Al-Qadisiyah Journal of Pure Science

Volume 26 | Number 4

Article 52

8-15-2021

On Commutativity of Prime Rings with Symmetric Left **0**-3-Centralizers

Ikram A. Saed Department of Applied Sciences, University of Technology, Baghdad, Iraq, ikramsaed1962@gmail.com

Follow this and additional works at: https://qjps.researchcommons.org/home

Recommended Citation

Saed, Ikram A. (2021) "On Commutativity of Prime Rings with Symmetric Left θ-3- Centralizers," *Al-Qadisiyah Journal of Pure Science*: Vol. 26: No. 4, Article 52. DOI: 10.29350/qjps.2021.26.4.1392 Available at: https://qjps.researchcommons.org/home/vol26/iss4/52

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

On Commutativity of Prime Rings with Symmetric

Left θ -3- Centralizers

Authors Names	ABSTRACT
Ikram A. Saed Article History Received on: $29/6/2021$ Revised on: $30/8/2021$ Accepted on: $28/10/2021$ Keywords: Prime rings, Left θ -3- centralizer, symmetric left θ - 3-centralizer. DOI: https://doi.org/10.29350/ jops.2021.26. 4.1392	Let R be an associative ring with center Z(R), I be a nonzero ideal of R and θ be an automorphism of R. An 3-additive mapping M:RxRxR \rightarrow R is called a symmetric left θ -3-centralizer if M(u ₁ y,u ₂ ,u ₃)=M(u ₁ ,u ₂ ,u ₃) θ (y) holds for all y, u ₁ , u ₂ , u ₃ \in R. In this paper , we shall investigate the commutativity of prime rings admitting symmetric left θ -3-centralizer satisfying any one of the following conditions : (i)M([u,y], u ₂ , u ₃) \pm [θ (u), θ (y)] = 0, (ii)M((u \circ y), u ₂ , u ₃) \pm (θ (u) \circ θ (y)) = 0 (iii)M(u ² , u ₂ , u ₃) \pm θ (u ²) = 0, (iv) M(u y, u ₂ , u ₃) \pm θ (uy) = 0 (v) M(u y, u ₂ , u ₃) \pm θ (uy) \in Z(R) For all u ₂ ,u ₃ \in R and u, y \in I

1.Introduction

Let R be an associative ring with center Z(R). In [3], Ashraf, and Ali, investigate the commutativity of prime rings satisfying certain identities involving left multiplier on a nonzero ideal. In [1], Ali and Huang, get many sufficient conditions of commutativity on left α -multipliers when R is semiprime ring on a nonzero ideal. In [2], Abduljaleel, and Majeed, discussed the commutativity of prime ring admitting a right α - centralizer where α is an endomorphism of R on a lie ideal. For more information see [5-9]. In[10], Saed, study the commutativity of prime Γ -ring by using the notion of symmetric left Γ -n- centralizers.

This paper is organized as follows . In section two , we recall some well-known definitions and examples that will be used in this paper . In section three , we present the notion of symmetric left θ -3-centralizer of R , where θ is a mapping on R , and study the commutativity of prime rings

admitting a symmetric left θ -3-centralizer , where θ is an automorphism of R satisfying many conditions on a nonzero ideal .

2. Basic Concept

Definition 2.1:[4] A nonempty set R is said to be associative ring if in R there are defined two operations , denoted " + "and "." respectively, such that for all a,b,c in R:

1. a+b is in R

2. a +b= b +a

3. (a + b) + c = a + (b + c)

4. There is an element 0 in R such a + 0 = a (for every a in R)

5. There exists an element -a in R such that a + (-a) = 0

6. a .b is in R

7. a.(b.c) = (a.b).c

8. a. (b + c) = a.b + a.c and (b + c).a = b.c + c.a

Definition 2.2:[4] A subring I of a ring R is called (two-sided) ideal of R if for every $r \in R$ and every $a \in I$, $ra \in I$ and $ar \in I$.

Examples 2.3:[4] (1)In a ring R the trivial subrings : R and {0} are both ideals .

(2) The set of even integers is an ideal in the ring of integers .

Definition 2.4:[4] Let R be a ring, the center of R denoted by Z(R) and is defined by : $Z(R) = \{x \in R : xr = rx, \text{ for all } r \in R\}$.

Definition 2.5:[3] A ring R is called a prime ring if for any $a, b \in R$, $aRb = \{0\}$ implies that either a = 0 or b = 0.

Example 2.6:[3] The ring of real numbers with the usual operation of addition and multiplication is prime ring.

