Al-Qadisiyah Journal of Pure Science

Volume 26 | Number 2

Article 7

4-7-2021

Symmetric Reverse Gamma *-4-Centralizers on SemiprimeGamma Rings with Involution

Ikram A. Saed Department of Applied Sciences, University of Technology, Baghdad, Iraq, ikramsaed1962@gmail.com

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation

Saed, Ikram A. (2021) "Symmetric Reverse Gamma *-4-Centralizers on SemiprimeGamma Rings with Involution," *Al-Qadisiyah Journal of Pure Science*: Vol. 26: No. 2, Article 7. DOI: 10.29350/qjps.2021.26.2.1283 Available at: https://qjps.researchcommons.org/home/vol26/iss2/7

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.

Symmetric Reverse Gamma *-4-Centralizers on Semiprime Gamma Rings with Involution

Authors Names	ABSTRACT
Ikram A. Saed	In this paper , the symmetric left(right) reverse $\Gamma^*\text{-}4\text{-centralizer}$ of a $\Gamma\text{-}$
Article History	ring M with involution is presented and studied. Then we proved that the 4 additive mapping $T \cdot M + M + M + M$ is a reverse Γ^* 4 controlling
Received on: 19/2/2021 Revised on: 10/4/2021	of M if it satisfies one of these conditions :
Accepted on: 14/4/2021	(i) T ((r \circ y) _{γ} , r ₂ , r ₃ , r ₄) = (T(r, r ₂ , r ₃ , r ₄) \circ y [*]) _{γ}
Kevwords:	$= (\mathbf{r}^* \circ \mathbf{T}(\mathbf{y}, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4))_{\gamma}$
Γ*- ring , semiprime Γ*- ring , symmetric	(ii) $T(r^3, r_2, r_3, r_4) = r^* \gamma T(r, r_2, r_3, r_4) \beta r^*$
left(right) reverse Γ*-4- centralizer , symmetric	(iii) T(r, r ₂ , r ₃ , r ₄) γ y [*] = r [*] γ T(y, r ₂ , r ₃ , r ₄)
reverse Γ*-4-centralizer	for all y , r , r_2 , r_3 , $r_4 \in M$ and γ , $\beta \in \Gamma$.
DOI: https://doi.org/10.293 50/jops.2021.26. 2.1283	

1. Introduction

Majeed and Al-Taay in 2010 [1] proved many results of symmetric reverse *-centralizer of *-ring. Saed in 2016 [2] introduced the notion of double reverse θ^* - centralizer of rings with involution and proved basic properties of this type of mapping. Again Saed in 2016 [3] introduced the notion of Jordan $(\theta, \theta)^*$ - derivation pairs of rings with involution and proved basic properties of this type of mapping. Faraj and Super in 2020 [4] these results are studied by using the concept of symmetric reverse *-n-centralizer.

Let M be a Γ -ring with involution. This paper is organized as follows. In section two, we recall some well-known definitions, examples and results that will be used in this paper. In section three, we present the notion of symmetric left(right) reverse Γ^* -4-centralizer of M, and we worked on some results, which give the two cases that (left and right) reverse Γ^* -4-centralizer have come up with a

concept symmetric reverse Γ^* -4-centralizer and showed some related results of the present concept under certain conditions .

2. Basic Concept

Definition 2.1:[5]

Assume M and Γ be additive abelian groups. If there exists a mapping M x Γ x M \rightarrow M : (a, α , b) $\rightarrow \alpha \alpha$ b which satisfies the conditions :

for every $a, b, c \in M, \alpha, \beta \in \Gamma$:

- (i) (a+b) α c=a α c + b α c a(α + β)b = a α b + a β b a α (b+c) = a α b + a α c
- (ii) (a α b) β c=a α (b β c)

Where M is refer to as a Γ -ring.

Example 2.2:

Let M =
$$\left\{ \begin{pmatrix} a & b & 0 \\ 0 & c & 0 \\ 0 & 0 & 0 \end{pmatrix} : a, b, c \in Z \right\}$$
, and $\Gamma = \left\{ \begin{pmatrix} n & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : n \in Z \right\}$

We use the usual addition and multiplication on matrices of

 $M \ge \Gamma \ge M \rightarrow M$, then M is a Γ -ring.

