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ABSTRACT 

 

      The main aim of the present work is to introduce the class of 
multivalent harmonic functions defined by the general integral 
operator. Thus, We get some geometric properties, like coefficients 
estimate, extreme point and distortion theorem, convolution 
property, radii of starlikeness, and convexity. 
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1. Introduction 

    The function         is said to be continuous in the complex domain     
harmonic if real harmonic is u and v in  , we can write          , In any simply 
connected domain  , where  and 𝑔 are analytic in    See Clunie and Sheil-Small [3].  

     Denote by      the family of all multivalent harmonic functions          ̅, that 
are sense-preserving in the open unit disc   {  | |   }  where   

           ∑        
       

            ∑       
 
         

 
                                  (1) 

Recently Mohammed and Darus [5] defined by  

 (       )         : 

    (       )      
  ∑

                      

                                  
        

       
   .                   (2) 

The Srivastava-Attiya operator     :     is defined in [6]: 

            
  ∑  

   

   
          

       
                                                                            (3) 

where        {         }⁄      and    . This linear operator       written  

                                  
                       

the Hadamard product (convolution). Here, 

                   ∑
  

      
  

    , 

 the well-known Hurwitz  –Lerch zeta function (see[6 ], [7]), defined by : 

                 ∑
  

    
           

      

The linear operator   
     ,           and given by [4] as 

    
      ,         

  ∑
                      

                                  
 
   

   
          

       
             (4) 

          (        {         }⁄          {            } | |    ⁄ and 

                     {         } ). 

 

The class of multivalent harmonic functions  denotes by   
         , satisfying 
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 Re  {
    

   (     )     
      

   (     )     
 

(  
   (     )    ) (  

   (     )    )
}     ,                     (5) 

              for           | |        

The multivalent harmonic functions    in   
          such that   and   are function of 

the from 

          ∑ |      | 
       

            ∑ |      |
 
         

 
                              (6) 

2. The Main Results 

      In this section, we prove that  sufficient coefficient conditions for the class 
  
            

 Theorem 2.1. Let      
           given by (1). If  

          ∑              
                      

                                  
 
   

   
  |      |

 
     

  ∑             
                      

                                  
 
   

   
   |      |

 
              (7) 

          (        {         }⁄          {            } | |   ⁄   and           

                        {         } ,  then      
           

Proof: We must  prove that if (7) holds , then 

         Re {
    

   (     )     
      

   (     )     
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(  
   (     )    ) (  

   (     )    )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ }    

    

    
 , 

 

where                                                                                  

                   
   (     )     

      
                

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

              (  
   (     )    )  (  

   (     )    )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  

Now, 
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  |      | 

       
                             

 ∑         
                      

                                  
 
   

   
   |      |      

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
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This completes the proof of the theorem. 

 

Theorem 2.2: Suppose      
          if and only if  

          ∑              
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         (        {         }⁄          {            } | |   ⁄ and 

                     {         }). 
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Proof: Given a necessary and sufficient condition for    by (5) and we have    
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   (9).                                           

The condition be due above all values  , when choosing   the values on the positive 
true axis where         we should have            
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   .     (12)                          

  The condition (8) doesn't hold, at that point the numerator in (10), when it moves  to 
1 is negative. This contention with the condition for        

           and 
consequently the verification is finished.  

3. Extreme Point 

Theorem 3.1: Suppose      given by (6). Then     
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4. The Distortion Theorem 

Theorem 4.1: Let         
         . Then for | |       let 
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Proof: Since 

              
         

      
|  | ∑                
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the result of Theorem 2.2 we get 
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It gives the first result. 
Likewise, we get the following lower bound.              
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5. The Convolution Property  

We show that prove two theories, the first theorem about convolution for the class 
  
         .  

Let 

                    ∑       
 
          ∑        ̅

      
     

                     ∑       
 
          ∑        ̅

      
    . 
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The convolution of 𝑓 and 𝑔  define by 

         (𝑓 
∗𝑔)(𝑧)=𝑓(𝑧(∗𝑔(𝑧)=   ∑       

 
          

      ∑              ̅
      

    

Theorem 5.1: Suppose 𝑓(𝑧( ∈  
           and 𝑔(𝑧( ∈  

         .  

Then 𝑓 ∗ 𝑔     
            

         . 

Proof: Let   

                     ∑       
 
          ∑        ̅

      
   , 

be in the class   
          and  

                    ∑       
 
          ∑        ̅

       
     

be in    
         . 

Consider convolution functions 𝑓 ∗ 𝑔 the following : 
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6. The Radii of Starlikeness and Convexity 

Theorem 6.1: Assume that the function   defined by (1) be in the class   
         . 

Then   is  

multivalent starlike of order   in the disk | |      
         ,where 

                           {∑
                 

(                      )(
   
   

)
 

(                                  )

              
 
   }

 

   

  

Proof: Show that  

          |
      

    
  |        
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∑              
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Will be bounded by      

          
∑              
 
   | |   

  ∑       
 
   | |   

       

          ∑               
 
   | |   , 

by theorem 2.1, we get 

         ∑
            

(                      )(
   
   

)
 

(                                  )

      
         

 
     

Hence 

          | |    ∑
                 

(                      )(
   
   

)
 

(                                   )

              
 
       

          | |  {∑
                 

(                      )(
   
   

)
 

(                                  )

              
 
   }

 

   

   

This completes the proof of the theorem . 

Theorem 6.2: The function      defined by (1) be in the class   
         . Then   is  

multivalent convex of order   in the disk | |                where 

                          {∑
                 

(                      )(
   
   

)
 

(                                  )

              
 
   }

 

   

  

Proof: Using the same method  to proof of theorem 6.1 we can show this 

          |
        

     
  |     ,          

Relative to | |     with the help of theorem 2.1, we have the  confirmation of theorem 
6.2. 
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7. CONCLUSION  

We have shown that a class of harmonic multivalent functions, interesting results 
concerning the harmonic multivalent functions defined by general integral operator. 
Some geometric properties like coefficients conditions, extreme points, distortion 
theorem, convolution property, radii of starlikeness are investigated and examined. 
Finally, Many problems still opened, for example, the extension of these results to the 
case of subclasses for various linear operator [11-13]. 
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