Definition 2.7:[3] Let R be a ring . An additive mapping $H : R \to R$ is called a left(resp. right) centralizer of R if H(xy) = H(x)y (resp. H(xy) = xH(y)), holds for all $x,y \in R$. A centralizer of a ring R is both left and right centralizer.

Definition 2.8:[1] Let R be a ring. An additive mapping $H : R \rightarrow R$ is called a left(resp. right) α centralizer of R if $H(xy) = H(x) \alpha(y)$ (resp. $H(xy) = \alpha(x) H(y)$) holds for all $x, y \in R$, where α is an
endomorphism of R. A α - centralizer of a ring R is both left and right α - centralizer.

Definition 2.9:[2] Let R be a ring. For any $x,y \in R$, the symbol [x,y] will denote the commutator xy - yx and the symbol $x \circ y$ will denote the anticommutator xy + yx.

Remark 2.10 :[2]

Let R be a ring and x, y, $z \in R$, then (i)[xy, z] = x[y, z] + [x, z]y (ii)[x, yz] = y[x, z] + [x, y]z (iii)(xy) $\circ z = x(y \circ z) - [x, z]y = (x \circ z)y + x[y, z]$ (iv)x $\circ (yz) = (x \circ y)z - y[x, z] = y(x \circ z) + [x, y]z$ (v)(xy) $\circ z = x(y \circ z)$

Definition 2.11:[10] Let M be a Γ -ring and n be a fixed positive integer . An n-additive mapping T: MxMxMx....xM \rightarrow M is said to be left Γ -n- centralizer if the following equations hold for all y, $r_1, r_2, ..., r_n \in M$ and $\gamma \in \Gamma$.

 $T_{1}(r_{1} \gamma y, r_{2}, ..., r_{n}) = T_{1}(r_{1}, r_{2}, ..., r_{n}) \gamma y$ $T_{2}(r_{1}, r_{2} \gamma y, ..., r_{n}) = T_{2}(r_{1}, r_{2}, ..., r_{n}) \gamma y$ \vdots

 $T_{n}(r_{1}, r_{2}, ..., r_{n} \gamma y) = T_{n}(r_{1}, r_{2}, ..., r_{n}) \gamma y$

T is said to be a symmetric left Γ -n- centralizers if all the above equations are equivalent to all other .That is ,

T ($r_1 \gamma y$, r_2 , ..., r_n) = T (r_1 , r_2 , ..., r_n) γy

For all y, r_1 , r_2 , ..., $r_n \in M$ and $\gamma \in \Gamma$.

3. On Symmetric Left θ -3-Centralizers and Commutativity of Prime Rings

Now, we introduce the concept of symmetric left θ -3-centralizer

Definition 3.1 :

Let R be a ring and θ is a mapping on R. An 3-additive mapping M: RxRxR \rightarrow R is said to be left θ -3-centralizer if the following equations hold for all y, u₁, u₂, u₃ \in R

 $M_1(u_1y, u_2, u_3) = M_1(u_1, u_2, u_3) \theta(y)$

 M_2 (u_1 , u_2 y, u_3) = M_2 (u_1 , u_2 , u_3) θ (y)

 $M_3(u_1, u_2, u_3y) = M_3(u_1, u_2, u_3) \theta(y)$

M is said to be a symmetric left θ -3-centralizer if all the above equations are equivalent to all other . That is ,

 $M (u_1y, u_2, u_3) = M (u_1, u_2, u_3) \theta(y)$

For all $y, u_1, u_2, u_3 \in R$.

Example 3.2: Consider $R = \{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in \mathbb{Z} \}$ be a ring and \mathbb{Z} is a ring of integer numbers. Let $M : RxRxR \rightarrow R$ be a mapping defined by

$$M\left(\begin{pmatrix} 0 & a_1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_3 \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 0 & a_1 a_2 a_3 \\ 0 & 0 \end{pmatrix}, \text{ for all}$$
$$\begin{pmatrix} 0 & a_1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_3 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}$$
And $\theta : \mathbb{R} \rightarrow \mathbb{R}$ is defined by

And $\theta: R \rightarrow R$ is defined by

$$\theta \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \text{, for } \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \in \mathbb{R}$$

Then M is a symmetric left θ -3-centralizer.

Theorem 3.3 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and R admits a nonzero symmetric left θ -3-centralizer M such that M (u, u_2, u_3) $\neq \theta(u)$, for all $u \in I$. Further, if M([u,y], u_2, u_3) - [$\theta(u), \theta(y)$] = 0, for all $u_2, u_3 \in R$ and u, y $\in I$, then R is commutative.

