Detection Of β-lactamases Enzymes Responsible For β-lactam Resistance In Some Gram Negative Bacteria By PCR

Rawa Abdul Redha Aziz
Al-Karkh University of Science, College of Science, Department of Microbiology, Iraq, dr.rawaaziz@kus.edu.iq

Sura Alaa Saud
Al-Karkh University of Science, College of Science, Department of Microbiology, Iraq

Jinan Azeez Thabit
Industrial Property department, Central Organization and Control Quality, Ministry of Planning AlJadryia St., Baghdad 10070, Iraq

Follow this and additional works at: https://qjps.researchcommons.org/home
Part of the Biology Commons

Recommended Citation
DOI: 10.29350/qjps.2021.26.2.1298
Available at: https://qjps.researchcommons.org/home/vol26/iss2/11

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.
Detection of β- lactamases enzymes responsible for β-lactam resistance in some gram negative bacteria by PCR

Authors Names
a. Rawa Abdul Redha Aziz
b. Sura Alaa Saud
c. Jinan Azeez Thabit

Article History
Received on: 6/3/2021
Revised on: 17/3/2021
Accepted on: 22/3/2021

Keywords:
β- Lactamases encoding genes, *Serratia spp.*, PCR

ABSTRACT

β- lactamases enzymes are well studied in literature since they lead to β-lactam resistance among many pathogens, hence global concern of human and animal health issues is rising. The aim of study is to detect these kinds of enzymes among some gram negative bacteria isolated locally. Thirty isolate of each gram negatives *Citrobacter spp.*, *Serratia spp.*, and *Enterobacter spp.* were obtained from different clinical samples in Baghdad and Al-Najaf cities through March 2020 until January 2021. Isolates were identified biochemically and by Vitek2 system. β- Lactamases encoding genes like *(blaSHV (231bp), blalMP-I(500), blavIM (382), blAAmp (1150), blACMY (1014), blaoxa23 (501), and blaoxa51 (353bp)) were detected by PCR. It was found that (80%, 75%, 30%, 50%, 38%, 55%, and 69%) of *Citrobacter spp* isolates had β- Lactamases encoding genes (blashv, blamp, blvim, blacmy, blaoxa23, and blaoxa51), respectively. *Serratia spp.* showed having (blashv, blamp, blvim, blacmy, blaoxa23, and blaoxa51) among (20%, 85%, 60%, 28%, 40%, 67%, and 58%), respectively. There were also (60%, 50%, 25%, 33%, 60%, 81%, and 73%) of *Enterobacter spp.* isolates harbored (blashv, blamp, blvim, blacmy, blaoxa23, and blaoxa51), respectively. Our findings revealed that most of gram negative bacteria isolated locally had different β- Lactamases encoding genes, leading to increase health problems among patients infected with those pathogens.

DOI: https://doi.org/10.29350/jops.2021.26.1298
1. Introduction

It is fact that β-lactam antibiotics are always prescribed in many countries since they have wide spectrum and few side effects [33], and also lack of producing new drugs since past fifteen years [6]. Bacterial cell wall; specifically D-alanyl-D-alanine carboxypeptidase transpeptidase is the target of these antibiotics; therefore, any changes are made by bacteria in this site would turn them inactive even with β-lactam inhibitors combinations [33 and 20]. B-lactamase enzymes have been classified according to two criteria; Bush/Jacoby/Medeiros and Ambler system (A, B, C, and D) [20and 7]. The Ambler class A is penicillinas, B is metalloenzymes MBL which can catalyze and hydrolyze carbapenems, C is AmpC enzymes or called cephalosporinases, and D is oxacillinases [23 and 19]. Also, it could be classified as described in literature according to the active-site serine β-lactamases like classes A, C, and D and zinc-dependent metallo-β-lactamas class B [32 and 30]. Most of these enzymes are found in gram-negative bacteria like Escherichia coli, Salmonella spp, Citrobacter freundii, Enterobacter spp., Morganella, Proteus, Serratia spp, Pseudomonas aeruginosa, and others of Enterobacteraceae family [7, 23, and 19]. Many threats have been arising from gram-negative bacterial pathogens having β-lactamase mediated by plasmids [21], especially MBL enzymes [26]. Furthermore, extended spectrum b-lactamas (ESBL) producing gram negative pathogens possess a challenge of infection treatments [25], especially high mortality rate causing by nosocomial infections [25, 14 , and 15]. The ESBL enzymes can also inhibit aminoglycosides and sulphonamides [8 and13] besides degrading penicillins, cephalosporins, carbapenems, and monobactams [27, 10, and 9]; therefore, the aim of study is to detect these kinds of enzymes among some Iraqi gram negative bacteria clinical isolates.