Definition 2.3: [6]

Let M, be a Γ -ring. The set Z (M) = { $x \in M : x\gamma y = y\gamma x$, for all $y \in M$ and $\gamma \in \Gamma$ } is called the center of the Γ - ring M.

Definition 2.4: [6]

A Γ -ring M is called semiprime if a Γ M Γ a = {0} implies that a=0, for a \in M.

Definition2.5: [6]

A Γ -ring M is called 2-torsion-free if 2a=0 implies a=0, for a \in M.

Definition 2.6: [6]

A Γ -ring M is called a commutative if $a\gamma b = b\gamma a$, for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 2.7: [7]

Let M be a Γ -ring, for any x, $y \in M$ and $\alpha \in \Gamma$, the symbol $[x, y]_{\alpha} = x \alpha y - y \alpha x$, will denote the commutator. $(x \circ y)_{\alpha} = x \alpha y + y \alpha x$, will denote the additive group commutator.

Lemma 2.8: [7]

If M is a Γ -ring, for all a, b, c \in M and $\alpha, \beta \in \Gamma$ then:

(i)
$$[a, b]_{\alpha} + [b, a]_{\alpha} = 0$$

- (ii) $[a+b,c]_{\alpha} = [a,c]_{\alpha} + [b,c]_{\alpha}$
- (iii) $[a, b + c]_{\alpha} = [a, b]_{\alpha} + [a, c]_{\alpha}$
- (iv) $[a, b]_{\alpha+\beta} = [a, b]_{\alpha} + [a, b]_{\beta}$
- (v) $[a \beta b, c]_{\alpha} = a \beta [b, c]_{\alpha} + [a, c]_{\alpha} \beta b + a \beta c \alpha b a \alpha c \beta b.$

Definition 2.9: [7]

An additive mapping $(x\alpha x) \rightarrow (x\alpha x)^*$ on a Γ -ring M is called an involution if $(x\alpha y)^* = y^* \alpha x^*$ and $(x\alpha x)^{**} = x\alpha x$ for all x, $y \in M$ and $\alpha \in \Gamma$. A Γ -ring M equipped with an involution is called a Γ -ring M with involution (also known as Γ^* -ring).

Definition 2.10: [7]

An additive mapping T: $M \to M$ is left (right) reverse Γ^* -centralizer of a Γ -ring M with involution if $T(y\alpha x) = T(x) \alpha y^* (T(y\alpha x) = x^* \alpha T(y))$ for all x, $y \in M$ and $\alpha \in \Gamma$.

Definition 2.11: [7]

A reverse Γ^* -centralizer of a Γ -ring M with involution is an additive mapping which is both a left and right reverse Γ^* -centralizer.

Example 2.12:

Let F be a field and $D_3(F)$ be a set of all diagonal matrices of order 3 with respect to the usual operation of addition and multiplication , then $D_3(F)$ is a commutative ring .

 $T: D_3(F) \rightarrow D_3(F)$ be an additive mapping defined as

$$T(x) = T\left(\begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 0 \end{bmatrix} , x, y \in F$$

Define
$$\mathbf{y} = \begin{bmatrix} x_1 & 0 & 0 \\ 0 & y_1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\mathbf{y}^* = \begin{bmatrix} x_1 & 0 & 0 \\ 0 & y_1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\alpha = \{ \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} : \alpha_1 \in \Gamma \}$, then

 $T(y\alpha x) = T(x) \alpha y^*$. Hence T is a reverse Γ^* -centralizer.

3. Symmetric Reverse Γ^* - 4- centralizers

First, we introduce the basic definitions in this paper

Definition 3.1:

Let M , be the Γ -ring with involution . An 4-additive mapping $T : M \times M \times M \times M \to M$ is said to be left reverse Γ^* -4-centralizer if the following equations hold for all $y, r_1, r_2, r_3, r_4 \in M$ and $\gamma \in \Gamma$.

$$T_{1}(r_{1} \gamma y, r_{2}, r_{3}, r_{4}) = T_{1}(y, r_{2}, r_{3}, r_{4}) \gamma r_{1}^{*}$$

