Al-Qadisiyah Journal of Pure Science

Volume 26 | Number 4

Article 33

8-15-2021

strongly N-extending Strongly N-extending Modules

Saad Abdulkadhim Al-Saad Department of Mathematics, College of Science, Al-Mustansiriyah University, Iraq, saalsaadi@uomustansiriyah.edu.iq

Darya Jaber Abdul-kareem Ministry of Education -Diyala, Iraq, darya_jabbar@yahoo.com

Follow this and additional works at: https://qjps.researchcommons.org/home

Recommended Citation

Al-Saad, Saad Abdulkadhim and Abdul-kareem, Darya Jaber (2021) "strongly N-extending Strongly Nextending Modules," *Al-Qadisiyah Journal of Pure Science*: Vol. 26: No. 4, Article 33. DOI: 10.29350/qjps.2021.26.4.1350 Available at: https://qjps.researchcommons.org/home/vol26/iss4/33

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Strongly N-extending modules

Authors Names	ABSTRACT
a. Saad Abdulkadhim Al-Saad b. Darya Jabar Abdul-Kareem	Relative extending modules and relative (quasi-)continuous modules were introduced and studied by Oshiro as a generalizations of extending modules and (quasi-) continuous respectively. On other hand, Oshiro, Rizvi and Permouth introduced N-extending and N-(quasi-) continuous modules
Article History	depending $\mathcal{A} = \mathcal{A}(N, M) = \{A \subseteq M \exists X \subseteq N, \exists fHom(X, M) \text{ such that} f(X) \text{ is essential in } A\}$ where N and M are modules. $\mathcal{A}(N, M)$ is closed under
Received on: 12/6/2021 Revised on: 30/7/2021 Accepted on: 8/8/2021	submodules, essential extension and isomorphic image. A module M is N- extending if for each submodule $A \in \mathcal{A}(N, M)$, there is a direct summand B of M such that A is essential in B. Moreover, a module M is strongly extending if every submodule is essential in a stable (equivalently, fully invariant) direct summand of M.
DOI: https://doi.org/10.29350/ jops.2021.26. 4.1350	In this paper, we introduce and study classes of modules which are proper stronger than that of N-extending modules and N-(quasi-)continuous modules. Many characterizations and properties of these classes are given.

1. Introduction

Let *R* be a ring with identity and *M* be a left unitary *R*-module. A nonzero submodule *N* of *M* is essential if every non-zero submodule of *M* has non-zero intersection with *N*. Also, a submodule *N* of *M* is closed in *M*, if it has no proper essential extensions in *M*. Also, Let *N* be a submodule of *M*, a relative complement of *N* in *M* is any submodule *N'* of *M* which is maximal with respect to the property that $N \cap N' = 0$. For details of these concepts see [3]. Recall that a module *M* is extending if, every submodule of *M* is essential in a direct summand of *M*.

The notion of the extending modules and their generalizations studied extensively by many authors. Oshiro in [7], introduced relative extending modules a generalization of the concept of extending modules. Following [7], let \mathcal{A} be subfamily of the family of all submodules of an R-module M, a module M is \mathcal{A} -extending if every submodule which with belong to \mathcal{A} is essential in a direct summand of M. On the other hand, K. Oshiro, S. Riziv and S.Permouth in [6],

^a Department of Mathematics, College of Science, Al- Mustansiriyah University, Iraq, E-Mail: <u>saalsaadi@uomustansiriyah.edu.iq</u> ^b Ministry of Education - Diyala, Iraq, E-Mail: <u>darya_jabbar@yahoo.com</u>

introduced *N*-extending modules, depending on the family $\mathcal{A}(N, M) = \{A \subseteq M \mid \exists X \subseteq N, \exists f \in Hom(X, M), f(X) \text{ is essential in } A\}$ where *N*, *M* are modules. They called a module *M* is *N*-extending (or *M* has $\mathcal{A}(N, M)C_1$) if for each $A \in \mathcal{A}(N, M)$, there exists A' which is a direct summand of *M* such that *A* is essential in A'.

The author in [2] introduced and studied a class of modules which is stronger than extending modules. A module *M* is strongly extending if, every submodule in *M* is essential in a stable (equivalently, fully invariant) direct summand of *M*.

