On Fuzzy Soft Projection Operators In Hilbert Space

Dr. Salim Dawood
College of Education, Dept. of Mathematics, University of Al -Mustinseryah, Iraq,
dr_salim2015@yahoo.com

Ali Qassim Jabur
College of Education, Dept. of Mathematics, University of Al -Mustinseryah, Iraq, alsrayly842@gmail.com

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation
Available at: https://qjps.researchcommons.org/home/vol26/iss1/9

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.
On fuzzy soft projection operators in Hilbert space

1. Introduction

The mathematical models related to real-world is too problematical and we cannot usually to find the exact solutions [4]. Then may be interested to use the concept of approximate approach to compute their solutions by using some mathematical tools in Hilbert space such as, fuzzy, soft, or fuzzy soft of set theory [7].

Thus, Zadeh [14] suggested in 1965 an expansion of the theory of the set, which is idea of fuzzy sets to cope with insecurity. A fuzzy set on a domain X is defined by membership function From X to [0,1]. Also In 1999, Molodtsov [9] introduce new types of sets is said to be soft set. The soft set is a mathematical instrument for uncertainty in modeling by associating a collection with a set of parameters, i.e., it is a parameterized family of Universal Set sub-sets. Many after that, researchers also presented new, expanded ideas based on soft sets where introduced by researchers, and examples were given for them and researched their characteristics, such as soft point [1], Soft normed Spaces [13], Soft Inner Product Spaces [3], Soft Hilbert space [12] and Projection operators on soft inner product spaces[11].

ABSTRACT

In this paper, we study and explore a new type of fuzzy soft linear operator in fuzzy soft Hilbert space which is fuzzy soft projection operator and fuzzy soft perpendicular projection operator. More precisely, we present some definitions and characterizations of such operator in connection with fuzzy soft notions in Hilbert space. to the related on fuzzy soft projection operator have been given. In addition, we introduce the relation between fuzzy soft projection operator and fuzzy soft perpendicular projection operator and other types in fuzzy soft Hilbert space.
And many searchers, for example Maji [8] in 2001, made a mix between fuzzy set and soft set to get definition fuzzy soft set. This definition has been applied and some concepts are being given, like as Fuzzy soft point [10] and fuzzy soft normed spaces [2].

Currently, the fuzzy soft inner product spaces and fuzzy soft Hilbert space [6] were introduced by Faried et al. Additionally the Fuzzy soft linear operator [5]. Finally, they defined the fuzzy soft self-adjoint operator [4] and studied its properties.

The purpose of this work, submitted new type of fuzzy soft linear operator is called fuzzy soft projection operator and fuzzy soft perpendicular projection operator. Therefore, the main reason behind this study is that, played a good role to find an optimal solution depending on the orthogonality and closeness in for many concrete-real problems in classical and fuzzy soft Hilbert space.

The outline of this paper is organized as: Section 2 concerns to basic needed concepts and definitions. Section 3 deals with fuzzy soft projection operator and fuzzy soft perpendicular projection operator and some related examples and theorems. Section 4 provides conclusions.

2. Basic concepts

Definition 2.1 [14]: If \hat{A} be a fuzzy set over universe set X is a set characterized by a membership function $\mu_{\hat{A}}: X \rightarrow \mathbb{I}$, where $\mathbb{I} = [0,1]$ and \hat{A} represented by an ordered pairs $\hat{A} = \{(x, \mu_{\hat{A}}(x))|x \in X\}$ or $\hat{A} = \{\frac{\mu_{\hat{A}}(x)}{x} : x \in X\}$

$\mu_{\hat{A}}(x)$ is said to be degree of membership of x in \hat{A}

And $\mathbb{I}^X = \{\hat{A} : \hat{A} is a function from X into \mathbb{I}\}$

Definitions 2.2 [9]: If X be a universe set, and E be a set of parameters, $P(X)$ the power set of X and $A \subseteq E$. Suppose that G is a mapping given by $G: A \rightarrow P(X)$, where $G_A = \{G(e) \in P(X) : e \in A\}$.