 $T_{2}(r_{1}, r_{2} \gamma y, r_{3}, r_{4}) = T_{2}(r_{1}, y, r_{3}, r_{4}) \gamma r_{2}^{*}$

 $T_{3}(r_{1}, r_{2}, r_{3} \gamma y, r_{4}) = T_{3}(r_{1}, r_{2}, y, r_{4}) \gamma r_{3}^{*}$

 $T_4 (r_1, r_2, r_3, r_4 \gamma y) = T_4 (r_1, r_2, r_3, y) \gamma r_4^*$

T is said to be a symmetric left reverse Γ^* -4-centralizer if all the above equations are equivalent to each other . That is ,

 $\mathbf{T} (r_1 \gamma \mathbf{y}, r_2, r_3, r_4) = \mathbf{T} (\mathbf{y}, r_2, r_3, r_4) \gamma r_1^*$

for all y, r_1 , r_2 , r_3 , $r_4 \in M$ and $\gamma \in \Gamma$.

Definition 3.2:

Let M , be the Γ -ring with involution . An 4-additive mapping T : M x M x M x M \rightarrow M is said to be right reverse Γ^* -4-centralizer if the following equations hold for all y, r_1 , r_2 , r_3 , $r_4 \in M$ and $\gamma \in \Gamma$.

 $T_{1}(r_{1} \gamma y, r_{2}, r_{3}, r_{4}) = y^{*} \gamma T_{1}(r_{1}, r_{2}, r_{3}, r_{4})$ $T_{2}(r_{1}, r_{2} \gamma y, r_{3}, r_{4}) = y^{*} \gamma T_{2}(r_{1}, r_{2}, r_{3}, r_{4})$ $T_{3}(r_{1}, r_{2}, r_{3} \gamma y, r_{4}) = y^{*} \gamma T_{3}(r_{1}, r_{2}, r_{3}, r_{4})$ $T_{4}(r_{1}, r_{2}, r_{3}, r_{4} \gamma y) = y^{*} \gamma T_{4}(r_{1}, r_{2}, r_{3}, r_{4})$

T is said to be a symmetric right reverse Γ^* -4-centralizer if all the above equations are equivalent to each other . That is ,

T (
$$r_1 \gamma y, r_2, r_3, r_4$$
) = $y^* \gamma T (r_1, r_2, r_3, r_4)$

for all $y, r_1, r_2, r_3, r_4 \in M$ and $\gamma \in \Gamma$.

So , M is called symmetric reverse Γ^* -4-centralizer if M is symmetric left reverse Γ^* -4-centralizer and right reverse Γ^* -4-centralizer together .

Example 3.3:

Consider $M = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} : a, b, c \in \mathbb{C} \right\}$, where \mathbb{C} is a ring of complex numbers. Clearly, M is a non-commutative ring under the usual addition and multiplication of matrices.

A map T : M x M x M x M \rightarrow M is defined by :

$$T\left\{ \begin{pmatrix} 0 & a_1 & b_1 \\ 0 & 0 & c_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 & b_2 \\ 0 & 0 & c_2 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_3 & b_3 \\ 0 & 0 & c_3 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_4 & b_4 \\ 0 & 0 & c_4 \\ 0 & 0 & 0 \end{pmatrix} \right\} = \begin{pmatrix} 0 & 0 & c_1 c_2 c_3 c_4 \\ 0 & 0 & 0 \end{pmatrix}, \text{ for all } \begin{pmatrix} 0 & a_1 & b_1 \\ 0 & 0 & c_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 & b_2 \\ 0 & 0 & c_2 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_3 & b_3 \\ 0 & 0 & c_3 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_4 & b_4 \\ 0 & 0 & c_4 \\ 0 & 0 & 0 \end{pmatrix} \in M$$

Such that $\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & c & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$ And $\Gamma = \left\{ \begin{pmatrix} 0 & n & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : n \in Z \right\}$

Then, T is a symmetric left reverse Γ^* -4-centralizer and also it is a right reverse Γ^* -4-centralizer

Lemma 3.4:

Let M be a semiprime Γ -ring with involution, let $a \in M$ be a fixed element, and let T $(r, r_2, r_3, r_4) = a \gamma r^* + r^* \gamma a$ satisfy

T (($r \circ y$)_β, r_2 , r_3 , r_4) = ($T(r, r_2, r_3, r_4$) $\circ y^*$)_β = ($r^* \circ T(y, r_2, r_3, r_4$))_β for all $y, r, r_2, r_3, r_4 \in M$ and $\gamma, \beta \in \Gamma$ then $a \in Z(M)$.

