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1. Introduction  

Regression analysis concerning in the relationship between the response variable Y and one or 

more predictor variables X. However, regression analysis can be used for find the regression 

model that offers more prediction accuracy and more interpretability. Additionally, regression 

analysis provides variable selection procedure. Linear regression model is a statistical tool to 

estimate the mean of the response variable (y) by using the information from the predictor 

variables. The Ordinary Least Squares (OLS) estimators are BLUE. It is well known that the 

estimation methods of regression coefficients produce reliable estimators with tradeoff between 

the variance and bias, (Kirkland, 2014) as well as the model explainability. Meanwhile, the OLS 

offers biased and inconsistent (inflated variance) estimators when the collinearity problem 
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ABSTRACT 

 
Bayesian regression analysis has great importance in recent 
years, especially in the Regularization method, Such as ridge, 
Lasso, adaptive lasso, elastic net methods, where choosing 
the prior distribution of the interested parameter is the main 
idea in the Bayesian regression analysis. By penalizing the 
Bayesian regression model, the variance of the estimators are 
reduced notable and the bias is getting smaller. The tradeoff 
between the bias and variance of the penalized Bayesian 
regression estimator consequently produce more 
interpretable model with more prediction accuracy. In this 
paper, we proposed new hierarchical model for the Bayesian 
quantile regression by employing the scale mixture of 
normals mixing with truncated gamma distribution that 
stated by (Li and Lin, 2010) as Laplace prior distribution. 
Therefore, new Gibbs sampling algorithms are introduced. A 
comparison has made with classical quantile regression 
model and with lasso quantile regression model by 
conducting simulations studies. Our model is comparable and 
gives better results. 
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present in the data, and when the number of predictors p greater or near the sample size n. To 

address the drawbacks of least squares estimates quality. Briefly, the regularization procedure is 

a tradeoff between the variance and bias of estimator. The regularization regression methods are 

used to overcome the lack of least squares method in case of p>n (many predictors) or in the 

presence of collinearity, but it is taken that produces biased estimators with the reduction of the 

variance (James et al., 2013). The ridge method proposed by (Hoerl and Kennard, 1970) adding 

the   -norm constrain to residuals sum of squares (RSS) term to overcome the collinearly or p>n 

problem, but ridge parameters estimates will not set to zero (not sparse). (Tibshirani, 1996), 

Suggested the lasso (Least absolute shrinkage and selection operator) method which is works 

under the same circumstances of ridge method but with adding    – norm constrain to RSS term. 

The lasso method has ability to set the coefficient estimates equal to zero, that is mean the lasso 

method has the ability to remove the irrelevant predictor variables and consequently produce 

more interpretable model. Also, the Elastic Net (EN) is another regularization regression method 

proposed by (Zou and Hastie, 2005) which adding the ridge and lasso to the RSS term, EN 

method deal with many relevant predictors that have highly pairwise correlation and EN 

oftentimes outperforms the lasso (Osborne et al., 2000). The combined penalties method, such 

as, the elastic net considered two penalty functions         and        , that is, the lasso 

and ridge penalty function added to residual sum of squares, the elastic net was proposed by 

(Zou and Hastie, 2005) to combine the ridge and lasso functions to deal with the grouping effect 

when there are strong pairwise correlations between groups of predictor variables, the elastic 

net estimator is defined as follows,  

       

 ̂         ‖    
  ‖    ‖ ‖    ‖ ‖

   

  

Where    and      ≥ 0 are the regularization parameters    and      that controls the amount of 

shrinkage that forced on the regression parameters. The elastic net works well with high 

correlated predictor variables. 

Many of times in practice we find out that the data exhibits the violation of the linear model 

assumptions or the researchers are interested in modelling other quantities rather than the 

mean of the response variable       , Such as the median, and other quantiles (Chatterjee and 

Hadi, 2013).  

