[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 26](https://qjps.researchcommons.org/home/vol26) [Number 3](https://qjps.researchcommons.org/home/vol26/iss3) Article 1

7-7-2021

A View On Symmetric Numerical Semigroups

Sedat iLHAN Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır, 21280, TURKEY, sedati@dicle.edu.tr

Follow this and additional works at: [https://qjps.researchcommons.org/home](https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

iLHAN, Sedat (2021) "A View On Symmetric Numerical Semigroups," Al-Qadisiyah Journal of Pure Science: Vol. 26: No. 3, Article 1. DOI: 10.29350/qjps.2021.26.3.1303 Available at: [https://qjps.researchcommons.org/home/vol26/iss3/1](https://qjps.researchcommons.org/home/vol26/iss3/1?utm_source=qjps.researchcommons.org%2Fhome%2Fvol26%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

A View On Symmetric Numerical Semigroups

1. Introduction

Let $\mathcal{F} = \{0, 1, 2, ..., n, ...\}$ and φ be integer set. S is called a numerical semigroup if

(i)
$$
a_1 + a_2 \hat{1}
$$
 S for " $a_1, a_2 \hat{1}$ S
(ii) $gcd(S) = 1$
(iii) $0\hat{1}$ S

where S $\acute{\rm 1}$ $\;$ $\;$ $\;$ $\;$ (Here, $\gcd(S)$ $\;$ greatest common divisor the elements of $\;S$).

A numerical semigroup *S* can be written that

$$
S = \langle a_1, a_2, ..., a_n \rangle = \begin{cases} \sum_{i=1}^{n} a_i & k_i a_i : k_i \hat{1} \neq \hat{1} \\ \sum_{i=1}^{n} b_i & \hat{1} \end{cases}
$$

(for details see [4]).

 $U\dot{\rm I}$ V is minimal system of generators of S if $\langle U \rangle = S$ and there isn't any subset $V\dot{\rm I}$ U such that $\langle V \rangle = S$.Also, $m(S) = \min \{x \in S : x > 0\}$ is called as multiplicity of *S* (see [3]). Let *S* be a numerical semigroup, then $F(S) = \max(\phi \backslash S)$ is called as Frobenius number of S .

$$
n(S) = Card (\{0, 1, 2, ..., F(S)\} \zeta S)
$$

is called as the determine number of S (see [5]).

If *S* is a numerical semigroup such that $S = \langle a_1, a_2, ..., a_n \rangle$, then we observe that
 $S = \langle a_1, a_2, ..., a_n \rangle = \{s_0 = 0, s_1, s_2, ..., s_{n-1}, s_n = F(S) + 1, \mathbb{Q} \dots \},$

$$
S = \langle a_1, a_2, ..., a_n \rangle = \{s_0 = 0, s_1, s_2, ..., s_{n-1}, s_n = F(S) + 1, \mathbb{R}^n \dots \},
$$

where $s_i < s_{i+1}$, $n = n(S)$ and the arrow means that every integer greater than $F(S) + 1$ belongs to S for $i = 1, 2, ..., n = n(S)$ (see [6]).

If $b \hat{1} \nmid \Psi$ and $b \hat{1}$ S , then b is called gap of S . We denote the set of gaps of S , by $H(S)$, i.e, $H(S) = \frac{1}{2} \setminus S$. The $G(S) = \#(H(S))$ is called the genus of S. It known that

$$
G(S) + n(S) = F(S) + 1
$$

 $($ see $[4]$ $).$

S is called symmetric numerical semigroup if $F(S)$ - *t* belongs to *S*, for *t* $\hat{I} \notin S$. It is know the numerical semigroup $S = < a_1, a_2>$ is symmetric and $|F(S) = |a_1a_2 - a_1 - a_2|$. In this case, we write

$$
n(S) = \frac{F(S) + 1}{2}
$$

(see [1]).