In paper, we introduce and study relative strongly extending modules which are stronger concepts of relative extending modules.

2. Strongly *N*-extending modules.

Recall that a submodule N of a module M is fully invariant if $f(N) \subseteq N$ for each $f \in \text{End}_R(M)$ and a module M is called Duo if every submodule of M is fully invariant [8]. A submodule N of a module M is called stable if, $f(N) \subseteq N$ for each homomorphism $f: N \rightarrow M$. A module M is called fully stable if each submodule of M is stable [1].

Definition (1.1): Let *N* be a module. A module *M* is said to be strongly *N*-extending if for each submodule *A* of *M* with $A \in \mathcal{A}(N, M)$, is essential in a stable direct summand of *M*.

Remarks and Examples (1.2):

(1) Every strongly extending is strongly *N*-extending for each module *N*. But the converse is not true. For example, the *Z*-module $M = Z \bigoplus Z$ is Z₃-extending which is not strongly extending.

(2) Every strongly *N*-extending is *N*-extending. But the converse is not true in general. For example, the *Z*-module $M = Z_2 \oplus Z$ is Z_2 - extending [6], which is not strongly Z_2 -extending. Since $Z_2 \oplus 0$ is closed submodule of *M* and belong to $\mathcal{A}(Z_2, M)$. Let $f: Z_2 \oplus (0) \to Z_2 \oplus Z$ by $f(\overline{x}, 0) = (0, x)$ for each $(\overline{x}, 0) \in Z_2 \oplus (0)$. *f* is *Z*-homomorphism while $f(Z_2 \oplus (0)) \notin Z_2 \oplus (0)$ so $Z_2 \oplus 0$ is not stable submodule of *M*.

(3) Every uniform module is strongly *N*-extending for each R-module *N*. In particular, *Z* as *Z*-module is strongly Z_2 -extending.

(4) But the converse of (3) every uniform module is strongly N-extending is not true. For example, Z_6 as Z-module is strongly Z_2 -extending which is not uniform.

(5) Since the set of all submodules of a modules *M* is coincide with $\mathcal{A}(M, M)$ [6]. The following statements are equivalent:

(i) *M*is strongly extending;

(ii) *M* is strongly *M*- extending;

(iii) *M* is strongly *N*-extending for every module *N*.

The proof is direct from the fact " the set of all submodules of a modules M is coincide with $\mathcal{A}(M, M)[6]$ ".

It is proved in [2] that a module M is stronglyextending if and only if every closed submodule of M is a stable direct summand of M. This result leads us to give the following characterization of strongly N-extending modules.

Proposition (1.3): A module *M* is strongly *N*-extending if and only if every closed submodule of *M* which with belongs to $\mathcal{A}(N, M)$ is a stable direct summand.

Proof: (\Rightarrow)Suppose that *M* is strongly *N*-extending module. Let *K* be a closed submodule of *M* with $K \in \mathcal{A}(N, M)$. Since *M* is strongly *N*-extending, then there exists a stable direct summand *B* of *M* such that *K* is essential in *B*. But *K* is closed submodule of *M*, hence K = B (i.e.) *K* is a stable direct summand of *M*.

(⇐)Let *A* be a submodule of *M* with $A \in \mathcal{A}(N, M)$. Thus, by Zorn's lemma, there exists a closed submodule *H* of *M* such that *A* is essential in *H*. Since $\mathcal{A}(N, M)$ is closed under essential extension, so $H \in \mathcal{A}(N, M)$. By hypothesis, *H* is a stable direct summand of *M*. Therefore, *M* is strongly *N*-extending.□

The next results give us characterizations of strongly *N*-extending modules.

Proposition (1.4): A module *M* is strongly *N*-extending if and only if for each submodule *A* of *M* with $A \in \mathcal{A}(N, M)$, there is a direct decomposition $M = M_1 \oplus M_2$ such that $A \subseteq M_1$ where M_1 is a stable submodule of *M* and $A \oplus M_2$ is essential of *M*.

Proof:(\Rightarrow)Suppose that *M* is strongly *N*-extending *R*-module. Let *A* be a submodule of *M* with $A \in \mathcal{A}(N, M)$. Thus *A* is essential in a stable direct summand (say)*K* of *M* (i.e.)*M* = $K \oplus K_1$, where K_1 is a submodule of *M*. Also, since *A* is essential in *K* and K_1 is essential in K_1 , thus $A \oplus K_1$ is essential in $K \oplus K_1 = M$. Hence $A \oplus K_1$ is essential submodule of *M*.