Proof:

$$T ((r \circ y)_{\beta}, r_{2}, r_{3}, r_{4}) = (T(r, r_{2}, r_{3}, r_{4}) \circ y^{*})_{\beta} = (r^{*} \circ r_{2}, r_{3}, r_{4})_{\beta}$$
(3.1)

By hypothesis T (r, r_2 , r_3 , r_4) = a $\gamma r^* + r^* \gamma a$

T
$$((r \circ y)_{\beta}, r_2, r_3, r_4) = (a \gamma r^* + r^* \gamma a) \beta y^* + y^* \beta (a \gamma r^* + r^* \gamma a)$$
 (3.2)

Let $r = r \beta y + y \beta r$ in hypothesis, we get

T (r, r₂, r₃, r₄) = a
$$\gamma$$
 (r β y + y β r)^{*} + (r β y + y β r)^{*} γ a (3.3)

Then, by (3.1) and (3.2), we have

$$a \gamma y^* \beta r^* + r^* \beta y^* \gamma a - r^* \gamma a \beta y^* - y^* \beta a \gamma r^* = 0$$

 $(a\gamma y^* - y^*\gamma a)\beta r^* + r^*\beta(y^*\gamma a - a\gamma y^*) = 0$

This implies that $[[a, y^*]_{\gamma}, r^*]_{\beta} = 0$

By [Lemma 2.3, 4], we get $a \in Z(M)$.

Lemma 3.5:

Let M be a semiprime Γ -ring with involution. If every mappings T of M satisfy T $((r \circ y)_{\gamma}, r_2, r_3, r_4) = (T(r, r_2, r_3, r_4) \circ y^*)_{\gamma} = (r^* \circ T(y, r_2, r_3, r_4))_{\gamma}$ for all $y, r, r_2, r_3, r_4 \in M$ and $\gamma \in \Gamma$. Then T maps Z(M) into Z(M).

Proof:

Let
$$a = T(c, r_2, r_3, r_4)$$
 for $c \in Z(M)$ and $r, r_2, r_3, r_4 \in M$.
 $2T(c\beta r, r_2, r_3, r_4) = T(c\beta r + r\beta c, r_2, r_3, r_4) = T(c, r_2, r_3, r_4)\beta r^* +$

 $r^{*} \beta T(c, r_{2}, r_{3}, r_{4}) = a \beta r^{*} + r^{*} \beta a$ $T(r\gamma y + y\gamma r, r_{2}, r_{3}, r_{4}) = 2 T(c\beta(r\gamma y + y\gamma r), r_{2}, r_{3}, r_{4})$ $= 2[T(c\beta r, r_{2}, r_{3}, r_{4}) \gamma y^{*} + y^{*} \gamma T(c\beta r, r_{2}, r_{3}, r_{4})]$ $= 2[T(c\gamma y, r_{2}, r_{3}, r_{4}) \beta r^{*} + r^{*} \beta T(c\gamma y, r_{2}, r_{3}, r_{4})]$ $= T(c\beta r, r_{2}, r_{3}, r_{4}) \gamma y^{*} + y^{*} \gamma T(c\beta r, r_{2}, r_{3}, r_{4})$ $= T(c\gamma y, r_{2}, r_{3}, r_{4}) \beta r^{*} + r^{*} \beta T(c\gamma y, r_{2}, r_{3}, r_{4})$ $= T(r, r_{2}, r_{3}, r_{4}) \gamma y^{*} + y^{*} \gamma T(r, r_{2}, r_{3}, r_{4})$ $= T(y, r_{2}, r_{3}, r_{4}) \gamma r^{*} + r^{*} \gamma T(y, r_{2}, r_{3}, r_{4})$ For all $y, r, r_{2}, r_{3}, r_{4} \in M$ and $\gamma, \beta \in \Gamma$.

By Lemma 3.4, we get : $a \in Z(M)$.

