Al-Qadisiyah Journal of Pure Science

Volume 26 | Number 3

Article 1

7-7-2021

A View On Symmetric Numerical Semigroups

Sedat iLHAN

Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır, 21280, TURKEY, sedati@dicle.edu.tr

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation

iLHAN, Sedat (2021) "A View On Symmetric Numerical Semigroups," Al-Qadisiyah Journal of Pure Science: Vol. 26: No. 3, Article 1.

DOI: 10.29350/qjps.2021.26.3.1303

Available at: https://qjps.researchcommons.org/home/vol26/iss3/1

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Al-Qadisiyah Journal of Pure Science

http://qu.edu.iq/journalsc/index.php/JOPS

A View On Symmetric Numerical Semigroups

Authors Name Sedat İLHAN	ABSTRACT
Article History	In this paper, we will give some results about the symmetric numerical
Received on: 14/4 /2021	semigroups such that $S_k = <7,7k+4>$ where k 3 $1, k$ $\hat{\mathbf{l}}$ ϕ . Also, we will
Revised on: 4/5/2021 Accepted on: 31/5/ 2021	obtain Arf closure of these symmetric numerical semigroups.
Keywords:	
Symmetric numerical semigroups, Arf closure, Genus.	
DOI: https://doi.org/10.29350/jops2021.26. 3.1303	

1. Introduction

Let $Y = \{0,1,2,...,n,...\}$ and ϕ be integer set. S is called a numerical semigroup if

(i)
$$a_1 + a_2 \hat{1} S$$
 for " $a_1, a_2 \hat{1} S$

(ii)
$$gcd(S) = 1$$

where $S \not 1 \not = (\text{Here, } \gcd(S) = \text{greatest common divisor the elements of } S)$.

A numerical semigroup S can be written that

$$S = \langle a_1, a_2, ..., a_n \rangle = \sum_{i=1}^{n} \sum_{i=1}^{n} k_i a_i : k_i \hat{1} \times \sum_{i=1}^{n} k_i a_i = k$$

(for details see [4]).

U $\mathring{\mathbf{I}}$ $\overset{\cdot}{\mathbf{I}}$ is minimal system of generators of S if < U> = S and there isn't any subset V $\mathring{\mathbf{I}}$ U such that < V> = S. Also, $m(S) = \min\{x \, \hat{\mathbf{I}} \, S \colon x>0\}$ is called as multiplicity of S (see [3]). Let S be a numerical semigroup, then $F(S) = \max(\phi \setminus S)$ is called as Frobenius number of S.

$$n(S) = Card(\{0,1,2,...,F(S)\} \subseteq S)$$

is called as the determine number of S (see [5]).

If S is a numerical semigroup such that $S = \langle a_1, a_2, ..., a_n \rangle$, then we observe that

$$S = \langle a_1, a_2, ..., a_n \rangle = \{ s_0 = 0, s_1, s_2, ..., s_{n-1}, s_n = F(S) + 1, \mathbb{R} ... \},$$

where $s_i < s_{i+1}$, n = n(S) and the arrow means that every integer greater than F(S) + 1 belongs to S for i = 1, 2, ..., n = n(S) (see [6]).

If $b\hat{1} \notin A$ and $b\ddot{1} \in B$, then b is called gap of S. We denote the set of gaps of S, by H(S), i.e, $H(S) = \# \setminus S$. The G(S) = #(H(S)) is called the genus of S. It known that

$$G(S) + n(S) = F(S) + 1$$

(see [4]).

S is called symmetric numerical semigroup if F(S)- t belongs to S, for $t \hat{\mathbf{I}} \not\in \backslash S$. It is know the numerical semigroup $S = \langle a_1, a_2 \rangle$ is symmetric and $F(S) = a_1 a_2 - a_1 - a_2$. In this case, we write

$$n(S) = \frac{F(S) + 1}{2}$$

(see [1]).

A numerical semigroup S is called Arf if $a_1 + a_2 - a_3$ $\hat{\mathbf{I}}$ S, for all a_1, a_2, a_3 $\hat{\mathbf{I}}$ S such that a_1^{-3} a_2^{-3} a_3^{-3} . The smallest Arf numerical semigroup containing a numerical semigroup S is called the Arf closure of S, and it is denoted by Arf(S) (for detail see [2, 3]). If S is a numerical semigroup such that $S = \langle a_1, a_2, ..., a_n \rangle$, then $L(S) = \langle a_1, a_2 - a_1, a_3 - v_1, ..., a_n - v_1 \rangle$ is called Lipman numerical semigroup of S and it is known that

$$L_0(S)=S\subseteq L_1(S)=L(L_0(S))\subseteq L_2=L(L_1(S))\subseteq ...\subseteq L_m=L(L_{m-1}(S))\subseteq ...\subseteq \square$$
 (see [7]).

In this paper, we will give some results about the symmetric numerical semigroups such that $S_k = \langle 7,7k+4 \rangle$ where k^3 1, k $\hat{\mathbf{l}}$ $\not\in$. Also, we will obtain Arf closure of these symmetric numerical semigroups.