2. Material and Methods: 30 isolate of each Gram negatives Citrobacter spp., Serratia spp., and Enterobacter spp. were obtained from different clinical samples in Baghdad and Al-Najaf cities through March 2020 until January 2021. Isolates were identified biochemically and by Vitek2 system. β- Lactamas encoding genes (table 1) like (blaSHV (231bp), blaIMP-1 (500), blavIM (382), blAmp (1150), blacMY (1014), bla oxa23 (501), bla oxa51 (353bp) were detected genetically by only PCR in this study.
Table 1: β- Lactamases encoding genes [1 and 2]

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequences (5’…….. 3’) F.</th>
<th>Sequences (5’…….. 3’) R.</th>
<th>size (bp)</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaSHV</td>
<td>AAGATCCACTATCGCCAGCGG</td>
<td>ATTCAGTTCCGTTCCTCCAGG</td>
<td>231</td>
<td>59</td>
</tr>
<tr>
<td>blaIMP</td>
<td>CTCGAGCAGAGATTTTG</td>
<td>AACAGTTGGCTTACCCATAC</td>
<td>500</td>
<td>55</td>
</tr>
<tr>
<td>blaVIM</td>
<td>GTTGGTCGCAATTTGCCACAC</td>
<td>AATGGGCAAGCACCAGGATAG</td>
<td>382</td>
<td>57</td>
</tr>
<tr>
<td>blaAmp</td>
<td>ATGCAACAAGCAGAATCCATC</td>
<td>GTGCCCCATGTTGGATGAT</td>
<td>1150</td>
<td>58</td>
</tr>
<tr>
<td>blaCMY</td>
<td>GACAGCTCCCTCTCCACA</td>
<td>TGGACAAGGCTACGTA</td>
<td>1014</td>
<td>50</td>
</tr>
<tr>
<td>bla OX23</td>
<td>GATCCGATGCGAGAACCAGA</td>
<td>ATTCTGACCACCTCCCAT</td>
<td>501</td>
<td>53</td>
</tr>
<tr>
<td>bla OX51</td>
<td>TAATGCTTIGATCGCCCTG</td>
<td>TGGATGCACTTACATCTTG</td>
<td>353</td>
<td>53</td>
</tr>
</tbody>
</table>

3. Results

3.1. β- Lactamases encoding genes among *Citrobacter spp*

It was found that 80% of isolates had *blaSHV* gene (figure 1), 75% of isolates had *blaIMP* gene (figure 2), 30% of them had *blaVIM* (figure 3), 50% had *blaAmp* gene (figure 4), and other β-lactamase genes tested like (*blaCMY, bla ox23, bla ox51*) were found among (38%, 55%, and 69%) of *Citrobacter spp* isolates (figure 5, 6, and 7), respectively.

![Figure 1: blaSHV gene amplified at 231bp among 80% of *Citrobacter spp* isolates](image.png)
Figure 2: bla_{IMP-1} gene amplified at 500bp among 75% of *Citrobacter* spp isolates

Figure 3: bla_{VIM} gene amplified at 382bp among 30% of *Citrobacter* spp isolates
Figure 4: bla_{AMP} gene amplified at 1150bp among 50% of *Citrobacter spp* isolates

Figure 5: bla_{CMY} gene amplified at 1014bp among 38% of *Citrobacter spp* isolates
3.2. β- Lactamases encoding genes among Serratia spp.

Interestingly, (20%, 85%, 60%, 28%, 40%, 67%, and 58%) of Serratia spp. isolates had *bla*SHV (figure 8), *bla*IMP-1 (figure 9), *bla*VIM (figure 10), *bla*Amp (figure 11), *bla*CMY (figure 12), *bla*oxa23 (figure 13), *bla*oxa51 (figure 14), respectively.
Figure 8: \textit{bla}_{SHV} gene amplified at 231bp among 20\% of \textit{Serratia} spp. isolates

Figure 9: \textit{bla}_{IMP-1} gene amplified at 500bp among 85\% of \textit{Serratia} spp isolates
Figure 10: bla\textsubscript{VIM} gene amplified at 382bp among 60% of Serratia spp isolates

Figure 11: bla\textsubscript{AMP} gene amplified at 1150bp among 28% of Serratia spp isolates
Figure 12: bla_{CMY} gene amplified at 1014bp among 40% of *Serratia spp* isolates

Figure 13: bla_{oxa23} gene amplified at 501bp among 67% of *Serratia spp* isolates
1.3. β- Lactamases encoding genes among Enterobacter spp.

There were also (60%, 50%, 25%, 33%, 60%, 81%, and 73%) of Enterobacter spp. harbor bla_{SHV} (figure 15), bla_{IMP-1} (figure 16), bla_{VIM} (figure 17), bla_{Amp} (figure 18), bla_{CMY} (figure 19), bla_{oxa23} (figure 20), bla_{oxa51} (figure 21), respectively.