Proof:

By the given hypothesis we have

 $M([u,y], u_2, u_3) - [\theta(u), \theta(y)] = 0 , \text{ for all } u_2, u_3 \in \mathbb{R} \text{ and } u, y \in \mathbb{I}$ (3.1)

This can be rewritten as

$$(M (u, u_2, u_3) - \theta(u)) \theta(y) - (M (y, u_2, u_3) - \theta(y)) \theta(u) = 0$$
(3.2)

Replacing u by ur in (3.2), where $r \in \mathbb{R}$, we find that

$$(M(u, u_2, u_3) - \theta(u)) \theta(r) \theta(y) - (M(y, u_2, u_3) - \theta(y)) \theta(u) \theta(r) = 0$$
(3.3)

Multiply equation (3.2) from the right side by $\theta(\mathbf{r})$

$$(M(u, u_2, u_3) - \theta(u)) \theta(y) \theta(r) - (M(y, u_2, u_3) - \theta(y)) \theta(u) \theta(r) = 0$$
(3.4)

Comparing equation (3.3) and (3.4), we get

$$(M (u, u_2, u_3) - \theta(u))(\theta(r) \theta(y) - \theta(y) \theta(r)) =$$

$$(M (u, u_2, u_3) - \theta(u)) [\theta(r), \theta(y)] = 0$$
(3.5)

Again , replace r by rs in (3.5) , where $s \in \mathbb{R}$, and using it , to get

 $(M (u, u_2, u_3) - \theta(u)) \theta(r) [\theta(s), \theta(y)] = 0$

i.e., (M (u , u₂, u₃) - θ (u)) $R[\theta(s), \theta(y)] = \{0\}$

Since R is prime ring, then either $(M(u, u_2, u_3) - \theta(u)) = 0$ or $[\theta(s), \theta(y)] = 0$, for all $s, u_2, u_3 \in \mathbb{R}$ and $u, y \in \mathbb{I}$.

Thus application of our hypotheses implies that $[\theta(s), \theta(y)] = 0$, for all $y \in I$ and $s \in R$ and therefore $I \subseteq Z(R)$.

Hence, R is commutative.

Using similar arguments as used in proof of the Theorem 3.3, we can prove the following :

Theorem 3.4 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and R admits a nonzero symmetric left θ -3-centralizer M such that M (u, u_2, u_3) $\neq -\theta(u)$, for all $u \in I$. Further, if M([u,y], u_2, u_3) + [$\theta(u), \theta(y)$] = 0, for all $u_2, u_3 \in R$ and $u, y \in I$, then R is commutative.

Theorem 3.5 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and R admits a nonzero symmetric left θ -3-centralizer M such that M (u, u₂, u₃) $\neq \theta$ (u), for all u \in I. Further, if M((u \circ y), u₂, u₃) - (θ (u) $\circ \theta$ (y)) = 0, for all u₂, u₃ \in R and u, y \in I, then R is commutative

Proof:

By the hypotheses , we have

 $M((u \circ y), u_2, u_3) - (\theta(u) \circ \theta(y)) = 0 \text{, for all } u_2, u_3 \in \mathbb{R} \text{ and } u, y \in \mathbb{I}$ (3.6)

This implies that

 $(M (u, u_2, u_3) - \theta(u)) \theta(y) + (M (y, u_2, u_3) - \theta(y)) \theta(u) = 0$ (3.7)

Replacing u by ur in (3.7), where $r \in \mathbb{R}$, we obtain

 $(M(u, u_2, u_3) - \theta(u)) \theta(r) \theta(y) + (M(y, u_2, u_3) - \theta(y)) \theta(u) \theta(r) = 0$ (3.8)

Multiply equation (3.7) from the right side by $\theta(\mathbf{r})$

$$(M(u, u_2, u_3) - \theta(u)) \theta(y) \theta(r) + (M(y, u_2, u_3) - \theta(y)) \theta(u) \theta(r) = 0$$
(3.9)

Comparing equation (3.8) and (3.9), we get

 $(M (u, u_2, u_3) - \theta(u))(\theta(r) \theta(y) - \theta(y) \theta(r)) =$

 $(M (u, u_2, u_3) - \theta(u)) [\theta(r), \theta(y)] = 0$ (3.10)

Again , replace r by rs in (3.5) , where $s \in \mathbb{R}$, and using it , to get

 $(\mathsf{M}(\mathsf{u},\mathsf{u}_2,\mathsf{u}_3) - \theta(\mathsf{u})) \theta(\mathsf{r}) [\theta(\mathsf{s}),\theta(\mathsf{y})] = 0$

i.e., (M (u, u₂, u₃) - θ (u)) $R[\theta(s), \theta(y)] = \{0\}$

Since R is prime ring, then either $(M(u, u_2, u_3) - \theta(u)) = 0$ or $[\theta(s), \theta(y)] = 0$, for all $s, u_2, u_3 \in \mathbb{R}$ and $u, y \in \mathbb{I}$.