2. Main Results

Theorem 1. Let $S_k = \langle 7,7k+4 \rangle$ be numerical semigroups, where k^3 1, $k \hat{1} \not\in$. Then, we have

(a)
$$F(S_k) = 42k + 17$$

(b)
$$n(S_k) = 21k + 9$$

(c)
$$G(S_k) = 21k + 9$$
.

Proof. Let $S_k = \langle 7,7k+4 \rangle$ be numerical semigroups , where k^3 1, k Î $\not\in$. Then, S_k is symmetric and we find that

(a)
$$F(S_k) = 7(7k+4) - 7 - 7k - 4 = 42k + 17$$
.

(b)
$$n(S_k) = \frac{F(S_k) + 1}{2} = \frac{42k + 17 + 1}{2} = 21k + 9$$
.

(c)
$$G(S_k) = 42k + 17 + 1 - 21k - 9 = 21k + 9$$
 from $G(S_k) = F(S_k) + 1 - n(S_k)$.

Theorem 2. Let $S_k = \langle 7,7k+4 \rangle$ be numerical semigroups , where k^3 1, k Î ¢ . Then, $Arf(S_k) = \{0,7,14,21,...,7k,7k+4,7k+7, \mathbb{R} ...\}.$

Proof. It is trivial $m_0 = 7$ since $L_0(S_k) = S_k = <7,7k+4>$. Thus, we write $L_1(S_k) = <7,7k-3>$. In this case,

(1) If
$$7k$$
- $3 < 7$ (if $k = 1$) then $S_1 = \langle 7,11 \rangle$ and $L_1(S_1) = \langle 7,4 \rangle = \langle 4,7 \rangle$, $m_1 = 4$. $L_2(S_1) = \langle 4,3 \rangle = \langle 3,4 \rangle$, $m_2 = 3$ and $L_3(S_1) = \langle 3,1 \rangle = \langle 1,2 \rangle = \langle 1,2 \rangle = \langle 1,2 \rangle$.

Thus, we obtain that $Arf(S_1) = \{0,7,11,14, \mathbb{R} ... \}$.

(2) If 7k- 3>7 (if k^3 2) then $L_1(S_k)=<7,7k$ - 3> and $m_1=7$. In this case, we write $L_2(S_k)=<7,7k$ - 10>.

(a) If
$$k=2$$
 then $L_2(S_2)=<7,4>=<4,7>$, $m_2=4$. $L_3(S_2)=<4,3>=<3,4>$, $m_3=3$ and $L_4(S_2)=<3,1>=<1>=\frac{1}{2}$, $m_4=1$. So, we have $Arf(S_2)=\left\{0,7,14,18,21,\mathbb{R} \dots\right\}$.

(b) If
$$k > 2$$
 then $L_2(S_k) = <7,7k-10>$, $m_2 = 7$ and $L_3(S_k) = <7,7k-17>$. In this case,

(i) if
$$k = 3$$
 then $L_3(S_3) = <7,4> = <4,7>$, $m_3 = 4$. $L_4(S_3) = <4,3> = <3,4>$, $m_4 = 3$ and $L_5(S_3) = <1> = {1, m_5 = 1}$. Thus we obtain that $Arf(S_3) = {0,7,14,21,25,28, \mathbb{R} \dots}$.

(ii) If
$$k > 3$$
 then $L_3(S_k) = <7,7k-17>$, $m_3 = 7$ and $L_4(S_k) = <7,7k-24>$. In this case,

(1) if
$$k = 4$$
 then $L_4(S_4) = <7,4> = <4,7>$, $m_4 = 4$. $L_5(S_4) = <4,3> = <3,4>$, $m_5 = 3$

and

$$L_6(S_4) = <1> =$$
\frac{\psi}{n}, $m_6 = 1$.

Thus we find $Arf(S_k) = \{0,7,14,21,28,32,35, \mathbb{R} ... \}.$

(2) If k > 4 then $L_4(S_k) = <7,7k$ - 24> , $m_4 = 7$ and we write $L_5(S_k) = <7,7k$ - 31> . If we continue the operations then we obtain Arf closure of $Arf(S_k)$ as follows

$$Arf(S_k) = \{0,7,14,21,...,7k,7k+4,7k+7,\mathbb{R} ...\}.$$

Thus, the proof is completed.

Proposition 3. Let $S_k = <7,7k+4>$ be numerical semigroups , where k^3 1, k $\hat{1}$ $\not\in$. Then, we have

(a)
$$F(Arf(S_k)) = 7k + 6$$

(b)
$$n(Arf(S_k)) = k + 2$$

(c)
$$G(Arf(S_k)) = 6k + 5$$
.

Proof. Let $S_k = \langle 7,7k+4 \rangle$ be numerical semigroups, where k^3 1, k Î $\not\in$. Then,

we write that $F(Arf(S_k)) = 7k + 6$ from Theorem 2. On the other hand, we find that

$$n(Arf(S_k)) = \#(\{0,1,2,...,7k+6\}\C Arf(S)) = \#(\{0,7,14,...,7k,7k+4\}) = k+2$$
 and we obtain $G(Arf(S_k)) = 7k+6+1-k-2 = 6k+5$ since $G(Arf(S_k)) = F(Arf(S_k)) + 1-n(Arf(S_k))$.