A numerical semigroup S is called Arf if $a_1 + a_2 - a_3 \hat{I}$ S, for all $a_1, a_2, a_3 \hat{I}$ S such that $a_1{}^3$ $a_2{}^3$ a_3 . The smallest Arf numerical semigroup containing a numerical semigroup *S* is called the Arf closure of *S* , and it is denoted by $Arf(S)$ (for detail see [2, 3]). If S is a numerical semigroup such that and it is denoted by $Arf(S)$ (for detail see [2, 3]). It is is a numerical semigroup such that
 $S = \langle a_1, a_2, ..., a_n \rangle$, then $L(S) = \langle a_1, a_2 - a_1, a_3 - v_1, ..., a_n - v_1 \rangle$ is called Lipman numerical semigroup

of S and it is known tha of *S* and it is known that

$$
L_0(S) = S \subseteq L_1(S) = L(L_0(S)) \subseteq L_2 = L(L_1(S)) \subseteq \dots \subseteq L_m = L(L_{m-1}(S)) \subseteq \dots \subseteq \square
$$

(see [7]).

 In this paper, we will give some results about the symmetric numerical semigroups such that $S_k =$ < 7,7 k + 4> where k ³ 1, k Î ϕ . Also, we will obtain Arf closure of these symmetric numerical semigroups.

2. Main Results

Theorem 1. Let $S_k = < 7, 7k + 4 >$ be numerical semigroups , where k^3 1, $k \hat{\mathbf{l}} \notin$. Then, we have

 $(a) F(S_k) = 42k + 17$ (b) $n(S_k) = 21k + 9$ $(c) G(S_k) = 21k + 9$.

Proof. Let $S_k = \langle 7, 7k + 4 \rangle$ be numerical semigroups , where k^3 1, $k \in \mathbf{R}$ k . Then, S_k is symmetric and we find that

(a)
$$
F(S_k) = 7(7k + 4) - 7 - 7k - 4 = 42k + 17
$$
.
\n(b) $n(S_k) = \frac{F(S_k) + 1}{2} = \frac{42k + 17 + 1}{2} = 21k + 9$.
\n(c) $G(S_k) = 42k + 17 + 1 - 21k - 9 = 21k + 9$ from $G(S_k) = F(S_k) + 1 - n(S_k)$.

Theorem 2. Let $S_k = \langle 7, 7k + 4 \rangle$ be numerical semigroups , where k^3 1, $k \in \emptyset$. Then, $Arf(S_k) = \{0, 7, 14, 21, ..., 7k, 7k + 4, 7k + 7, \mathbb{R} ... \}.$

Proof. It is trivial $m_0 = 7$ since $L_0(S_k) = S_k = 7,7k + 4 > 7$. Thus, we write $L_1(S_k) = 7,7k - 3 > 7$. In this case,

(1) If
$$
7k-3 < 7
$$
 (if $k = 1$) then $S_1 = \langle 7, 11 \rangle$ and $L_1(S_1) = \langle 7, 4 \rangle = \langle 4, 7 \rangle$, $m_1 = 4$.
\n $L_2(S_1) = \langle 4, 3 \rangle = \langle 3, 4 \rangle$, $m_2 = 3$ and $L_3(S_1) = \langle 3, 1 \rangle = \langle 1 \rangle = \frac{1}{2}$, $m_3 = 1$.

Thus, we obtain that $Arf(S_1) = \{0, 7, 11, 14, \mathbb{R} \dots\}.$

(2) If $7k - 3 > 7$ (if k^3 2) then $L_1(S_k) = 7, 7k - 3 >$ and $m_1 = 7$. In this case, we write $L_2(S_k) = 2,7,7k - 10$.

(a) If $k = 2$ then $L_2(S_2) = 2, 4, 7, m_2 = 4, L_3(S_2) = 2, 4, 3, ...$ and $L_2(S_1) = 2, 4, 3, ...$ 4 2 4 *L S m* () 3,1 1 , 1. = < > = < > = = ¥ So, we have *Arf S*() 0,7,14,18,21, ... ² = ® { }.

(b) If
$$
k > 2
$$
 then $L_2(S_k) = \langle 7, 7k - 10 \rangle$, $m_2 = 7$ and $L_3(S_k) = \langle 7, 7k - 17 \rangle$. In this case,

(i) if $k = 3$ then $L_3(S_3) = 5, 4 > 6, 7 > 1$, $m_3 = 4$. $L_4(S_3) = 5, 4 > 1, m_4 = 3$ and (i) if $k = 3$ then $L_3(S_3) = 3$, $k = 4$, $k = 5$, $m_3 = 4$. $L_4(S_3) = 3$, $L_5(S_3) = 3$, $k = 5$, $m_5 = 1$. Thus we obtain that $Arf(S_3) = \{0, 7, 14, 21, 25, 28, \mathbb{R} \dots\}$.

