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1. Introduction 

    Let   symbolize the class of function      which are holomorphic in the open unit disk  

  {           | |   } 

and normalized under the conditions         and         and having the following shape: 

       ∑   
                                                                          

 

   

 

    Let   symbolize the subclass of functions in   which are univalent in Δ. Since univalent 
functions are one–to–one, they are invertible and inverse functions need not be defined on the 
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ABSTRACT 

 
In the present paper, by making use the Horadam polynomials, we introduce 
and investigate two new subclasses ℋ𝛴 𝛼, 𝜇, 𝑟  and ℛ𝛴 𝛶, 𝛿, 𝜆, 𝑟  of the 
function class 𝛴 of holomorphic bi-univalent functions in the open unit disk 
Δ. For functions belonging to these subclasses, we obtain upper bounds for 
the second and third coefficients and discuss Fekete-Szegӧ problem. 
Furthermore, we point out several new special cases of our results. 
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entire unit disk Δ. However, the famous Koebe one–quarter theorem [5] ensure that the image of 

the unit disk Δ under every function     contains a disk of radius 
 

 
. Thus, each function      

has an inverse      defined by  

   (    )                 

and  

 (       )       (| |                
 

 
), 

where   

                   
      

      
      

            
                            

     Let D be the class of functions   which is holomorphic in Δ with  

           |    |              

Let      and      be holomorphic in Δ then the function       is said to subordinate to      
in Δ written by  

                          ,                                                                  

such that       (    )         . From the definition of the subordination, it is easy to show 

that the subordination (1.3) implies that  

                                                                                      

In particular, if      is univalent in Δ, then the subordination (1.3) is equivalent to the condition 
(1.4). 

       The function     is considered bi-univalent in   if together      and   are univalent in    
Indicated by the Taylor-Maclaurin series expansion (1.1), the class of all bi-univalent functions in 
  can be symbolized by   . In the year 2010, Srivastava et al. [10] refreshed the study of various 
classes of bi-univalent functions. Moreover, many penmans explored bounds for different 
subclasses of bi-univalent functions (see, for example [3,4,8,11,12]). The coefficient estimate 
problem involving the bound of |  |       { , },  { , , , }  is still an open problem.   

      The Horadam polynomials       are defined  by the following recurrence relation ( see [7] ) 

                        ,        ,       { , },   { , , , }  ,                             

with         ,         , where e, b, p, and q are some real constants. It is very clear from 
(1.5) that               . The generating function of the Horadam polynomials       is 
given by ( see [6]) 

   ,    ∑      
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2. Coefficient bounds and  Fekete–Szegӧ inequality for the class     ,  ,    

Definition (2.1): A function     is said to be in the class ℋ   ,  ,    for       ,       
and    , if the following conditions of subordination are fulfilled: 

     (
      

                 
)   (

             

              
)     ,                                    

 and 

     (
      

                 
)   (

             

              
)     ,       ,                   

where the function        is indicated by (1.2) and   is real constant.  

 

We note that for     in Definition (2.1), we have the following definition: 

Definition (2.2): A function     is said to be in the class     ,    for       and    , if the 
following conditions of subordination are fulfilled: 

(
      

                 
)     ,                                                            

and  

(
      

                 
)     ,      ,                                               

where the function        is indicated by (1.2) and   is real constant.   

 

We note that for     in Definition (2.1), we have the following definition: 

Definition (2.3): A function     is said to be in the class      ,    for       and    , if 
the following conditions of subordination are fulfilled: 

(
             

              
)     ,                                                                   

and  

(
             

              
)     ,      ,                                                      

where the function        is indicated by (1.2) and   is real constant.  
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Remark (2.1) 

1) For    , the function class ℋ   ,  ,    shortens to the function class     ,    presented and 
investigated by Abirami et al. [1]. 

2) For     and     , the function class ℋ   ,  ,    shortens to the function class       
presented and investigated by Srivastava et al. [9]. 

3) For     and    , the function class ℋ   ,  ,    shortens to the function class       
presented and investigated by Abirami et al. [1]. 

