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1. Introduction 

Orthogonal functions and polynomial series have attention in dealing with dynamic 

systems' various problems, theory of elasticity, automation, and remote control [1-9]. 

Special class of orthogonal functions are wavelets functions, for more details, see [10-

12]. The techniques' opinion is that it reduces the dynamic system problem to solving a 

system of algebraic equations, which simplifies the original problem. Some approaches 

are based on reducing the underlying differential equation into a system of algebraic 
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ABSTRACT 

This work starts by reviewing the Pell polynomials, its definition and some 
basic properties. Afterward, some new properties of such polynomials are 
investigated. A novel generalization analytical formula is constructed 
explicitly the first derivative of Pell polynomials in terms of Pell polynomials 
themselves. Another explicit formula is concerned with the connection 
between the Pell polynomials expansion coefficients; this motivates our 
interest in such polynomials. These formulas are utilized to derive some 
mainly relationship related with power basis coefficients and Pell 
polynomials. With the Pell polynomials expansion technique, the powers 
1, ,  ,⋯,   are expressed in terms of Pell polynomials and an interesting 
formula is presented with some detail in the proof. An important general 
formulation for the product of two Pell polynomials is also included in this 
article. Explicit computations obtain all the representations in this work. 
Finally, two examples concern boundary value problems and singular initial 
value problems are included for applications of the proposed interesting 
properties of Pell polynomials 
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equations through differentiation, approximating the unknown function in the 

equation by truncated orthogonal series,  ( )  [  ( )     ( )   ⋯  ( )]
  and using 

the operational matrix of derivative to eliminate the derivative operations. This 

operation is calculated based on particular orthogonal polynomials [13-20]. For 

examples, Legendre Polynomials and Shifted Legendre Polynomial algorithms are used 

for the numerical solution of stochastic differential equations and the dynamic analysis 

of viscoelastic pipes conveying fluid by [21] and [22], respectively. 

The Pell polynomials are important in numerical analysis. Many research papers are 

dealing with Pell polynomials contains mainly results of such polynomials. In [23], the 

authors investigated some properties of Pell polynomials. They obtained optimal 

second-order bounds of Pell polynomials. The bivariate Fibonacci and Lucas p–

polynomials are studied in [24]. Some properties of the Lucas p–polynomials and 

bivariate Fibonacci are obtained. The recurrence relations of Vieta-Pell and Vieta-Pell-

Lucas polynomials are given by [25]. The Binet form and generating functions of Vieta-

Pell and Vieta-Pell-Lucas polynomials and some differentiation rules and finite 

summation formulas are presented. The specific values of Pell numbers and Pell–Lucas 

numbers are of Pell polynomials   ( ) and Pell–Lucas polynomials    ( ), respectively, 

this result are investigated in [26]. In [27-28], the sequences of generalized Pell 

numbers are obtained. 

The present article is arranged as follows: Pell polynomials' necessary definitions are 

described in section 2. Some fundamental properties of Pell polynomials are listed in 

sections 3-5. Section 3 states with the proof the formula are explicitly expressing the 

derivative of Pell polynomials in terms of Pell polynomials themselves. The exact 

expression representing the Pell polynomials coefficients of a first order derivative of a 

differentiable function in terms of its original coefficients is also included in section 3. 

Section 4 reveals the relationship between the powers and Pell polynomials 

throughout an interesting general formula. An analytical formula for the product of two 

Pell polynomials is explained in section 5 and the applications of the presented Pell 

properties are applied for solving some examples listed in section 6. Finally, a 

discussion and conclusion appear in section 7. 
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2. Some Properties of Pell Polynomials 

Pell functions are a sequence of orthogonal polynomials, and they are expressed 

recursively. For    , Pell polynomials sequence   ( ) is defined by the following 

recurrence relation 

  ( )        ( )      ( ), 

with initial conditions    ( )   ,   ( )     

These polynomials were introduced by [4]. 

From the definition of Pell polynomials, the following table is given 

Table 1 Pell Polynomials for Different Orders 

    ( ) 
0 0 

1 1 

2 2x 

3       

4        

5             

6              

7                  

   

 

From Table 1, the following properties can be noticed 

 Pell polynomials have not the same degree. 

 The leading coefficients of Pell polynomials are      . 

 The coefficients of Pell polynomials are even numbers if   is odd, except for constant 

term. 

 The degree of Pell polynomials is    , for all  . 

The new formulation of Pell polynomials is constructed as below. 