(\Leftarrow)Let *A* be a submodule of *M* with $A \in \mathcal{A}(N, M)$. By hypothesis, there is a direct decomposition $M = M_1 \oplus M_2$ such that $A \subseteq M_1$ where M_1 is a stable submodule of *M* and $A \oplus M_2$ is essential in *M*. We claim that *A* is essential in M_1 . Let *K* be a nonzero submodule of M_1 , hence *K* is a submodule of , so $(A \oplus M_2) \cap K \neq (0)$ (since $A \oplus M_2$ is essential in *M*). Let $k = a + m_2(\neq 0)$, where $k \in K, a \in A$ and $m_2 \in M_2$, thus $m_2 = k - a$ which implies $m_2 \in M_1 \cap M_2 = (0)$, therefore $0 \neq k = a \in K \cap A$, then $K \cap A \neq (0)$, hence *A* is essential in M_1 . Thus *M* is strongly *N*-extending.

Following [2], every fully invariant direct summand is stable. By using this fact, we have directly the following characterization of strongly *N*-extending modules.

Proposition (1.5): A module *M* is strongly *N*-extending if and only if every submodule of *M* with belong $\mathcal{A}(N, M)$ is essential in a fully invariant direct summand of *M*.

Remark (1.6): From above Proposition, it can be restated that all results with stable direct summand being replaced by fully invariant direct summand.

In the following results, we discuss when a submodule of strongly *N*-extending module is strongly *N*-extending.

Proposition (1.7): A closed submodule of strongly *N*-extending is strongly *N*-extending.

Proof: Let *H* be a closed submodule of strongly *N*-extending module *M*. Let *K* be a closed submodule of *H* with $K \in \mathcal{A}(N, H)$. Since *H* is closed submodule of *M*, then *K* is closed of *M*. Also, $K \in \mathcal{A}(N, M)$. Now, since *M* is strongly *N*-extending, thus *K* is a stable direct summand of *M*. But $K \subseteq H$, then *K* is direct summand of *H*. Also, we claim that *K* is a stable submodule of *H*. Let $f: K \to H$ be any homomorphism and consider the sequence $\stackrel{f}{\to} H \stackrel{i}{\to} M$, where *i* is the inclusion mapping. Then $(i \circ f): K \to M$, and since *K* is stable of *M*, then $(i \circ f) (K) \subseteq K$. So $f(K) \subseteq K$. Then *K* is a stable direct summand of *H*. Therefore *H* is strongly *N*-extending.

Corollary (1.8): A direct summand of strongly *N*-extending module is strongly *N*-extending.

Corollary (1.9): A direct summand *A* of strongly *N*-extending module with $A \in \mathcal{A}(N, M)$ is strongly extending.

Proposition (1.10): Every submodule H of strongly N-extending module M and with the property that the intersection of H with any stable direct summand of M is stable direct summand of H, is strongly N-extending.

Proof: Let *A* be a submodule of *H* with $A \in \mathcal{A}(N, H)$. Since *M* is strongly *N*-extending and *A* is a submodule of *M*, then there is a stable direct summand *K* of *M* such that *A* is essential in *K* of *M*. But $A \subseteq K \cap H \subseteq K$, thus *A* is essential in $K \cap H$ and by hypothesis, $K \cap H$ stable direct summand of *H*. Hence *H* is strongly *N*-extending.

It is well known that a direct sum of (strongly) extending modules need not be (strongly) extending ([2])[9].

Here, we see that, a direct sum of strongly *N*-extending need not be strongly *N*-extending. In fact, *Z* and Z_2 are Z_2 -extending as *Z*-modules but we can concluded that From remarks and examples (1.2) (2), $Z_2 \oplus Z$ is not strongly Z_2 -extending as *Z*-module.

In the next result, we obtain when a direct sum of strongly N- extending module is strongly N- extending module.

Theorem(1.11):Let $M = M_1 \bigoplus M_2$ where M_1 and M_2 are strongly *N*-extending. Then *M* is strongly *N*-extending if and only if every closed submodule *K* belong to $\mathcal{A}(N, M)$ with $K \cap M_1 = 0$ or $K \cap M_2 = 0$ is stable direct summand.