 

Theorem (2.1): For       ,       and     , let     be in the class ℋ   ,  ,   . Then  

|  |

 
|  |√|  |

√|[(                     )               ]                  |

        

 

and  

|  |  
    

            
 

|  |

            
 ,                                                     

                                                                                                 

and for some     , 

|      
 |  

{
 
 
 
 

 
 
 
 

|  |

            
     

    (|   |  
|*((       )  (        ))               +                  |

                )

|  | |   |

|[(                     )               ]                  |
       

 ( |   |  
|*((       )  (        ))               +                  |

                )  

                      

Proof: Let   ℋ   ,  ,   . Then there are two holomorphic functions  ,       given by  

|    |         
     

                                                                       

and 

|    |         
     

                             ,                                   

with            , |    |   , |    |    and  ,     such that  

     (
      

                 
)   (

             

              
)     ,           

and  
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     (
      

                 
)   (

             

              
)     ,            

Or, equivalently, 

     (
      

                 
)   (

             

              
) 

                            [    ]
                                                

and  

     (
      

                 
)   (

             

              
) 

                          [    ]                                              

Combining (2.10), (2.11), (2.12) and (2.13) yields  

     (
      

                 
)   (

             

              
) 

            [               
 ]                                                        

and 

     (
      

                 
)   (

             

              
)     

            [               
 ]                                                      

 

It is clear that if  |    |    and |    |   ,  ,    , then  

 |  |        |  |                                                                                

From (2.14) and (2.15), it follows that   

                    ,                                                                                                                               

              
                                

 ,                                                         

                                                                                                                                                 

and  

[                     ]  
                                

                         

From (2.17) and (2.19), we get  

                                                                                                  

and  
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  [     ]

    
    

                                                              

If we add (2.18) to (2.20), we attain  

[                       ]  
                       

    
                            

By using (2.22) in (2.23), we deduce that  

*                        
                  

[     ] 
+   

              ,                

which yields 

|  |  
|  |√|  |

√|[                                      ]                  |
   

Next, by subtracting (2.20) from (2.18), we have  

                  
                        

    
                                             

In view of (2.21) and (2.22), we obtain from (2.25)  

   
[     ]

    
    

  

              
 

            

            
  

Hence using (1.5), we deduce that  

|  |  
    

            
 

|  |

            
   

Finally, by using (2.24) and (2.25) for some     , we obtain  

      
  

            

            

 
[     ]

              

[                       ][     ]                    
 

                                        

 
     

 
[(   ,    

 

            
)    (   ,    

 

            
)  ] , 

where 

   ,    
[     ]

      

[                     ][     ]                   
  

According to (1.5), we deduce that  
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|      
 |  

{
 
 

 
 |  |

            
         (   |   ,   |    

 

            
)

|  ||   ,   |              (|   ,   |  
 

            
)      

 

After some computations, we get  

|      
 |  

{
 
 
 
 

 
 
 
 

|  |

            
     

    (|   |  
|*((       )  (        ))               +                  |

                )

|  | |   |

|[(                     )               ]                  |
     

 ( |   |  
|*((       )  (        ))               +                  |

                )  

  

 

By putting     in Theorem (2.1), we attain the corollary in the below: 

Corollary (2.1): Let the function      indicated by (1.1) be in the class     ,           ,   
   . Then 

|  |  
|  |√|  |

√|[                  ]            |
 

and  

|  |  
    

      
 

|  |

      
 , 

and for some     , 

|      
 |  

{
 
 
 
 

 
 
 
 

|  |

      
              

  ( |   |  
|[                  ]            |

          
)

|  | |   |

|[                  ]            |
     

(|   |  
|[                  ]            |

          
)  

 

 

By putting     in Theorem (2.1), we attain the corollary in the below: 

Corollary (2.2): Let      indicated by (1.1) be in the class     ,           ,      . Then 
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|  |  
|  |√|  |

√|[                    ]             |
  

                                                                    

and  

|  |  
    

       
 

|  |

      
 , 

and for some ν    , 

|      
 |  

{
 
 
 
 

 
 
 
 

|  |

      
                        

   ( |   |  
|[                    ]             |

          
)

|  | |   |

|[                    ]             |
        

 (|   |  
|[                    ]             |

          
)  

 

 

Remark (2.2): In Theorem (2.1), if we choose 

1)    , then we get the outcomes which was proven by Abirami et al. [1]. 
2)     and     , then we get the outcomes which was proven by Srivastava et al. [9]. 
3)     and     , then we attain the outcomes which was proven by Abirami et al. [1]. 

 

3. Coefficient bounds and  Fekete–Szegӧ inequality for the class     , ,  ,    

Definition (3.1): A function     is said to be in the class ℛ   ,  ,  ,    for    ,       ,   
  { } and    , if the following conditions of subordination are fulfilled: 

  
 

 
*                                        

    

 
  +     ,                    

and 

  
 

 
*                                        

    

 
  +     ,      ,       

where the function        is indicated by (1.2) and   is real constant. 