Theorem 3.6:

Let M be a 2-torsion free semiprime Γ -ring with involution, and T : M x M x M x M \rightarrow M be an 4-additive mapping which satisfies :

T $((r \circ y)_{\gamma}, r_2, r_3, r_4) = (T(r, r_2, r_3, r_4) \circ y^*)_{\gamma} = (r^* \circ T(y, r_2, r_3, r_4))_{\gamma}$ for all $y, r, r_2, r_3, r_4 \in M$ and $\gamma \in \Gamma$. Then, T is a reverse Γ^* -4-centralizer of M.

Proof :

$$T ((r \circ y)_{\gamma}, r_2, r_3, r_4) = (T(r, r_2, r_3, r_4) \circ y^*)_{\gamma} = (r^* \circ T(y, r_2, r_3, r_4))_{\gamma} = T(r\gamma y + y\gamma r_1, r_2, r_3, r_4) =$$

$$T(r, r_2, r_3, r_4)\gamma y^* + y^*\gamma T(r, r_2, r_3, r_4) = T(y, r_2, r_3, r_4)\gamma r^* + r^*\gamma T(y, r_2, r_3, r_4)$$

Replacing $y = (r \circ y)_{\beta}$ in the last relation where $\beta \in \Gamma$, we have :

 $T(r, r_{2}, r_{3}, r_{4})\gamma (r\beta y + y\beta r)^{*} + (r\beta y + y\beta r)^{*}\gamma T(r, r_{2}, r_{3}, r_{4}) =$

 $T(r, r_2, r_3, r_4)\gamma y^*\beta r^* + y^*\gamma T(r, r_2, r_3, r_4)\beta r^* + r^*\beta T(r, r_2, r_3, r_4)\gamma y^* + r^*\beta y^*\gamma T(r, r_2, r_3, r_4)$

This implies that :

$$T(r, r_2, r_3, r_4)\gamma r^*\beta y^* + y^*\beta r^*\gamma T(r, r_2, r_3, r_4) =$$

$$y^*\gamma T(r, r_2, r_3, r_4)\beta r^* + r^*\beta T(r, r_2, r_3, r_4)\gamma y^* . \text{ Then }:$$

$$(T(r, r_2, r_3, r_4) \circ ((r \circ y)_{\beta})_{\gamma} = (T(r, r_2, r_3, r_4) \circ y^*)_{\gamma}\beta r^*$$

Also, we have:

 $[T(r, r_2, r_3, r_4), r^*]_{\beta} \gamma y^* = y^* \gamma [T(r, r_2, r_3, r_4), r^*]_{\beta}$, we get :

 $[T(r\,,r_2\,,r_3,r_4),r^*]_\beta\in \mathbf{Z}(\mathbf{M})$.

Now, one will show that $[T(r, r_2, r_3, r_4), r^*]_{\beta} = 0$, and let $c \in Z(M)$

$$2T(c\delta r, r_2, r_3, r_4) = T(c\delta r + r\delta c, r_2, r_3, r_4)$$

$$= T(c, r_2, r_3, r_4)\delta r^* + r^*\delta T(c, r_2, r_3, r_4) = 2T(r, r_2, r_3, r_4)\delta c^*$$

By Lemma 3.5, we have

$$T(c\delta r, r_2, r_3, r_4) = T(r, r_2, r_3, r_4)\delta c^* = T(c, r_2, r_3, r_4)\delta r^*$$

Also , for all $c \in Z(M)$, one takes that

$$[T(r, r_2, r_3, r_4), r^*]_{\beta} \delta c^* = T(r, r_2, r_3, r_4) \beta r^* \delta c^* - r^* \beta T(r, r_2, r_3, r_4) \delta c^* = T(r, r_2, r_3, r_4) \delta c^* = C(r, r_2, r_3, r_4) \delta c^* = T(c, r_2, r_3, r_4) \beta r^{*2} - r^* \beta T(c, r_2, r_3, r_4) \delta r^* = T(c, r_2, r_3, r_4) \beta r^* \delta r^* - r^* \beta T(c, r_2, r_3, r_4) \delta r^*$$