Proof: The necessity condition is valid by Proposition (1.8). Conversely, let *L* be a closed submodule of *M* with $L \in \mathcal{A}(N, M)$. By Zorn's lemma, there exists a closed submodule *H* in *L* such that $L \cap M_2$ is essential in *H*. Since *L* is a closed submodule of *M*, so *H* is a closed submodule of *M*. Clearly since $L \cap M_2$ is essential in H and M_1 is essential in M_1 so $(L \cap M_2) \cap M_1$ is essential in $H \cap M_1$ Since $(L \cap M_2) \cap M_1$ is essential in $H \cap M_1$ and $(L \cap M_2) \cap M_1 = 0$ so $H \cap M_1 = 0$. Then by hypothesis, *H* is a stable direct summand of *M*. Let $M = H \oplus H'$ for some submodule *H'* of *M*. But $L \in \mathcal{A}(N, M)$ and *H* is a submodule of *L*, then $H \in \mathcal{A}(N, M)$ (since $\mathcal{A}(N, M)$ is closed in *M* with $L \cap H' \in \mathcal{A}(N, M)$ (Since $(L \cap H') = H \oplus (L \cap H')$). So $(L \cap H')$ is closed in *M* with $L \cap H' \in \mathcal{A}(N, M)$ (Since $(L \cap H')$ is a stable direct summand of *M*. Also, $(L \cap H') \cap M_2 = 0$. By hypothesis, $(L \cap H')$ is a stable direct summand of *M*, and hence of *H'* (since $(L \cap H') \subseteq H'$). Thus, $H' = (L \cap H') \oplus K$, where *K* is a submodule of *H'*. Now, $M = H \oplus H' = H \oplus (L \cap H') \oplus K$ = $(H \oplus (L \cap H') \oplus K) = L \oplus K$. It follows that *L* is a

direct summand of *M*. Since *H* and $L \cap H'$ are stable submodule of *M* and $L = H \bigoplus (L \cap H')$, then *L* is stable of *M* [1]. So *L* is a stable direct summand of *M*. Theretofore, *M* is strongly *N*-extending.

Following [6], if *M* be an R-module and $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence of modules, then $\mathcal{A}(N', M) \cup \mathcal{A}(N'', M) \subseteq \mathcal{A}(N, M)$.

Proposition (1.12): Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence. Then, a module *M* is strongly *N*-extending if and only if *M* is strongly *N'*-extending and *M* is strongly *N*"-extending.

<u>Proof:</u>(\Rightarrow)It is clear by using the fact $\mathcal{A}(N', M) \cup \mathcal{A}(N'', M) \subseteq \mathcal{A}(N, M)$.

(\Leftarrow) Suppose that *M* is strongly *N'*-extending and strongly *N*"-extending. Since $0 \rightarrow N' \rightarrow N \rightarrow N'$ $N'' \rightarrow 0$ is exact sequence. So one can assume that $N' \subseteq N$ and N'' = N / N'. Let $K \in \mathcal{A}(N, M)$, then there exists L be a submodule of N and there exists $g \in Hom(L, M)$ such that g(L) is essential in K. Let K' be a submodule of K which is closure of the submodule $g(L \cap N')$. Since M is strongly N'-extending, then K' is a stable direct summand of M. Let $M = K' \oplus K''$, for some submodule K" of M and $K = K' \oplus (K \cap K")$. Let $\pi: K \to K \cap K"$ denote the canonical projection. Define θ : $(L + N') / N' \rightarrow M by \theta (x + N') = \pi g(x)$, for all $x \in L$. Note that given $x \in L$, if $x \in N'$ then $g(x) \in g(L \cap N') \subseteq K'$ and hence $\theta(x + N') = \pi g(x) = 0$. Thus, θ is well-defined and clearly $\theta \in Hom((L + N') / N', M)$. Now let $0 \neq y \in K \cap K''$. Then $0 \neq yr = g(u)$ for some $r \in R, u \in L$. Since $g(u) \in K \cap K''$ it follows that $0 \neq yr =$ $g(u) = \pi g(u) = \theta (u + N')$. Thus $\theta ((L + N') / N')$ is essential in the closed submodule $K \cap K^{"}$ of the strongly N["]-extending module M. Hence $K \cap K^{"}$ is a stable direct summand of M. Since K' and $K \cap K^{"}$ are direct summand of M and $K = K' \bigoplus (K \cap K^{"})$, then K is direct summand of M. In other, direction, since K' and $K \cap K''$ are stable of M and $K = K' \oplus (K \cap K)$ K"), then K is a stable of M. So K is stable direct summand of M. Therefore, M is strongly Nextending.□