Thus, application of our hypotheses implies that $[\theta(s), \theta(y)] = 0$, for all $y \in I$ and $s \in R$ and therefore $I \subseteq Z(R)$.

Hence, R is commutative.

Using similar arguments as used in proof of the Theorem 3.5, we can prove the following :

Theorem 3.6 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and R admits a nonzero symmetric left θ -3-centralizer M such that M (u, u₂, u₃) $\neq -\theta(u)$, for all u \in I. Further, if M((u \circ y), u₂, u₃) + ($\theta(u) \circ \theta(y)$) = 0, for all u₂, u₃ \in R and u, y \in I, then R is commutative.

Theorem 3.7 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and M is a nonzero symmetric left θ -3-centralizer. If M (u^2 , u_2 , u_3) = $\theta(u^2)$, for all $u_2, u_3 \in R$ and $u \in I$, then R is commutative.

Proof:

We are given that

 $M(u^2, u_2, u_3) = \theta(u^2)$, for all $u_2, u_3 \in \mathbb{R}$ and $u \in \mathbb{I}$ (3.11)

For all $u, y \in I$, we have

M (($(u + y)^2$, u_2 , u_3) = θ ((u + y)²), which implies that

 $M((u \circ y), u_2, u_3) - (\theta(u) \circ \theta(y)) = 0$, for all $u_2, u_3 \in \mathbb{R}$ and $u, y \in \mathbb{I}$

By using Theorem 3.5, we get R is commutative.

Similarly, we can prove the following :

Theorem 3.8 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and M is a nonzero symmetric left θ -3-centralizer. If M (u^2 , u_2 , u_3) = - $\theta(u^2)$, for all $u_2, u_3 \in R$ and $u \in I$, then R is commutative.

Theorem 3.9 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and M is a nonzero symmetric left θ -3-centralizer such that M (u, u₂, u₃) $\neq \pm \theta(u)$, for all u \in I. Further, if M(u y, u₂, u₃) $\pm \theta(u y) = 0$, for all u₂, u₃ \in R and u, y \in I, then R is commutative.

Proof :

For any u_2 , $u_3 \in R$ and u, $y \in I$

We have $M(u y, u_2, u_3) = \theta(u y)$

Then we have $M(u y - y u, u_2, u_3) = \theta(u y - y u)$

This implies that $M([u,y], u_2, u_3) - [\theta(u), \theta(y)] = 0$, for all $u_2, u_3 \in \mathbb{R}$ and $u, y \in \mathbb{I}$, and hence by Theorem 3.3, R is commutative.

On the other hand if R satisfy the condition $M(u y, u_2, u_3) + \theta(u y) = 0$, for all $u_2, u_3 \in R$ and $u, y \in I$

Then we have $M(u y + y u, u_2, u_3) = -\theta(u y + y u)$

This implies that $M((u \circ y), u_2, u_3) + (\theta(u) \circ \theta(y)) = 0$, for all $u_2, u_3 \in \mathbb{R}$ and $u, y \in \mathbb{I}$. Thus, by Theorem 3.6, R is commutative.

Theorem 3.10: Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and M is a nonzero symmetric left θ -3-centralizer such that M (u, u₂, u₃) $\neq \theta(u)$, for all u \in I. Further, if M(u y, u₂, u₃) $- \theta(u y) \in Z(R)$, for all u₂,u₃ \in R and u, y \in I, then R is commutative.