It is well known that the quantile regression required no assumptions to impose on the residual 

term (Koenker and Bassett, 1978). Quantile regression can be applied in many different fields 

such as, econometrics, ecology, biology, survival analysis and many other fields of sciences. The 

quantile regression model is  

      
                

Where       can be estimated by minimizing the    , that is 
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Here         the quantile loss function (Koenker and Bassett, 1978) and defined as the following 

piecewise function, 

        
               

 
              

              

 (Ghosh, 2007) introduced new method of regularization of the elastic net that is called adaptive 

elastic net where the estimator have desirable properties of adaptive lasso method and elastic 

net method. (Alshaybowee et al., 2016) introduced the Bayesian elastic net in the single index 

quantile regression model as a method to address the high dimensionally in data with the 

nonparametric regression model. (Lee et al., 2016) presented the elastic net shrinkage method to 

overcome the dimensionality problem in the data that have high correlation between the 

predictor variables with group selections. (Jiratchayut and Bumrungsup, 2015) studied the 

adaptive elastic net with different adaptive weight along with least squares estimators weights. 

They showed in the simulation example that the adaptive elastic net weights estimator performs 

better in terms of estimation accuracy and variable selection procedure. (Feng, 2011) developed 

Bayesian MCMC algorithm for estimating the quantile linear regression parameters under two 

proposed Bayesian quantile model methods, the estimators are efficient compared with some 

existing regression methods. (Al-hamzawi, 2013) proposed some extensions on the Bayesian 

quantile regression through the prior distribution that allows the full conditional conjugate 

prior. (Al-hamzawi, 2016) proposed the Bayesian Tobit quantile regression model under the 

gamma prior for the regression coefficients with the elastic net penalty function. (Li et.al, 2010) 

studied the regularization regression method, such as, Lasso, elastic net, and group lasso with 

Bayesian analysis of the quantile regression. 

(Li and Lin, 2010) proposed new prior distribution for the elastic net under the Bayesian 

analysis of the linear regression to avoid the double shrinkage problem in the elastic net penalty 

function, the prior form of           is proportional to 
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In this paper new hierarchical model and new Gibbs sampler algorithm have been proposed for 

the quantile regression improving the prediction accuracy of the proposed model. 

 

2. The model hierarchy and prior distributions 

Based on the quantile regression model     and the prior density    , we have the following 

Bayesian elastic net quantile model hierarchy representation 
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3. Posterior Distributions with Full Conditional Model. 

Supposing that all priors for the different parameters are independent, we can write down the 

full conditional distribution as follows. 

  
   ⁄           

            

Where             

Following (Alhamzawi, 2016) and (Li and Lin, 2010) and conditioning on            the posterior 

distribution of   is 

                                            ⁄               ⁄              ⁄  
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Then   distribution is the multivariable normal with mean         and variance       ;  

  ⁄            (      
 
      )               

The second variable    distributed as follows 
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The third variable (       distributed as  
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4. The Gibbs Sampling From the Full Conditional Distribution 

We will use the Markov Chain Monte Carlo (MCMC) special algorithm that is called Gibbs 

sampling to implement the hierarchical model    . The Gibbs sample generates (samples) 

random variables indirectly from the full conditional distributions of a parameter fixed all the 

other parameters (Evans, 2012). The conditional posterior densities of each parameter will be 

generate for the elastic net quantile regression by using the following algorithms: 

1- Updating   
  from the following full conditional distribution 

  
   ⁄           

            

                    

2- Updating         ⁄  from the full conditional posterior density which following the multivariate 

normal distribution     with mean         and variance      , where 

                               
  

     
      

  

    
                

3- Updating   
               from the full conditional posterior distribution of   

   which is 

follows Inverse Gaussian         see (Alhamzawi,  2016),  where  

   √
 

   
    

    
               

 

 
   

(Chhikarn and Folks, 1988) stated the inverse Gaussian density is: 

      ⁄       √
  

    
    {

          

       
}               

4- Updating              ⁄    from the full conditional inverse Gaussian distribution   (Chhikarn 

and Folks,  1988)   

         
√  

    |  | 
        

  
     

                                     

5- Updating     ⁄       by using the acceptance-rejection algorithm that depends on the incomplete 

gamma functions; 
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And h (.) is the inverse gamma        

5- Simulation Analysis  

In this section simulation study will be conducted to show the behavior of our proposed model, 

Bayesian elastic net quantile regression (Benqr) using R packag and compared with different 

other models; the classic quantile regression model (cqr) by implementing  R  package, and the 

lasso quantile regression model (lqr) by implementing R package. Our comparison is based on 

the parameters estimates of the different models under different quantiles           

                          . Also, we used the median mean absolute deviation (mmad) 

criterion, 

            [    |   ̂         |]  

The mmad and the standard deviation (sd) are used to measure the performance of prediction 

accuracy for different model. The Gibbs sampler algorithm have been used with 10000 iterations 

to generate the stability of the posterior distribution of the interested parameter, the first 1000 

iterations have burned in we generated the observations of          predictor variables 

from          , where the matrix            with three distribution distributions of the (iid) 

errors.  For each simulation study, we run 400 simulations. 