Relative (quasi-)continuous modules have been considered by several authors. In [4], S. Dogrouz considers (quasi-)continuous modules relative to a class of modules. On other hand, Lopez, Oshiro and Rizivi in [6] introduced (quasi-)continuous modules relative a given R-module *N*. A module *M* is called *N*-continuous if satisfies *N*-extending and $\mathcal{A}(N, M)C_2$: Every submodule of *M* which is belong in $\mathcal{A}(N, M)$, which is isomorphic to a direct summand of *M* is a direct summand of *M*. A module *M* is called *N*-quasi-continuous if satisfies *N*-extending and $\mathcal{A}(N, M)C_3$: If two direct summand *A* and *X* of *M* which *A* belong in $\mathcal{A}(N, M)$ have zero intersection, then their sum is a direct summand of *M*.

Here, we introduce relative strongly (quasi-)continuous modules.

Firstly, we can consider the following conditions for modules *M* and *N*:

 $\mathcal{A}(N, M)$ SC₁: Every submodule of M which is belong in $\mathcal{A}(N, M)$ is essential in a stable direct summand of M.

 $\mathcal{A}(N, M)$ SC₂: Every submodule of M which is belong in $\mathcal{A}(N, M)$, which is isomorphic to a direct summand of M is a stable direct summand of M.

 $\mathcal{A}(N, M)$ SC₃: If two direct summand A and X of M which A belong in $\mathcal{A}(N, M)$ have zero intersection, then their sum is a stable direct summand of M.

Definition (1.13): A module *M* is said to be strongly *N*-continuous if *M* satisfies, $\mathcal{A}(N, M)$ SC₁ and $\mathcal{A}(N, M)$ SC₂.

Definition (1.14): A module *M* is said to be strongly *N*-qausi- continuous if *M* is satisfies, $\mathcal{A}(N, M)$ SC₁ and $\mathcal{A}(N, M)$ SC₃.

Examples (1.15):

(1) Every strongly *N*-(quasi-)contenuous is *N*-(quasi-)continuous and the converse is not true in general. For example, $M = Z_2 \bigoplus Z$ is Z_2 -(quasi)-continuous as *Z*-module [6] which is not strongly Z_2 -quasi-continuous *Z*-module.

(2) Every strongly *N*-continuous module is strongly *N*-quasi-continuous and the converse is not true in general. For example, *Z* as *Z*-module is strongly *Z*-quasi-continuous but it is not strongly *Z*-continuous, since *Z* as *Z*-module does not satisfy $\mathcal{A}(N, M)$ SC₂ condition. In fact, $3Z \in \mathcal{A}(Z, Z)$ and $3Z \cong Z$ and is direct summand of *Z*. But 3Z is not stable direct summand of *Z*.

Recall that a module M is SS-module if every direct summand of M is stable [2] which is equivalent to weakly Duo module [8], that is, every direct summand is fully invariant. We introduce the following useful concept.

Definition (1.16): Let *M* and *N* are modules. *M* is called SS-*N*-module if, every direct summand *D* of *M* with $D \in \mathcal{A}(N, M)$ is a stable.

It is clear that strongly *N*-extending modules, uniform modules, SS-modules, Duo modules and fully stable modules are examples of SS-*N*-module.

Remarks and Examples (1.17):

(1) Every SS-module is SS-*N*-extending for each module *N*. But the converse is not true in general. For example, the Z-module $M = Z \oplus Z$ is SS-*N*-module for each semisimple module *N*. But *M* is not SS-module, in fact, $Z \oplus (0)$ is direct summand of *M* which is not stable submodule of $M = Z \oplus Z$.