=
$$[T(c, r_2, r_3, r_4), r^*]_\beta \delta r^*$$

For all $c \in Z(M)$, also one gets $T(c, r_2, r_3, r_4) \in Z(M)$, then

$$= T(c, r_2, r_3, r_4) \beta r^* \delta r^* - T(c, r_2, r_3, r_4) \beta r^* \delta r$$
$$= T(c, r_2, r_3, r_4) \beta r^{*2} - T(c, r_2, r_3, r_4) \beta r^{*2}$$

One other hand, one will show that,

 $2 T(r^{2}, r_{2}, r_{3}, r_{4}) = T(r\gamma r + r\gamma r, r_{2}, r_{3}, r_{4})$ $= T(r, r_{2}, r_{3}, r_{4})\gamma r^{*} + r^{*} \gamma T(r, r_{2}, r_{3}, r_{4})$ $= 2 r^{*} \gamma T(r, r_{2}, r_{3}, r_{4}) = 2 T(r, r_{2}, r_{3}, r_{4})\gamma r^{*}$

Theorem 3.7:

Assume that M be a 2-torsion free semiprime Γ -ring with involution with an identity element, and T: M x M x M x M \rightarrow M be an 4- additive mapping such that: $T(\mathbf{r}^3, r_2, r_3, r_4) = \mathbf{r}^* \gamma$ $T(\mathbf{r}, r_2, r_3, r_4)\beta \mathbf{r}^*$. Then T is a reverse Γ^* -4-centralizer of M. for all $\mathbf{r}, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4 \in \mathbf{M}$ and $\gamma, \beta \in \Gamma$

Proof :

Since $T(r^3, r_2, r_3, r_4) = r^* \gamma T(r, r_2, r_3, r_4) \beta r^*$ (3.4)

Multiply involution both sides to (3.4) to get the following

 $(T(r^3, r_2, r_3, r_4))^* = r \gamma (T(r, r_2, r_3, r_4))^* \beta r$

for all $r, r_2, r_3, r_4 \in M$ and $\gamma, \beta \in \Gamma$.

Suppose that $F: M \ge M \ge M \ge M$, then

F(r,
$$r_2$$
, r_3 , r_4) = (T (r, r_2 , r_3 , r_4))*, and also we get
F(r^3 , r_2 , r_3 , r_4) = (T (r³, r_2 , r_3 , r_4))* = (r* γ T (r, r_2 , r_3 , r_4)β r*)*
= r γ (T (r, r_2 , r_3 , r_4))*β r = r γ F(r, r_2 , r_3 , r_4)β r
We have F is Γ-4-centralizer

F(r
$$\gamma$$
y, r_2 , r_3 , r_4) = r γ F(y, r_2 , r_3 , r_4) = F(r, r_2 , r_3 , r_4) γ y. Then,
(T (r γ y, r_2 , r_3 , r_4))* = F(r γ y, r_2 , r_3 , r_4) = r γ F(y, r_2 , r_3 , r_4)
= r γ (T (y, r_2 , r_3 , r_4))*, for all y, r, r_2 , r_3 , $r_4 \in M$ and $\gamma \in \Gamma$. (3.5)

Also,

$$(T(r\gamma y, r_2, r_3, r_4))^* = F(r\gamma y, r_2, r_3, r_4) = F(r, r_2, r_3, r_4) \gamma y$$

= $(T(r\gamma y, r_2, r_3, r_4))^* \gamma y$, for all y, r, r_2, r_3, r_4 \in M and $\gamma \in \Gamma$. (3)

Multiply involution both sides to (3.5) and (3.6) to get

$$T(r\gamma y, r_2, r_3, r_4) = T(y, r_2, r_3, r_4) \gamma r^* = y^* \gamma T(r, r_2, r_3, r_4)$$

Theorem 3.8:

Suppose that M is a semiprime Γ -ring with involution, and T : M x M x M x M \rightarrow M is an 4additive mapping. If $T(r, r_2, r_3, r_4)\gamma y^* = r^* \gamma T(y, r_2, r_3, r_4)$ for all y, r, r_2, r_3, r_4 \in M and $\gamma \in \Gamma$, then M is a left reverse Γ^* -4-centralizer of M.