1. Simulation Example 

In this simulation, we supposed that the true vector of parameter                         with 

error terms followed                                  . Also, we generated the 

observation of         predictor variables based on           , where   is the var-cov matrix 

defined as∑            . As well as, we simulated       . 

True para 0 3 0 0 0 0 0 0 0 

Our method 0.25 -0.53433 3.05755 -0.04878 0.15044 0.05801 0.02518 0.05821 0.09411 -0.11741 

rq lasso0.25 -0.48510 3.11706 -0.10233 0.22113 0.03017 0.06392 -0.00889 0.05554 -0.13766 

rq method0.25 -0.31952 3.26606 -0.22838 0.30980 0.02538 0.36293 -0.07736 -0.12678 0.01154 

Our method 0. 50 0.00348 2.61704 0.02319 0.05258 0.19002 0.13365 -0.03415 -0.13002 -0.12188 

rq lasso0. 50 0.01652 2.71332 -0.00693 0.05948 0.16909 0.13757 -0.01339 -0.14076 -0.12048 

rq method0. 50 -0.06342 2.80605 -0.42396 0.40156 0.04339 0.65369 -0.16830 -0.24411 0.17263 

Our method 0. 75 0.59039 2.64516 0.33294 0.08248 -0.0428 -0.06223 -0.07704 0.00512 -0.19677 

rq lasso 0. 75 0.54035 2.88732 0.25855 0.01500 -0.0327 -0.18471 -0.08628 0.10899 -0.18795 

rq method 0. 75 0.60376 3.15254 -0.15802 -0.3066 0.31255 0.15051 0.08138 0.64905 -0.18132 

Our method 0. 99 2.16136 2.82956 0.06402 -0.02756 -0.0494 -0.05186 -0.00629 -0.09735 0.01993 

rq lasso 0. 99 1.47320 3.27608 0.06881 -0.04868 0.02646 0.09077 -0.17528 -0.22168 -0.01531 

rq method 0. 99 0.80679 3.50108 -0.05175 -0.36564 0.16453 0.31269 -0.13776 -0.18034 -0.02319 

Table 1. Parameter estimates of simulation 1 with          . 
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True para 0 3 0 0 0 0 0 0 0 

Our method 0.25 -0.94167 3.08580 0.18950 0.12903 -

0.0174 

0.23762 -0.09033 0.24558 -0.11196 

rq lasso0.25 -0.91259 2.87556 0.11570 0.15341 0.0526

6 

0.18572 -0.13328 0.53398 -0.28134 

rq method0.25 -0.91319 2.52562 0.08169 0.28278 0.1649

0 

-0.35038 -1.25653 1.04882 -0.64224 

Our method 0. 50 -0.08201 2.35569 -

0.03954 

0.24500 0.0560

4 

-0.11054 0.01792 -0.14199 0.14266 

rq lasso0. 50 -0.10540 2.58759 -

0.09529 

0.26693 0.0538

6 

-0.06312 0.05668 -0.10855 0.13835 

rq method0. 50 -0.11045 2.72309 -

0.17261 

0.15492 0.1016

9 

-0.03924 -0.13531 0.00210 0.01763 

Our method 0. 75 0.77623 2.68634 0.06926 0.02502 -

0.0233 

-0.17077 -0.16754 -0.07847 0.15773 

rq lasso 0. 75 0.77059 3.00004 0.16754 -0.02458 -

0.0834 

-0.09377 -0.22678 -0.08948 0.21058 

rq method 0. 75 0.70621 3.37876 0.28050 -0.04396 -

0.2131 

0.55459 -0.44564 0.07573 0.30717 

Our method 0. 99 1.19079 2.80197 -

0.16346 

0.10390 0.5328

1 

0.15548 0.30575 -0.14864 0.32483 

rq lasso 0. 99 1.94265 2.60253 0.01807 -0.05214 0.2937

4 

0.18550 0.02513 -0.12150 0.05225 

rq method 0. 99 2.78453 1.96509 0.20717 0.11471 0.4217

9 

0.24586 0.23482 -0.08939 -0.07131 

Table 2. Parameter estimates of simulation 1 with                  . 
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Table 3. MMAD and S.D. for simulation example 1 