Proof:

For all $u_2, u_3 \in \mathbb{R}$ and $u, y \in I$, we have

 $M(u y, u_2, u_3) - \theta(u y) \in Z(R)$

This can be rewritten as

 $(M(u, u_2, u_3) - \theta(u))\theta(y) \in Z(R)$ (3.12)

Replacing u by ur in (3.12), where $r \in \mathbb{R}$, we obtain

 $(M(u, u_2, u_3) - \theta(u))\theta(r) \theta(y) \in Z(R)$ (3.13)

Multiply equation (3.12) from the right side by $\theta(\mathbf{r})$

 $(M(u, u_2, u_3) - \theta(u))\theta(y)\theta(r) \in Z(R)$ (3.14)

 $[M(u, u_2, u_3) - \theta(u))\theta(y), \theta(r)] = 0,$

For all $u_2, u_3 \in \mathbb{R}$ and $u, y \in \mathbb{I}$ (3.15)

This implies that,

 $(M(u, u_2, u_3) - \theta(u))[\theta(y), \theta(r)] + [M(u, u_2, u_3) - \theta(u), \theta(r)]\theta(y) = 0$

For all u_2 , $u_3 \in \mathbb{R}$ and $u, y \in \mathbb{I}$ (3.16)

Again , replace u by us in (3.16) , where $s \in \mathbb{R}$, and using it , to get

 $(M(u, u_2, u_3) - \theta(u)) \theta(s) [\theta(y), \theta(r)] + [(M(u, u_2, u_3) - \theta(u)) \theta(s), \theta(r)] \theta(y) = 0$ (3.17)

Comparing equation (3.16) and (3.17), we get

 $(M (u, u_2, u_3) - \theta(u)) \theta(s) [\theta(y), \theta(r)] = 0$

For all r, s , u_2 , $u_3 \in R$ and $u , y \in I$

This yields that

 $(M(u, u_2, u_3) - \theta(u)) R[\theta(y), \theta(r)] = \{0\}$. For all r, $u_2, u_3 \in R$ and u, $y \in I$

The primeness of R implies that either $[\theta(y), \theta(r)] = 0$ or

M (u, u₂, u₃) – θ (u) = 0, for all r, u₂, u₃ \in R and u, y \in I.

Since M (u, u₂, u₃) $\neq \theta(u)$, implies that $[\theta(y), \theta(r)] = 0$, for all $y \in I$ and $r \in R$ and therefore $I \subseteq Z(R)$.

Hence , R is commutative .

Using similar arguments as used in proof of the Theorem 3.10, we can prove the following :

Theorem 3.11 : Let R be a prime ring and I be a nonzero ideal of R. Suppose that θ is an automorphism of R and M is a nonzero symmetric left θ -3- centralizer such that M (u, u₂, u₃) $\neq -\theta(u)$, for all u \in I. Further, if M(u y, u₂, u₃) + $\theta(u y) \in Z(R)$, for all u₂,u₃ \in R and u, y \in I, then R is commutative.

References

[1] Ali , S. and Huang , S., " On left α - multipliers and commutativity of semiprime rings " , Commun .Korean Math.Soc.,27(1),pp:69-76, 2012.

[2] Amira A. Abduljaleel and Abdulrahman H. Majeed , " On Right α -Centralizers and commutativity of prime rings ", Iraq Journal of Science ,Special Issue , part A , pp: 134-138 , 2016

[3] Ashraf, M. and Ali, S., " On left multipliers and the commutativity of prime rings ", Demonstratio Math., 41(4), pp:763-771, 2008.

[4] Herstein . I.N., "Topics in Ring Theory", University of Chicago Press, Chicago, 1969.

[5] Ikram A. Saed , " Commutativity of addition in Prime Near-Rings with Right (θ , θ)-3-Derivations ", Journal of Advances in Mathematics , Vol.14 , Issue :01, 2018 .

[6] Ikram A. Saed , "Right (θ , θ)-4-Derivations on Prime Near-Rings ", International Journal of Mathematics Trends and Technology , Vol.54 , No.3, February 2018 .

[7] Ikram A. Saed, "On Semigroup Ideals and Left Generalized (θ , θ)-4-Derivations in Prime Near-Rings ", International Journal of Mathematics Trends and Technology, Vol.57, Issue 2, May 2018.

[8] Ikram A. Saed , " On Semigroup Gamma Near-Rings with Perpendicular Generalized 3-Derivations " , Journal of AL- Qadisiyah for computer science and mathematics " , Vol.11,No.2 ,2019 .

[9] Ikram A. Saed , " On Semigroup Ideals and Generalized Two Sided Reverse α -3-Derivation in Prime Near-Ring ", Al- Qadisiyah Journal of Pure Science , Vol. 25, Issue 4, 2020.

[10] Ikram A. Saed , " On Prime and Semiprime gamma Rings with Symmetric gamma n-centralizers ", Journal of Physic : Conference Series , 1879(2021)032019.