The pair (G, A) or G_A is called soft set over X with respect to A.

Definition 2.3 [8]: The soft set (G, A) is called fuzzy soft set $(FS-set)$ over a universe set X, whenever G is a mapping $G: A \rightarrow \mathbb{I}^X$, and $\{G(e) \in \mathbb{I}^X : e \in A\}$

The family of all $FS-set$s, symbolized by $FSS(\mathbb{I})$

Definition 2.4 [10]: The $FS-set (G, A) \in FSS(\mathbb{I})$ is called fuzzy soft point over X, symbolized by $((x_{\mu_{G(e)}, A}) or \bar{x}_{\mu_{G(e)}})$, if $e \in A$ and $x \in X$,

$\mu_{G(e)}(x) = \begin{cases} \lambda & \text{if } x = x_o \in X \text{ and } e = e_o \in A \\ 0 & \text{if } x \in X - \{x_o\} \text{ or } e \in A - \{e_o\} \end{cases}$, where $\lambda \in (0,1]$

Remark 2.5 [10]: $C(A)$ is the family of all $FS-Complex$ numbers and $R(A)$ is also the family of all $FS-Real$ numbers
Definition 2.6 [2]: A vector space \mathcal{X} over a field \mathcal{R} and E be the parameter set, let \mathcal{R} be the set of all real numbers and $A \subseteq E$. The $\mathcal{F}S$ – set $(G, A) \in \mathcal{FSS}(\mathcal{X})$ is called a fuzzy soft vector ($\mathcal{F}S$ – vector) over \mathcal{X}, symbolized by $\tilde{x}_{\mu_g(e)}$, if there is exactly one $e \in A$ such that $\mu_g(e)(x) = \alpha$ for some $x \in \mathcal{X}$ and $\mu_g(e')(x) = 0$ for all $e' \in A - \{e\}$ where $\alpha \in (0,1]$ is the value of the membership degree.

The set of all $\mathcal{F}S$ – vector over \mathcal{X} is symbolized by $\mathcal{FSV}(\mathcal{X})$.

Definition 2.7 [2]: If \tilde{x} be $\mathcal{FS} – vector$ space. Then, a mapping $\| \cdot \|$: $\mathcal{X} \rightarrow \mathcal{R}(A)$ is called fuzzy soft norm on \mathcal{X} (\mathcal{FSN}) if $\| \cdot \|$ satisfies the following:

1. $\| \tilde{x}_{\mu_g(e)} \| \geq 0, \forall \tilde{x}_{\mu_g(e)} \in \mathcal{X}$, and $\| \tilde{x}_{\mu_g(e)} \| = 0 \iff \tilde{x}_{\mu_g(e)} = \tilde{0}$

2. $\| \tilde{r} \cdot \tilde{x}_{\mu_g(e)} \| = |\tilde{r}| \| \tilde{x}_{\mu_g(e)} \|, \forall \tilde{x}_{\mu_g(e)} \in \mathcal{X}, \forall \tilde{r} \in \mathcal{R}(A)$.

3. $\| \tilde{x}_{\mu_1}(e_1) + \tilde{y}_{\mu_2}(e_2) \| \leq \| \tilde{x}_{\mu_1}(e_1) \| + \| \tilde{y}_{\mu_2}(e_2) \|, \forall \tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \in \mathcal{X}$.

The $\mathcal{F}S$ – vector space with \mathcal{FSN} $\| \cdot \|$ is called fuzzy soft normed vector space (\mathcal{FSN} – space), and symbolized by $(\mathcal{X}, \| \cdot \|)$.