The Pell polynomials   ( ) can be defined in terms of    [25], 
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]

   
                                                       (1) 

Eq. 1 can be rewritten as 

  ( )  ∑      
 (     )

 (   ) (      )

*
 

 
+

   
     ,     

with a simple modification, one can define the Pell polynomials as: 

For even number     

            ( )     ( )  ∑    (
   
   

) 
                                                     (2)                                                                                  

and for odd number     

                                           ( )       ( )  ∑      (
     
   

) 
                                    (3) 

From the above relations given by Eqns. 2-3, a general matrix form of Pell polynomials 

can obtain 

                                          ( )   ( )                                                                                            (4) 

where:  ( ) and  ( ) are two matrices of the form 

 ( )  [  ( )   ( )    ( )]  ( )  [     ] 

and the constant matrix M is the following (   )  (   ) lower triangle  
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If   is an odd number, then the last row will be 

*    (
   
   

)    (
   
   

)    (
   
   

) ⋯    +. 

Note that in the last row the matrix M will be  

for odd values:       , 

for even values:      

Theorem 1 

The generating function of the Pell polynomials is [26] 

 (   )  
 

        
 

Proof 

The generating function can be defined as 

 (   )  ∑  ( ) 
 

 

   

 

Then  

 (   )    ( )    ( )    ( ) 
  ⋯   ( ) 

  ⋯ 

    (   )      ( )      ( ) 
      ( ) 

  ⋯       ( ) 
  ⋯ 

and 

   (   )     ( ) 
    ( ) 

    ( ) 
  ⋯     ( ) 

  ⋯ 

Therefore; 

 (   )(        )  (    (  ( ) 
    ( ) 

  ⋯   ( ) 
    ⋯) 

 (  ( ) 
    ( ) 

    ( ) 
  ⋯     ( ) 

  ⋯ 

 (    ( ) 
  ⋯   ( ) 

  ⋯ 
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     ( )      ( ) 
      ( ) 

  ⋯     ( ) 
  ⋯ 

   ( ) 
    ( ) 

    ( ) 
  ⋯     ( ) 

  ⋯ 

 (  (    ( )    ( )) 
  ⋯ (      ( )      ( )) 

  ⋯ 

     ( )      ( ) 
      ( ) 

  ⋯     ( ) 
  ⋯ 

   ( ) 
    ( ) 

    ( ) 
  ⋯     ( ) 

  ⋯  

   

The next sections give the main results. 

3. The Derivative of Pell Polynomials 

The present section aims to state and prove two lemmas for the derivatives of Pell 

polynomials and the coefficients. The first lemma expresses the first derivative of Pell 

polynomials in terms of same polynomials themselves. The relationship between the 

coefficients expansions and derivatives of Pell polynomials is illustrated through 

Lemma 2. 

Lemma 1 

For all    , we have 

                           ̇ ( )   ∑ (  )   (   )    
   
    for (   ) even.                                (5) 

Proof 

Assume that the Pell polynomials expansion of function  ( ) is as below 

                                            ( )  ∑   (   )  ( )
 
                                                                     (6) 

Then  ̇( ) can be constructed as 

                                                ̇( )  ∑    ( )
 
                                                                                 (7) 

where:      ∑ (  )   
 
     ,                                                                                              (8) 

Take  ( )    ( ) in Eq. 6, then      and      for    , the result will be 
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   {
(  )    (   )                  

          
 

Therefore, Eq. 7 becomes 

 ̇ ( )   ∑(  )   (   )  

 

   

( )                  

which is the same result in Eq. 5  

Lemma 2  

Consider a function expanded in Pell series 

                                    ( )  ∑     ( )
 
                                                                                            (9) 

The derivative of Eq. 9 is 

                                    ̇( )  ∑     ( )
   
                                                                                         (10) 

Then the relationship between the coefficients of the two expansions,    and    will be 

given as follows 

     

      (   )   

      (   )     

          
 

   
     ,               

4. The Relationship between the Power and Pell Polynomials 

The relationship between the Power         ⋯      and Pell Polynomials is 

investigated in this section. 

Lemma 3 

  is odd 
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Proof 

The mathematical induction is suggested to prove Eqns. 11 and 12 

For    ,        , therefore Eq. 11 is true for    . 

For    ,     ,  
 

 
    ; therefore Eq. 11 is true for    . 

Assume that Eq. 11 is true for    , that is 
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Therefore; 
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5. Product of Pell Polynomials 

The formula of two Pell polynomials is evaluated at   fixed   with different indices and 

given in the following lemma.  

