and variable coefficients, *Computer Physics Communications*, 181 (2010), pp. 43–51.

[13] M. El-Shahed and M. Gaber, Two-dimensional q-differential transformation and its application, *Applied Mathematics and Computation*, 217 (2011), pp. 9165–9172.

[14] M. El-Shahed, M. Gaber, and M. Al-Yami, The fractional q-differential transformation and its application, *Communications in Nonlinear Science and Numerical Simulation*, 18 (2013), pp. 42–55.

[15] M. A. El-Tawil, A. A. Bahnasawi, and A. Abdel-Naby, Solving riccati differential equation using adomian's decomposition method, *Applied Mathematics and Computation*, 157 (2004), pp. 503–514.

[16] T. Ernst, The history of q-calculus and a new method, 2000.

[17] F. Geng, A modified variational iteration method for solving riccati differential equations, *Computers & Mathematics with Applications*, 60 (2010), pp. 1868–1872.

[18] S. Georgiev, Fractional dynamic calculus and fractional dynamic equations on time scales, Springer, Cham, Switzerland, 2018.

[19] M. Jambu, Quantum calculus an introduction, in New Trends in Algebras and

Combinatorics, WORLD SCIENTIFIC, feb 2020.

[20] S.-C. Jing and H.-Y. Fan, q -taylor's formula with its q -remainder, *Communications in Theoretical Physics*, 23 (1995), pp. 117–120.

[21] A. Lavagno, Basic-deformed quantum mechanics, *Reports on Mathematical Physics*, 64 (2009), pp. 79– 91.

[22] H.-K. Liu, Application of a differential transformation method to strongly nonlinear damped qdifference equations, *Computers & Mathematics with Applications*, 61 (2011), pp. 2555–2561.

[23] H.-K. Liu, Application of a differential transformation method to strongly non-

linear damped q-difference equations, *Computers & Mathematics with Applications*, 61 (2011), pp. 2555– 2561.

[24] H.-K. Liu, The formula for the multiplicity of two generalized polynomials on time scales, *Applied Mathematics Letters*, 25 (2012), pp. 1420–1425.

[25] A. P. Magnus, Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, *Journal of Computational and Applied Mathematics*, 65 (1995), pp. 253–265.

[26] A. Neirameh, Exact analytical solutions for 3d- gross–pitaevskii equation with periodic potential by using the kudryashov method*, Journal of the Egyptian Mathematical Society*, 24 (2016), pp. 49–53.

[27] G. D. Nicolao, On the time-varying riccati difference equation of optimal filtering, *SIAM Journal on Control and Optimization*, 30 (1992), pp. 1251–1269.

[28] S. Nishioka, Differential transcendence of solutions of difference riccati equations and tietze's treatment, *Journal of Algebra*, 511 (2018), pp. 16–40.

[29] M. Nowakowski and H. C. Rosu, Newton's laws of motion in the form of a riccati equation, *Physical Review E*, 65 (2002).

[30] L. Ntogramatzidis and A. Ferrante, On the solution of the riccati differential equation arising from the LQ optimal control problem, *Systems & Control Letters*, 59 (2010), pp. 114–121.

[31] K. Parand, S. A. Hossayni, and J. Rad, Operation matrix method based on bernstein polynomials for the riccati differential equation and volterra population model, *Applied Mathematical Modelling*, 40 (2016), pp. 993–1011.

[32] W. Reid, Riccati differential equations, Academic Press, New York, 1972.

[33] H. C. Rosu, S. C. Mancas, and P. Chen, Barotropic FRW cosmologies with chiellini damping, *Physics Letters* A, 379 (2015), pp. 882–887.

[34] H. L. Saad and M. A. Abdlhusein, New application of the cauchy operator on the homogeneous rogers– szegÃű polynomials, *The Ramanujan Journal*, 56 (2021), pp. 347–367.

[35] H. L. Saad and F. A. Reshem, The operator g(a; b;dq) for the polynomials wn(x; y; a; b; q), Journal of Advances in Mathematics, 9 (2013), pp. 2888–2904.

[36] H. L. Saad and A. A. Sukhi, Another homogeneous q-difference operator*, Applied Mathematics and Computation*, 215 (2010), pp. 4332–4339.

[37] M. S. Semary and H. N. Hassan, The homotopy analysis method for q-difference equations*, Ain Shams Engineering Journal*, 9 (2018), pp. 415–421.

[38] J. Sugie, Nonoscillation theorems for second-order linear difference equations via the riccati-type transformation, II, *Applied Mathematics and Computation*, 304 (2017), pp. 142–152.

[39] H. Tietze,¨Uber funktionalgleichungen, deren l¨ osungen keiner algebraischen differentialgleichung gen¨ ugen k¨ onnen, *Monatshefte f¨ ur Mathematik und Physik*, 16 (1905), pp. 329–364.

[40] G.-C. Wu, Variational iteration method for q-difference equations of second order*, Journal of Applied Mathematics*, 2012 (2012), pp. 1–5.

[41] M. I. Zelikin, Riccati equation in the classical calculus of variations, in Control Theory and Optimization I, Springer Berlin Heidelberg, 2000, pp. 60–79.

[42] H. Zhang and P. M. Dower, Max-plus fundamental solution semigroups for a class of difference riccati equations, *Automatica*, 52 (2015), pp. 103–110.

[43] J. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong Univ. Press, Wuhan, China, 1986.