Definition 2.8 [6]: If \tilde{x} be \mathcal{FSV} – space. Then, the mapping $(\cdot, \cdot) : \mathcal{X} \times \mathcal{X} \rightarrow (\mathcal{R}(A) \text{ or } \mathcal{R}(A))$ is called fuzzy soft inner product on \mathcal{X} (\mathcal{FSS}) if (\cdot, \cdot) satisfies:

1. $\langle \tilde{x}_{\mu_1}(e_1), \tilde{x}_{\mu_1}(e_1) \rangle \geq 0, \forall \tilde{x}_{\mu_1}(e_1) \in \mathcal{X}$ and

2. $\langle \tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \rangle = \bar{\alpha} \langle \tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \rangle$, for all $\tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \in \mathcal{X}$, where bar denotes complex conjugate of \mathcal{FS} – complex number.

3. $\langle \tilde{x}_{\mu_1}(e_1), \tilde{x}_{\mu_2}(e_2) \rangle = \bar{\alpha} \langle \tilde{x}_{\mu_1}(e_1), \tilde{x}_{\mu_2}(e_2) \rangle$, for all $\tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \in \mathcal{X}$ and for all $\bar{\alpha} \in \mathcal{R}(A)$.

4. $\langle \tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \rangle = \langle \tilde{x}_{\mu_1}(e_1), \tilde{z}_{\mu_3}(e_3) \rangle + \langle \tilde{y}_{\mu_2}(e_2), \tilde{z}_{\mu_3}(e_3) \rangle$.

For all $\tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2), \tilde{z}_{\mu_3}(e_3) \in \mathcal{X}$.

The $\mathcal{F}S$ – vector space \mathcal{X} with \mathcal{FSS} (\cdot, \cdot) is called fuzzy soft inner product space (\mathcal{FSS} – space), and symbolized by $(\mathcal{X}, (\cdot, \cdot))$.

Definition 2.9 [6]: If $(\mathcal{X}, (\cdot, \cdot))$ be \mathcal{FSS} – space and $\tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \in \mathcal{X}$ then $\tilde{x}_{\mu_1}(e_1)$ is called fuzzy soft orthogonal to $\tilde{y}_{\mu_2}(e_2)$ written $\tilde{x}_{\mu_1}(e_1) \perp \tilde{y}_{\mu_2}(e_2)$, if $\langle \tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \rangle = 0$.

Theorem 2.10 [6]: Let $(\mathcal{X}, (\cdot, \cdot))$ be \mathcal{FSS} – space and let $\tilde{x}_{\mu_1}(e_1), \tilde{y}_{\mu_2}(e_2) \in \mathcal{X}$ if $\tilde{x}_{\mu_1}(e_1) \perp \tilde{y}_{\mu_2}(e_2)$, then $\| \tilde{x}_{\mu_1}(e_1) + \tilde{y}_{\mu_2}(e_2) \|^2 = \| \tilde{x}_{\mu_1}(e_1) \|^2 + \| \tilde{y}_{\mu_2}(e_2) \|^2$.
Definition 2.11 [7]: A sequence of FS — vectors $\{\tilde{x}^n_{\mu_{\gamma}(e)}\}$ in FSN— space $(\tilde{X}, \|\|)$ is called fuzzy soft convergent and converges to $\tilde{x}^0_{\mu_{\gamma}(e_0)}$ if $\lim_{n \to \infty} \|\tilde{x}^n_{\mu_{\gamma}(e_n)} - \tilde{x}^0_{\mu_{\gamma}(e_0)}\| = 0$ i.e. $\forall \varepsilon > 0$, $\exists n_o \in N$ such that $\|\tilde{x}^n_{\mu_{\gamma}(e_n)} - \tilde{x}^0_{\mu_{\gamma}(e_0)}\| < \varepsilon$, $\forall n \geq n_o$. It if denoted by $\lim_{n \to \infty} \tilde{x}^n_{\mu_{\gamma}(e_n)} = \tilde{x}^0_{\mu_{\gamma}(e_0)}$ or $\tilde{x}^n_{\mu_{\gamma}(e_n)} \to \tilde{x}^0_{\mu_{\gamma}(e_0)}$ as $n \to \infty$