Lemma 4: The product of two Pell polynomials satisfies the following relationship 

  ( )  ( )   |   |  ( )   |   |  ( )   |   |  ( )  ⋯       ( ),             (13) 

Proof: Eq. 13 is an identity for    , since     , it then follows that  

                                                              ( )  ( )    ( )                                                              (14) 

Multiply both sides of Eq. 14 by    , yields 

  ( )(    ( ))      ( ) 

Using the basic relationship recurrence for Pell polynomials 
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      ( )    ( )      ( )  

This will lead to   ( )  ( )      ( )      ( ) which proves Eq. 13 for      

Since Eq. 13 is true for     and    , Assume that Eq. 13 is true for  , then we 

want to prove that it is true for     to multiply both sides of Eq. 13 by    to get 

  ( )(    ( ))     |   |  ( )     |   |  ( )  ⋯ 

  ( )(    ( )      ( ))

  |   |  ( )   |   |( )          ( )  ( |   |  ( )   |   |  ( ))

 ⋯     ( )        ( ) 

  ( )    ( )    ( )    ( )   |   |  ( )   |   |( )   |   |  ( )   |   |  ( )

 ⋯     ( )        ( ) 

  |   |  ( )   |   |  ( )   |   |  ( )  ⋯       ( )   |   |( )   |   |  ( )

  |   |  ( )  ⋯     ( )        ( ) 

which leads to 

  ( )    ( )   |   |( )   |   |  ( )   |   |  ( )  ⋯     ( ) 

6. Methodology 

Consider the B.V.P. 

                                           ⃛( )   (   ̇  ̈ )   ( ),                                                      (15) 

Subject to 

                                             ( )     ̇( )     ̈( )                                                             (16) 

                                             ( )     ̇( )     ̈( )                                                             (17) 

where:  ,  ,   ,   ,   ,   ,    and    be constants. 

For solving Eq. 15 together with Eq. 16 and Eq. 17, suppose that the approximate 

solution is 
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                                                  ( )     ( )                                                                                  (18) 

where:   and  ( ) are given in the following expression 

  [       ] ,  ( )  [  ( )   ( )    ( )] 

Using Eq. 18, yields 

                             
   ̉( )   (   ( )   

  ̇( )   
  ̈( )   ( ) ,                              (19) 

and    
  ( )      

  ̇( )      
  ̈( )                                                                                (20) 

                               
  ( )      

  ̇( )      
  ̈( )   .                                                         (21) 

Utilizing the spectral method, one can obtain   algebraic equations with   unknown 

coefficients. 

Solving this system gives the unknown coefficients  . 

EXAMPLE 1 

Consider the following differential equation 

 ̈( )   ( ̇( ))    ( )   ,       with  ( )   ,  ( )                                   (22) 

Approximate  ( )      ( )      ( )      ( ) 

and hence  ̇( )       ( )       ( ),  ̈( )       ( ) 

In this case, 

   [      ] ,   
  [       ] ,   

  [     ]  

The boundary conditions are approximated by Pell polynomials to get 

                                    ( )   , implies                                                                           (23) 

                                  ( )    , Implies                                                                    (24) 

Put  ( ),  ̇( ),  ̈( ) into Eq. 22,  yields 

  
  ( )   (  

  ( ))      ( )    
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With the aid of the spectral method, one can obtain  

   
       

        

           

Then    [            ].  Consequently the approximate solution will be 

 ( )        ( )       ( )        ( ) 

The compression of the approximate solution using Pell polynomials with the exact 

solution is illustrated in Figure 1. 

 

 

 

 

 

Figure 1: The compression between the approximate Pell solutions with the exact 

solution for example 1. 

EXAMPLE 2 

Consider the following singular initial value problem   ⃛( )  
 

 
 ( )   ̇( ) together 

with the conditions  ( )   ,  ̇( )   ,  ̈( )    

The exact solution to this problem is  ( )     .  

According to the Pell polynomials algorithm, the following approximate solution is 

obtained for         

  ( )   
 

 
  ( )  

 

 
  ( )  

 

 
  ( )  

 

  
  ( ) 
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  ( )  

   

   
  ( )  

 

  
  ( )  

  

   
  ( )  

 

  
  ( )  

 

   
  ( ) 

Table 1 lists the some values for the solution obtained by the exact solution and by Pell 

technique with     while Fig. 1 illustrates a comparison between Pell method for 

different values of   against the exact one. 

Table 1: A comparison between Pell method with     against the exact one for 

example 2. 

x Exact Approximate (n=5) 

0 0 0 

0.2 0.244281 0.2442801 

0.4 0.596730 0.596727 

0.6 1.093271 1.0932288 

0.8 1.780433 1.7801045 

1 2.718282 2.7166667 

 

 

 

 

 

 

Figure 2: A comparison between Pell method for different values of   against the exact 

one for example 2. 

7. CONCLUSION 

This word concerns with the some new interesting properties of Pell polynomials. An 

exact expression for the first derivative of Pell polynomials is given in terms of Pell 

polynomials themselves. Two other analytical formulas, which relate the coefficients in 

the first differentiated expansions of Pell polynomials with the coefficients of the 

original expansion and with the power basis, have been proposed. The product of two 
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Pell polynomials is contained in this article in explicit form. These formulas can be 

easy, efficient and computationally attractive for solving many problems in differential 

equations and control theory. Two examples of concern differential equations are 

solved with the aid of the presented properties. 
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