.6)

Proof :

$$T(\mathbf{r}, r_2, r_3, r_4)\gamma y^* = \mathbf{r}^* \gamma T(\mathbf{y}, r_2, r_3, r_4)$$
(3.7)

Calculating the following equation and by (3.7), we have

$$T(\mathbf{r} + \mathbf{y}, r_{2}, r_{3}, r_{4})\gamma z^{*} - T(\mathbf{r}, r_{2}, r_{3}, r_{4})\gamma z^{*} - T(\mathbf{y}, r_{2}, r_{3}, r_{4})\gamma z^{*}$$

$$= (\mathbf{r} + \mathbf{y})^{*} \gamma T(\mathbf{z}, r_{2}, r_{3}, r_{4}) - \mathbf{r}^{*} \gamma T(\mathbf{z}, r_{2}, r_{3}, r_{4}) - \mathbf{y}^{*} \gamma T(\mathbf{z}, r_{2}, r_{3}, r_{4})$$

$$= ((\mathbf{r} + \mathbf{y})^{*} - \mathbf{r}^{*} - \mathbf{y}^{*}) \gamma T(\mathbf{z}, r_{2}, r_{3}, r_{4})$$

$$= (\mathbf{r}^{*} + \mathbf{y}^{*} - \mathbf{r}^{*} - \mathbf{y}^{*}) \gamma T(\mathbf{z}, r_{2}, r_{3}, r_{4})$$
This implies that $[T(\mathbf{r} + \mathbf{y}, r_{2}, r_{3}, r_{4}) - T(\mathbf{r}, r_{2}, r_{3}, r_{4}) - T(\mathbf{y}, r_{2}, r_{3}, r_{4})] \gamma z^{*} = 0$ (3.8)
Now, let $z^{*} = z$ in (3.8) to get

$$[I(\mathbf{r} + \mathbf{y}, r_2, r_3, r_4) - I(\mathbf{r}, r_2, r_3, r_4) - (\mathbf{y}, r_2, r_3, r_4)] \mathbf{\gamma} \mathbf{z} = 0$$

for all y, r, r_2 , r_3 , $r_4 \in M$ and $\gamma \in \Gamma$ (3.9)

Since M is semiprime ring , one obtains that

 $T(\mathbf{r} + \mathbf{y}, r_2, r_3, r_4) = T(\mathbf{r}, r_2, r_3, r_4) + T(\mathbf{y}, r_2, r_3, r_4)$

Similarly, one calculates the relation

 $(T(\gamma\gamma r, r_2, r_3, r_4) - T(r, r_2, r_3, r_4) \gamma \gamma^*) \beta z^*$, then T is a left reverse Γ^* -4-centralizer of M.

References

[1] Abd-Al- Rahman H. Majeed and Ali A. Al-Taay, "On reverse *-Centralizer of prime and semiprime ring with involution ", AL- Mustansiriya J. Sci, Vol.21, No.7, 2010.

[2] Ikram A. Saed, "Double Reverse θ^* - Centralizer of Rings with Involution", Journal of Progressive Research in Mathematics, Vol. 7, Issue 1, 2016.

[3] Ikram A. Saed, "Jordan $(\theta, \theta)^*$ - Derivation Pairs of Rings with Involution", Journal of Progressive Research in Mathematics, Vol. 8, Issue 2, 2016.

[4] Anwar K. Faraj and Marwa H. Super ," Reverse Symmetric Left *- n- Multiplier with Involution ", International Journal of Latest Engineering and Management Research, Vol.05, Issue 07, 2020.

[5] Ikram A. Saed, "On Semiprime Gamma Near-Rings with Perpendicular Generalized 3-Derivations", Journal of AL-Qadisiyah for computer science and mathematics, Vol.11, No. 2, 2019

[6] Ali K. Kadhim , Hajar Sulaiman and Abd-Al- Rahman H. Majeed , " Γ^* - Derivation Pair and Jordan Γ^* - Derivation Pair on Γ -ring M with Involution ", Annals of Pure and Applied Mathematics , Vol.10 , No.2 , 2015 .

[7] Ali K. Kadhim , Hajar Sulaiman and Abd-Al- Rahman H. Majeed , "Jordan Γ^* -Centralizers and Reverse Γ^* - Centralizers on Semiprime Γ -ring with Involution ", International Mathematical Forum , Vol.10 , No.8 , 2015 .