Definition 2.12 [7]: A sequence of FS — vectors $\{\tilde{x}^n_{\mu_{\gamma}(e_n)}\}$ in FSN— space $(\tilde{X}, \|\|)$ is called fuzzy soft Cauchy sequence, if $\forall \varepsilon > 0$, $\exists n_o \in N$ such that

$$\|\tilde{x}^n_{\mu_{\gamma}(e_n)} - \tilde{x}^m_{\mu_{\gamma}(e_m)}\| < \varepsilon, \forall n, m \geq n_o, n > m.$$ That is to say that $\|\tilde{x}^n_{\mu_{\gamma}(e_n)} - \tilde{x}^m_{\mu_{\gamma}(e_m)}\| \to 0$ as $n, m \to \infty$

Definition 2.13 [7]: The FSN — space $(\tilde{X}, \|\|)$ is called fuzzy soft complete (FS — complete) if every FS — Cauchy sequence is FS — convergent sequence in it.

Definition 2.14 [6]: The $FS\tilde{X}$ — space $(\tilde{X}, (,))$, if it is FS — complete in the induced FSN

$$\|\tilde{x}_{\mu_{\gamma}(e)}\| = \langle \tilde{x}_{\mu_{\gamma}(e)}, \tilde{x}_{\mu_{\gamma}(e)} \rangle$$ is called fuzzy soft Hilbert space ($FS\tilde{H}$ — space), and symbolized by $(\tilde{H}, (,))$.

Definition 2.15 [5]: If \tilde{H} be $FS\tilde{H}$ — space and $\tilde{T}: \tilde{H} \to \tilde{H}$ be a fuzzy soft operator (FS — operator). Then \tilde{T} is called fuzzy soft linear operators (FSL — operator) if:

1. $\tilde{T}(\tilde{x}_{\mu_{1}\gamma(e_1)} + \tilde{y}_{\mu_{2}\gamma(e_2)}) = \tilde{T}(\tilde{x}_{\mu_{1}\gamma(e_1)}) + \tilde{T}(\tilde{y}_{\mu_{2}\gamma(e_2)})$, $\forall \tilde{x}_{\mu_{1}\gamma(e_1)}, \tilde{y}_{\mu_{2}\gamma(e_2)} \in \tilde{H}$
2. $\tilde{T}(\tilde{\beta} \cdot \tilde{x}_{\mu_{1}\gamma(e_1)}) = \tilde{\beta} \cdot \tilde{T}(\tilde{x}_{\mu_{1}\gamma(e_1)})$, $\forall \tilde{x}_{\mu_{1}\gamma(e_1)} \in \tilde{H}$ and $\tilde{\beta} \in C(A)$

i.e. $\tilde{T}(\tilde{\alpha} \tilde{x}_{\mu_{1}\gamma(e_1)} + \tilde{\beta} \tilde{y}_{\mu_{2}\gamma(e_2)}) = \tilde{\alpha} \tilde{T}(\tilde{x}_{\mu_{1}\gamma(e_1)}) + \tilde{\beta} \tilde{T}(\tilde{y}_{\mu_{2}\gamma(e_2)})$, for all $\tilde{x}_{\mu_{1}\gamma(e_1)}, \tilde{y}_{\mu_{2}\gamma(e_2)} \in \tilde{H}$ and $\tilde{\alpha}, \tilde{\beta}$ any fuzzy soft scalars.

Definition 2.16 [5]: If \tilde{H} be $FS\tilde{H}$ — space and $\tilde{T}: \tilde{H} \to \tilde{H}$ be FS — operator is called fuzzy soft bounded operator (FSB — operator), if $\exists m \in R(A)$ such that $\|\tilde{T}(\tilde{x}_{\mu_{1}\gamma(e_1)})\| \leq m \|\tilde{x}_{\mu_{1}\gamma(e_1)}\|$, for all $\tilde{x}_{\mu_{1}\gamma(e_1)} \in \tilde{H}$

Now, the collection of all FS — bounded linear operators denoted by $\tilde{B}(\tilde{H})$.