(2) A direct sum of SS-*N*-module need not be SS-*N*-module. For example, consider *Z* and *Z*₂ as *Z*-modules. Since *Z* and *Z*₂ are uniform *Z*-modules, then they are SS-*Z*₂-module. But $M = Z_2 \oplus Z$ as *Z*-module is not SS-*Z*₂-module. In fact the only proper direct summand of *M* are (0) \oplus (0),*Z*₂ \oplus (0), (0) \oplus *Z* and *Z* \oplus *Z*₂. One can easily check that $\mathcal{A}(Z_2, M) = \{ (0), Z_2 \oplus (0) \}$. But *Z*₂ \oplus (0) is not stable submodule of *M*.

(3)A direct summand of SS-*N*-module is SS-*N*-module.

Proof: Let *M* be SS-*N*-module and *H* be a direct summand of *M*. Let *K* be a direct summand of *H* with $K \in \mathcal{A}(N, H)$. Since *H* is a direct summand of *M*, then *K* is a direct summand of *M*. Also $K \in \mathcal{A}(N, M)$. Now since *M* is SS-*N*-module, thus *K* is a stable submodule of *M*. But, $K \subseteq H$, then *K* is direct summand of *H*. We claim that *K* is stable of *H*. Let $f: K \to H$ be any

homomorphism. Thus $(i \circ f): K \to M$ where $i: H \to M$ is inclusion mapping and so $(i \circ f)(K) \subseteq K.$ (*i.e.*) $f(K) \subseteq K.$ Thus K is stable submodule of H. Hence H is SS-N-module.

In the following lemmas, we give a characterization of modules satisfy the conditions $\mathcal{A}(N, M)$ SC₁, $\mathcal{A}(N, M)$ SC₂ and $\mathcal{A}(N, M)$ SC₃.

Lemma (1.18): A module *M* has $\mathcal{A}(N, M)$ SC₁ condition if and only if *M* has $\mathcal{A}(N, M)$ C₁ condition and *M* has SS-*N*-extending.

Proof: (\Rightarrow) Let *M* has $\mathcal{A}(N, M)$ SC₁condition.Then, clearly *M* satisfy $\mathcal{A}(N, M)$ C₁ condition. Let *D* be a direct summand of *M* such that $D \in \mathcal{A}(N, M)$. So, *D* is closed which belong to $\mathcal{A}(N, M)$, thus by Proposition (1.3), *D* is stable.

(⇐)Let *H* be a submodule of *M* with $H \in \mathcal{A}(N, M)$. Then by $\mathcal{A}(N, M)C_1$ property of *M*, *H* is essential in a direct summand *D* of *M*. But $D \in \mathcal{A}(N, M)$, since $\mathcal{A}(N, M)$ is closed under essential extension. So by SS-*N*-module *D* is a stable. Therefore, *M* has $\mathcal{A}(N, M)SC_1$.□

Lemma (1.19): A module *M* has $\mathcal{A}(N, M)$ SC₂ condition if and only if *M* has $\mathcal{A}(N, M)$ C2 condition and *M* is SS-*N*-module.

Proof: (\Rightarrow) Let *M* has $\mathcal{A}(N, M)$ SC₂ condition. Then, clearly, *M* has $\mathcal{A}(N, M)$ C₂ condition. Let *H* is a direct summand of *M* with $H \in \mathcal{A}(N, M)$.Since $H \cong H$ and hence by $\mathcal{A}(N, M)$ SC₂ property, *H* is a stable submodule of *M*. So *M* is SS-*N*-module.

(⇐) Let *H* be a submodule of *M* with $H \in \mathcal{A}(N, M)$ such that $H \cong D$ where *D* is a direct summand of *M*. Thus, by $\mathcal{A}(N, M)C_2$ property *H* is a direct summand of *M*. Also, by SS-*N*-module property of *M* we have *H* is a stable of *M*. Therefore, *M* has $\mathcal{A}(N, M)SC_2$ condition.□

Lemma (1.20): A module *M* has $\mathcal{A}(N, M)$ SC₃condition if and only if *M* has $\mathcal{A}(N, M)$ C₃ condition and *M* is SS-*N*-module.

Proof:(\Rightarrow) Clearly every module *M* satisfies $\mathcal{A}(N, M)$ SC₃ has $\mathcal{A}(N, M)$ C₃. Let *H* be a direct summand of *M* with $H \in \mathcal{A}(N, M)$. Let D = (0). So *D* and *H* are direct summands of *M* such that $H \cap D = (0)$. Thus, by $\mathcal{A}(N, M)$ SC₃ property $H \oplus D = (0) \oplus H = H$ is stable submodule of *M*. Then *M* is SS-*N*-module.