Corollary 4. Let $S_k = \langle 7,7k+4 \rangle$ be numerical semigroups, where k^3 1, $k \hat{1} \notin$. Then, we have

(a)
$$F(S_k) = F(Arf(S_k)) + 35k + 11$$

(b)
$$n(S_k) = n(Arf(S_k)) + 20k + 7$$

(c)
$$G(S_k) = G(Arf(S_k)) + 15k + 4$$
.

Proof. Let $S_k = \langle 7,7k+4 \rangle$ be numerical semigroups, where k^3 1, $k \hat{1} \notin$. We write that

(a)
$$F(Arf(S_k)) + 35k + 11 = 7k + 6 + 35k + 11 = 42k + 17 = F(S_k)$$
. However, we find that

(b)
$$n(Arf(S_k)) + 20k + 7 = k + 2 + 20k + 7 = 21k + 9 = n(S_k)$$
,

(c)
$$G(Arf(S_k)) + 15k + 4 = 6k + 5 + 15k + 4 = 21k + 9 = G(S_k)$$
.

Corollary 5. Let $S_k = <7,7k+4>$ be numerical semigroups , where k^3 1, k Î $\not\in$. Then, it satisfies following conditions:

(a)
$$F(S_{k+1}) = F(S_k) + 42$$

(b)
$$n(S_{k+1}) = n(S_k) + 21$$

(c)
$$G(S_{k+1}) = G(S_k) + 21$$
.

Corollary 6. Let $S_k = <7,7k+4>$ be numerical semigroups , where k^3 1, $k\hat{1} \not\in$. Then, it satisfies following conditions:

(a)
$$F(Arf(S_{k+1})) = F(Arf(S_k)) + 7$$

(b)
$$n(Arf(S_{k+1})) = n(Arf(S_k)) + 1$$

(c)
$$G(Arf(S_{k+1})) = G(Arf(S_k)) + 6$$
.

Example 7. We put k=1 in $S_k=<7,7k+4>$ symmetric numerical semigroup. Then we have $S_1=<7,11>=\{0,7,11,14,18,21,22,25,28,29,32,33,35,36,39,40,42,43,44,46,47,49,50,51,53,54,55,56,57,58,60,<math>\mathbb{R}$...}. In this case, we obtain $F(S_1)=59,\ n(S_1)=30,$

 $H(S_1) = \{1,2,3,4,5,6,8,9,10,12,13,15,16,17,19,20,23,24,26,27,30,31,34,37,38,41,45,48,52,59\}$ $G(S_1) = 30, Arf(S_1) = \{0,7,11,14, @ ...\}, F(Arf(S_1)) = 13, n(Arf(S_1)) = 3, G(Arf(S_1)) = 11.$ Thus, we find that

$$F(Arf(S_1)) + 46 = 13 + 46 = 59 = F(S_1), n(Arf(S_1)) + 27 = 3 + 27 = 30 = n(S_1)$$

and
$$G(Arf(S_1)) + 19 = 11 + 19 = 30 = G(S_1)$$
.

If k = 2 then we write $S_2 = <7,18> = \{0,7,14,18,21,25,28,...,100,102, @ ...\}.$

Thus, we have $F(S_2) = 101$, $n(S_2) = 51$, $G(S_2) = 51$, $Arf(S_2) = \{0,7,14,18,21, \mathbb{R} ...\}$, $F(Arf(S_2)) = 20$, $n(Arf(S_2)) = 4$ and $G(Arf(S_2)) = 17$.

So, we write that

$$F(S_1) + 42 = 59 + 42 = 101 = F(S_2)$$
,

$$n(S_1) + 21 = 30 + 21 = 51 = n(S_2)$$
 and $G(S_1) + 21 = 30 + 21 = 51 = G(S_2)$. Also, we obtain that $F(Arf(S_1)) + 7 = 13 + 7 = 20 = F(Arf(S_2))$, $n(Arf(S_1)) + 1 = 3 + 1 = 4 = n(Arf(S_2))$ and $G(Arf(S_1)) + 6 = 11 + 6 = 17 = G(Arf(S_2))$.

References

- [1] J.C. Rosales, Fundamental gaps of numerical semigroups generated by two elements, Linear Algebra and its Applications, 405,(2005), 200-208.
- [2] J.C. Rosales, P.A.Garcia-Sanchez, J.I.Garcia-Garcia and M.B.Branco, Arf numerical semigroups, J.Algebra, 276,(2004),3-12.
- [3] S. İlhan and H.İ. Karakaş, Arf numerical semigroups, Turkish journal of Mathematics, 41, (2017),1448-1457.
- [4] J.C. Rosales and P.A. Garcia-Sanchez, Numerical semigroups. New York: Springer 181, 2009.
- [5] R.Froberg, C.Gotlieb and R. Haggkvist, On numerical semigroups. Semigroup Forum, 35, (1987), 63-68.
- [6] M.D'anna, Type Sequences of Numerical Semigroups, Semigroup Forum 56 (1998),1-31.
- [7] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93, (1971), 649-685.