 

We note that for     in Definition (3.1), we have the following definition: 
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Definition (3.2): A function     is said to be in the class     ,  ,    for    ,     { } and 

   , if the following conditions of subordination are fulfilled: 

                          

  
 

 
*            

    

 
  +     ,                                                  

and 

  
 

 
*            

    

 
  +     ,      ,                                      

where the function        is indicated by (1.2) and   is real constant.  

Remark (3.1) 

For        and    , the function class ℛ   ,  ,  ,    shortens to the function class    
presented and investigated by Alamoush [2]. 

Theorem (3.1): For    ,       ,     { } and    , let     be in the class 

ℛ   ,  ,  ,   . Then  

|  |

 
|   |√|  |

√|[                                 ]                    |
          

                                                                   

and  

|  |  
| |     

              
 

|   |

               
 ,                                           

                                                                                                       

and for some     , 

|      
 |  

{
 
 
 

  
 

|   |

             
     

 (|   |  
|[                                 ]                    |

| |                    
)

| | |  | |   |

|[                                 ]                    |
     

 (|   |  
|[                                 ]                    |

| |                    
)  

                         

Proof: Let   ℛ   ,  ,  ,   . Then there are two holomorphic functions  ,       given by  

|    |         
     

                                                                        

and 

|    |         
     

                          ,                                       
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with            , |    |   , |    |    and  ,     such that  

  
 

 
*                                        

    

 
  +     ,           

and  

  
 

 
*                                        

    

 
  +     ,             

Or, equivalently, 

  
 

 
*                                        

    

 
  + 

                          [    ]
                                                 

and  

  
 

 
*                                        

    

 
  + 

                          [    ]                                               

Combining (3.8), (3.9), (3.10) and (3.11) yields  

  
 

 
*                                        

    

 
  + 

            [               
 ]                                                       

and 

  
 

 
*                                        

    

 
  +     

            [               
 ]                                                     

It is clear that if  |    |    and |    |   ,  ,    , then  

 |  |        |  |                                                                                   

Equating the coefficients in (3.12) and (3.13), we find that  

           

 
          ,                                                                                                                       

             

 
                  

 ,                                                                                             
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and  

             

 
    

                     
                                                                              

From (3.15) and (3.17), we get  

                                                                                                  

and  

               

  
  
  [     ]

    
    

                                                       

If we add (3.16) to (3.18), we attain  

                

 
  
                       

    
                                     

By using (3.20) in (3.21), we deduce that  

  

*
                

 
 

                    

  [     ] 
+   

              ,                      

which yields 

|  |  
|   |√|  |

√|[                                 ]                    |
   

Next, by subtracting (3.18) from (3.16), we have  

(
                

 
)       

                        
    

                            

In view of (3.19) and (3.20), we obtain from (3.23)  

   
  [     ]

    
    

  

                
 

             

                
  

Hence using (1.5), we deduce that  

|  |  
| |     

              
 

|   |

               
   

Finally, by using (3.22) and (3.23) for some     , we obtain  
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  [     ]

              

                 [     ]                      
 

                                        

 
      

 
[(   ,    

 

             
)   (   ,    

 

             
)  ] , 

 

where 

   ,    
 [     ]

      

 [             ][     ]                     
  

According to (1.5), we deduce that  

|      
 |  

{
 

 
|   |

             
       (   |   ,   |   

 

             
)

|   ||   ,   |           (|   ,   |  
 

             
)  

 

After some computations, we get  

|      
 |  

{
 
 
 

 
 
 

|   |

             
    

 (|   |  
|[                                 ]                    |

| |                    
)

| | |  | |   |

|[                                 ]                    |
    

 (|   |  
|[                                 ]                    |

| |                    
)  

  

 

By putting     in Theorem (3.1), we attain the corollary in the below: 

Corollary (3.1): Let the function      indicated by (1.1) be in the class     ,  ,        ,   
  { } ,      . Then 

|  |  
|   |√|  |

√|[                ]            |
 

                                                                   

and  

|  |  
| |     

      
 

|   |

      
 , 

and for some     , 
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|      
 |  

{
 
 
 
 

 
 
 
 

|   |

      
    

 (|   |  
|[                ]            |

| |           
)

| | |  | |   |

|[                ]            |
    

 (|   |  
|[                ]            |

| |           
)  

  

Remark (3.2) 

If we put       and     in Theorem (3.1), we get the results which were given by 
Alamoush [2]. 
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