Figure 14: bla_{oxa51} gene amplified at 353bp among 58% of Serratia spp isolates

Figure 15: bla_{SHV} gene amplified at 231bp among 66% of Enterobacter spp isolates
Figure 16: bla_{IMP-1} gene amplified at 500bp among 50% of Enterobacter spp isolates

Figure 17: bla_{VIM} gene amplified at 382bp among 25% of Enterobacter spp isolate
Figure 18: \(\text{bla}_{\text{AMP}} \) gene amplified at 1150bp among 33% of Enterobacter spp isolates

Figure 19: \(\text{bla}_{\text{CMY}} \) gene amplified at 1014bp among 60% of Enterobacter spp isolates
4. Discussion

It is reported that Ambler class could be disseminated among gram negatives in Asia, Europe, North America, and South America, especially IMP-, VIM-, SPM- and GIM-types confirm high resistancy levels among bacteria towards most b-lactams but azetronam [26]. Our findings revealed that different classes of beta-lactamase genes such as (bla_{SHV}, bla_{IMP}-1, bla_{VIM}, bla_{Amp}, bla_{CMY}, bla_{oxa23}, and bla_{oxa51}) tested in this study were found among some local gram negatives pathogens like <i>Citrobacter</i> spp., <i>Serratia</i> spp., and <i>Enterobacter</i> spp. Similarity with other studies conducted by [23, 19, 26, and 29]. It is found that
Citrobacter youngae isolated from different hospitals in China had IMP-type MBL enzyme like blaIMP-4 [26]. It was also demonstrated that Serratia marcescens isolated from clinical samples had blaIMP and blavim genes [26]. Further, it was revealed that gram negatives bacteria isolated clinically could resist many b-lactams agents due to having AmpC enzymes [19]. Singhal et al. [29] demonstrated that the presence of ESBL and AmpC b-Lactamase among 173 (64%) gram negatives pathogens could give the rise of high level of antibiotic resistance among useful marketing drugs [29]. Some studies showed that Serratia marcescens isolated from different locations throughout USA could resist different b-lactams like cephalosporins, imipenem and aztreonam due to having blaSME gene encoding resistance enzymes [19 and 4]. Moreover, 93 gram negative pathogens like Escherichia coli, Enterobacter spp, Pseudomonas spp, Proteus spp, and Citrobacter freundii isolated from hospitals had ESBLs enzymes such as (SHV-12, SHV-28 and CTX-M15) [25]. Haidar et al. [13] also, reported that there were 19% of gram negative bacteria tested had blasIV, 38% had blaOXA, and 80% had blaOXA genes. He and his colleagues further conclude that the presence of these kinds of b-lactamase genes encoded by plasmids or chromosome conferred multi-drug resistance level [13]. It is found that the presence of blaOXA enzymes, especially blaOXA23 among pathogens contributes with serious threat to human health [11 and 22]. It is found that VIM and IMP related to MBL enzymes are wide spread among gram negatives like P. aeruginosa, and A. humannii pathogens [28]. It is fact grounded on studies that blaOXA 23 gene presence guarantee carbapenem resistance in pathogens [3]; therefore, gram negatives pathogens having such a gene were difficult to be eradicated [16, 17, and 33]. It has also found that blasIV gene presence did not affect oxyimino cephalosporine and monobactams but inactivate penicillins and cephalosporines [12 and 31]. Studies confirmed that presence of MBLs genes on integrons give the ability to disseminate among bacteria, leading to give rise to antibiotic resistance levels [31]. Besides, it was reported that gram negative bacteria isolated from septicemic pediatric patients could resist imipenem, ciprofloxacine, and cefoxine since having acquired MBL genes [5]. Besides, ceftriaxone, cefotaxime, ceftazidime, aztreonam, and some oxymino-β- lactam antibiotics could be inactivate by altering the active site of them by MBL enzymes producing bacteria such as Enterobacteraceae family [24].

2. Conclusion

Wide range of antibiotic resistance levels has been appeared among local pathogens from which gram negative bacteria [1 and 2]. Our findings confirm the widespread of b-lactamases enzymes among some local gram negative pathogens. Therefore, more phenotypic and genotypic studies should be done to screen different classes of b-lactamase and trying to find an appropriate antibiotic regime for treating infected patients with such producing pathogens.

Conflict of Interest: The authors declare that they have no conflict of interest.
Acknowledgements: We are very grateful for AlKarkh University of Science, College of Science; Department of Microbiology. We are also grateful for Dr. Ezzate Hasson Ajeena for her help in this study.

References