(ii) If
$$
k > 3
$$
 then $L_3(S_k) = \langle 7, 7k - 17 \rangle$, $m_3 = 7$ and $L_4(S_k) = \langle 7, 7k - 24 \rangle$. In this case,

(1) if
$$
k = 4
$$
 then $L_4(S_4) = 6$, $L_5(S_4) = 4$, $L_5(S_4) = 4$, $L_5(S_4) = 4$, $L_5(S_5) = 3$, $L_5(S_5) = 3$, $L_5(S_6) = 3$.

and

$$
L_6(S_4) = \langle 1 \rangle = \frac{1}{2}, m_6 = 1.
$$

Thus we find $Arf(S_k) = \{0, 7, 14, 21, 28, 32, 35, \mathbb{B} \dots \}.$

(2) If $k > 4$ then $L_4(S_k) = 4, 7, 7k - 24$, $m_4 = 7$ and we write $L_5(S_k) = 4, 7, 7k - 31$. If we

continue the operations then we obtain Arf closure of $Arf(S_k)$ as follows
 $Arf(S_k) = \{0, 7, 14, 21, ..., 7k, 7k + 4, 7k + 7, \circledR ... \}.$

$$
Arf(S_k) = \{0, 7, 14, 21, \ldots, 7k, 7k + 4, 7k + 7, \mathbb{R} \ldots\}.
$$

Thus, the proof is completed.

Proposition 3 . Let $S_k = 7,7k+4 > 5$ be numerical semigroups , where k^3 1, $k \hat{1} \notin 5$. Then, we have

- $(a) F(Arf(S_k)) = 7k + 6$
- (b) $n(Arf(S_k)) = k + 2$
- (c) $G(Arf(S_k)) = 6k + 5$.

Proof. Let $S_k = \langle 7, 7k + 4 \rangle$ be numerical semigroups , where k^3 1, $k \in \mathbb{R}$ ϕ . Then,

we write that $F(Arf(S_k)) = 7k + 6$ from Theorem 2. On the other hand, we find that

we write that $F(Arf(S_k)) = 7k + 6$ *from Theorem 2. On the other hand, we find that*
 $n(Arf(S_k)) = \#(\{0,1,2,...,7k+6\} \subsetneq Arf(S)) = \#(\{0,7,14,...,7k,7k+4\}) = k+2$ and and we obtain $n(Arf(S_k)) = #({0,1,2,...,7k+6} \text{ }\mathcal{G} \text{ } Arf(S)) = #({0,7,14,...,7k,7k+4} \text{ }\mathcal{G}) = k+2$ and w
 $G(Arf(S_k)) = 7k+6+1- k-2 = 6k+5$ since $G(Arf(S_k)) = F(Arf(S_k)) + 1- n(Arf(S_k))$.

Corollary 4 . Let $S_k = < 7, 7k + 4 >$ be numerical semigroups , where k^3 1, $k \in \mathbb{R}$ ℓ . Then, we have

(a)
$$
F(S_k) = F(Arf(S_k)) + 35k + 11
$$

(b)
$$
n(S_k) = n(Arf(S_k)) + 20k + 7
$$

(c)
$$
G(S_k) = G(Arf(S_k)) + 15k + 4
$$
.

Proof. Let
$$
S_k = \langle 7, 7k + 4 \rangle
$$
 be numerical semigroups, where k^3 1, $k \hat{1} \notin$. We write that
\n(a) $F(Arf(S_k)) + 35k + 11 = 7k + 6 + 35k + 11 = 42k + 17 = F(S_k)$. However, we find that
\n(b) $n(Arf(S_k)) + 20k + 7 = k + 2 + 20k + 7 = 21k + 9 = n(S_k)$,
\n(c) $G(Arf(S_k)) + 15k + 4 = 6k + 5 + 15k + 4 = 21k + 9 = G(S_k)$.

(c)
$$
G(Arf(S_k)) + 15k + 4 = 6k + 5 + 15k + 4 = 21k + 9 = G(S_k)
$$
.

Corollary 5. Let $S_k = \langle 7, 7k + 4 \rangle$ be numerical semigroups, where k^3 1, $k \in \hat{\mathbf{I}}$ ϕ . Then, it satisfies following conditions:

- (a) $F(S_{k+1}) = F(S_k) + 42$
- (b) $n(S_{k+1}) = n(S_k) + 21$
- (c) $G(S_{k+1}) = G(S_k) + 21$.