(⇐) Let $H \in \mathcal{A}(N, M)$ such that H and K are direct summands of M and $H \cap K = (0)$. Thus, by $\mathcal{A}(N, M)C_3$ property for $M, H \oplus D$ is a direct summand of M. Also, $H \oplus D \in \mathcal{A}(N, M)$ (since $H \oplus D$ is submodule of H and $H \in \mathcal{A}(N, M)$ and since $\mathcal{A}(N, M)$ is closed under submodule). Then by SS-N-module $H \oplus D$ stable of M. Hence M satisfies $\mathcal{A}(N, M)SC_3$ property.

By using above three lemmas, we have the following characterizations of strongly *N*-(quasi-)continuous modules. The proofs of these propositions are direct.

Proposition (1.21): A module *M* is strongly *N*-continuous if and only if *M* is *N*-continuous and *M* is SS-*N*-module.

Proposition (1.22): A module *M* is strongly *N*-quasi-continuous if and only if *M* is *N*-quasi-continuous and *M* is SS-*N*-module.

Proposition (1.23): A module *M* is strongly *N*-continuous if and only if *M* is satisfies the condition $\mathcal{A}(N, M)$ SC₁and $\mathcal{A}(N, M)$ C₂.

Proposition (1.24): A module *M* is strongly *N*-quasi-continuous if and only if *M* is satisfies the condition $\mathcal{A}(N, M)$ SC₁ and $\mathcal{A}(N, M)$ C₃.

Proposition (1.25): A module *M* is strongly *N*-continuous if and only *M* satisfies the condition $\mathcal{A}(N, M)C_1$ and $\mathcal{A}(N, M)SC_2$.

Proposition (1.26): A module *M* is strongly *N*-quasi-continuous if and only if *M* satisfies the condition $\mathcal{A}(N, M)C_1$ and $\mathcal{A}(N, M)$ SC₃.

Following [6], a direct summand of N-(quasi)- continuous module is N-(quasi)- continuous. So, By Remarks and Example (1.17)(3) and Proposition(1.21) and Proposition (1.22), we assert that the strongly N-(quasi-) continuous modules is inherited by direct summands.

Proposition (1.27): A direct summand of strongly *N*-continuous module is strongly *N*-continuous.

Proposition (1.28): A direct summand of strongly *N*-quasi-continuous module is strongly *N*-quasi-continuous

By using the same argument of Proposition (1.12) we have the following results:

Proposition (1.29): Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence of modules. Then a module *M* is strongly *N*-continuous if and only if *M* is strongly *N*'- continuous and strongly *N*''- continuous.

Proposition (1.30): Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence of modules. Then *M* is strongly *N*-quasi-continuous if and only if *M* is strongly *N*'-quasi-continuous and strongly *N*''-quasi- continuous.

References

[1] Abbas, M.S.: On fully stable modules, Ph.D. Thesis, Univ. of Baghdad, 1991.

[2] Al-Saadi, S.A: S-extending modules and related concepts, Ph. D. Thesis, Mustansiriyah Univ. 2007.

[3] Anderson F.W., and Fuller, K.R.: Rings and Categories of modules, Springer-Verlag. New York 1973.

[4] Dogruoz, S.: Extending modules relative to module classes, Ph. D. Thesis, Uinv. of Glasgow, 1997..

[5] Dung, N.V. ; Hunynh, D.V. ; P.F.Smith and Wisbauer, R.: Extending modules, Pitman Research Notes in Mathematics Series, 313(1994).

[6] Lopez-permonth, S.R.; Oshiro, K. ; Rizivi, S.T. : On the relative (quasi-) continuity of modules, Comm. Algebra 26(1998), 3497-3510.

[7] Oshrio, K. : Continuous modules and quasi-continuous modules, Osaka J.Math, 20(1983), 681-694.

[8] Ozcan, A. C. Duo Modules, Glasgow Math. J. Trust 48(2006)533-545.

[9] Simth, P.F. and Tercan, A. : Continuous and quasi-continuous modules, Houston Math. J 18(1992), 339-348.