From table 1- table 3 for the previous simulation example, obviously the parameter estimates of 

the proposed model ((Benqr) are comparable with (cqr) and (lqr), also from the values of the 

criterions mmad and SD it can be observed that the proposed model was relatively less than 

these results of classic quantile regression (cqr) and the lasso quantile regression (lqr) models 

and yields the best values of mmad and SD in the most of the simulations times. Consequently, it 

can be shown that the proposed model (Benqr) outperformed the other regression models. 

Variable selection procedure very clear by using our proposed regularization method, for 

example in table 1 under the 0.99 quantile level our method reaches near zeros values, but at the 

others quantiles our is comparable to the other methods. In other words, our proposed method 

performs well in the secienarior where all the data consider to e taken. 

 

The methods 

 

Quantile level              Normal mixture      
  

Benqr 0.25 0.3617(0.37434) 0.6509 (0.84568) 0.352(0.33332) 

Lqr 0.25 0.4428 (0.46550) 0.6617 (0.82850) 0.387(0.38830) 

Cqr 0.25 0.5911 (0.59670) 1.0422 (1.11788) 0.532(0.54044) 

Benqr 0.50 0.4394 (0.41602) 0.4890 (0.66236) 0.2731(0.28762) 

Lqr 0.50 0.4642 (0.38906) 0.6096 (0.57216) 0.2897(0.32632) 

Cqr 0.50 0.5975 (0.55410) 0.8125 (0.85222) 0.5209(0.48554) 

Benqr 0.75 0.4075 (0.43762) 0.3674 (0.46434) 0.3045(0.3296) 

Lqr 0.75 0.4465 (0.42018) 0.5239 (0.55014) 0.3564(0.37862) 

Cqr 0.75 0.7371 (0.75410) 0.8570 (0.89084) 0.4747(0.50552) 

Benqr 0.99 0.5442 (0.54374) 0.6967 (0.90858) 0.7749(0.73352) 

Lqr 0.99 0.8628 (0.94924) 0.9078 (0.91796) 1.2781(1.31062) 

Cqr 0.99 1.5671 (1.60992) 1.3995 (1.45826) 1.8570(1.83770) 
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Figure 1. Trace plots of our model with (0.5) quantile 
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Figure 2. Histograms of our model parameter estimates 
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Figure 3. Trace plots of our model with (0.75) quantile 
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Figure 4. Histograms of our model parameter estimates 
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Figure 5. Trace plots of our model with (0.99) quantile 
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Figure 6. Histograms of our model parameter estimates 

Figures 1-6 some of the displayed the histograms tables fit the distributions of the parameter 

estimates and it is very clear that the distribution of the parameter estimates distributed 

according to  the normal distribution under the different quantile levels, and the rest of figures 

displayed the trace plot which are  regards as convergence diagnose tool that indicates the 

MCMC samples of the posterior distribution of regression parameter estimates convergence to 

stationary distribution (true parameter values ), which is mean the Gibbs sampling algorithm is 

easy to implement and it is efficient. 
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7- Conclusions 

This paper presented new contribution for the Bayesian elastic net quantile regression models 

through employing the Laplace density of parameter ( ) as scale mixture of normals mixing with 

truncated gamma distribution that proposed by li and lin (2010) into the quantile regression. 

New hierarchical model has developed for the proposed model, as well as I provided Gibbs 

sampler algorithm for the proposed posterior distribution. I displayed the advantages of the 

proposed model in the simulation analysis. The results explained that the proposed model is 

comparable model in terms of the parameter estimation and in terms of the quality of the 

estimates through the values of MSE criterion. 
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