Corollary 6. Let $S_k = \langle 7, 7k + 4 \rangle$ be numerical semigroups, where k^3 1, $k \in \hat{\mathbf{I}}$ ϕ . Then, it satisfies following conditions:

- (a) $F(Arf(S_{k+1})) = F(Arf(S_k)) + 7$
- (b) $n(Arf(S_{k+1})) = n(Arf(S_k)) + 1$
- (c) $G(\text{Arf}(S_{k+1})) = G(\text{Arf}(S_k)) + 6$.

Example 7. We put $k = 1$ in $S_k = 7,7k+4$ symmetric numerical semigroup. Then we have **Example 7.** We put $k = 1$ in $S_k = \langle 7, 7k + 4 \rangle$ symmetric numerical semigroup. Then we have $S_1 = \langle 7, 11 \rangle = \{0, 7, 11, 14, 18, 21, 22, 25, 28, 29, 32, 33, 35, 36, 39, 40, 42, 43, 44, 46, 47, 49, 50, 51, 53, 54, 55, 56,$ In this case, we obtain $F(S_1) = 59$, $n(S_1) = 30$,

 $H(S_1) = \{1,2,3,4,5,6,8,9,10,12,13,15,16,17,19,20,23,24,26,27,30,31,34,37,38,41,45,48,52,59\}$ $G(S_1) = 30$, $Arf(S_1) = \{0, 7, 11, 14, \mathbb{B} \dots\}$, $F(Arf(S_1)) = 13$, $n(Arf(S_1)) = 3 G(Arf(S_1)) = 11$. Thus, we find that

$$
F(\text{Arf}(S_1)) + 46 = 13 + 46 = 59 = F(S_1), n(\text{Arf}(S_1)) + 27 = 3 + 27 = 30 = n(S_1)
$$

and $G(\text{Arf}(S_1)) + 19 = 11 + 19 = 30 = G(S_1)$.

and $G(A \r{r}f(S_1)) + 19 = 11 + 19 = 30 = G(S_1)$.
If $k = 2$ then we write $S_2 = 6, 7, 18$ = $\{0, 7, 14, 18, 21, 25, 28, \ldots, 100, 102, \mathbb{R} \ldots \}$.

Thus, we have $F(S_2) = 101, n(S_2) = 51, G(S_2) = 51, \qquad Arf(S_2) = \{0, 7, 14, 18, 21, \mathbb{R} \dots\},\$ $F(\text{Arf}(S_2)) = 20$, $n(\text{Arf}(S_2)) = 4$ and $G(\text{Arf}(S_2)) = 17$.

So, we write that

$$
F(S_1) + 42 = 59 + 42 = 101 = F(S_2),
$$

 $n(S_1) + 21 = 30 + 21 = 51 = n(S_2)$ and $G(S_1) + 21 = 30 + 21 = 51 = G(S_2)$. Also, we obtain that $n(S_1) + 21 = 30 + 21 = 51 = n(S_2)$ and $G(S_1) + 21 = 30 + 21 = 51 = G(S_2)$. Also, we
 $F(Arf(S_1)) + 7 = 13 + 7 = 20 = F(Arf(S_2))$, $n(Arf(S_1)) + 1 = 3 + 1 = 4 = n(Arf(S_2))$ and $G(Arf(S_1)) + 6 = 11 + 6 = 17 = G(Arf(S_2)).$

References

[1] J.C. Rosales, Fundamental gaps of numerical semigroups generated by two elements, Linear Algebra and its Applications, 405,(2005), 200-208.

[2] J.C. Rosales, P.A.Garcia-Sanchez, J.I.Garcia-Garcia and M.B.Branco, Arf numerical semigroups, J.Algebra, 276,(2004),3-12.

- **[3]** S. İlhan and H.İ. Karakaş, Arf numerical semigroups, Turkish journal of Mathematics, 41, (2017),1448- 1457.
- **[4]** J.C. Rosales and P.A. Garcia-Sanchez, Numerical semigroups. New York: Springer 181, 2009.
- **[5]** R.Froberg, C.Gotlieb and R. Haggkvist, On numerical semigroups. Semigroup Forum,35, (1987), 63 -68.
- **[6]** M.D'anna, Type Sequences of Numerical Semigroups, Semigroup Forum 56 (1998),1-31 .
- **[7]** J. Lipman, Stable ideals and Arf rings, Amer. J. Math.,93, (1971),649-685.