Example 2.17 [5]: The FS — operator $\tilde{I}: \tilde{H} \to \tilde{H}$ defined by $\tilde{I}(\tilde{x}_{\mu_{1}\gamma(e_1)}) = \tilde{x}_{\mu_{1}\gamma(e_1)}$, $\forall \tilde{x}_{\mu_{1}\gamma(e_1)} \in \tilde{H}$

And it is called fuzzy soft identity operator.

Definition 2.18 [5]: If \tilde{H} be $FS\tilde{H}$ — space and $\tilde{T}: \tilde{H} \to \tilde{H}$ be FSB — operator, then The fuzzy soft adjoint operator \tilde{T}^* is defined by

$$\langle \tilde{T}^*(\tilde{x}_{\mu_{1}\gamma(e_1)}), \tilde{y}_{\mu_{2}\gamma(e_2)} \rangle = \langle \tilde{x}_{\mu_{1}\gamma(e_1)}, \tilde{T}(\tilde{y}_{\mu_{2}\gamma(e_2)}) \rangle, \forall \tilde{x}_{\mu_{1}\gamma(e_1)}, \tilde{y}_{\mu_{2}\gamma(e_2)} \in \tilde{H}$
Theorem 2.19 [5]: Let $\tilde{T}, \tilde{R} \in \tilde{B}(\tilde{H})$, where \tilde{H} is \mathcal{FSH} space and $\tilde{\beta} \in C(A)$, then $\tilde{T}^* = \tilde{T}$, $(\tilde{\beta} \tilde{T})^* = \tilde{\beta} \tilde{T}^*$, $(\tilde{T} + \tilde{R})^* = \tilde{T}^* + \tilde{R}^*$ and $(\tilde{T} \tilde{R})^* = \tilde{R}^* \tilde{T}^*$.

Theorem 2.20 [5]: If $\tilde{T} \in \tilde{B}(\tilde{H})$, where \tilde{H} is \mathcal{FSH} space, then $\|\tilde{T}^*\| = \|\tilde{T}\|$ and $\|\tilde{T} \tilde{T}^*\| = \|\tilde{T}\|^2$.

Definition 2.21 [4]: The \mathcal{FS} operator \tilde{T} of \mathcal{FSH} space \tilde{H} is called **fuzzy soft self-adjoint** (\mathcal{FS} self-adjoint operator) if $\tilde{T} = \tilde{T}^*$.

3. Main results

This section introduce the previous results as in [3-6] to case of the fuzzy soft projection operator and fuzzy soft perpendicular projection operator in fuzzy soft Hilbert space. In addition, this work is devoted to an extension for the original new results.

Definition 3.1: Let \tilde{X} be \mathcal{FSH} space and let \tilde{P} be \mathcal{FSL} operator such that $\tilde{P} : \tilde{H} \to \tilde{H}$ is called **fuzzy soft projection operator** on \tilde{H} (\mathcal{FS} projection) if $\tilde{P}^2 = \tilde{P}$ i.e. \tilde{P} is an idempotent.

Example 3.1: Fuzzy soft identity operator and zero operators are \mathcal{FS} projection

Theorem 3.1: Let \tilde{M}_1 and \tilde{M}_2 be two subspace of \mathcal{FSH} space \tilde{H} such that $\tilde{H} = \tilde{M}_1 \oplus \tilde{M}_2$. Define $\tilde{P} : \tilde{H} \to \tilde{H}$ by $\tilde{P}(\tilde{x}_{\mu_1(e_1)}) = \tilde{x}_{1, \mu_1(e_1)}$, then \tilde{P} is \mathcal{FS} projection.

Proof: (1) Let $\tilde{x}_{\mu_1(e_1)}, \tilde{y}_{\sigma_1(e_1)} \in \tilde{H}$ and $\tilde{a}, \tilde{\beta} \in C(A)$

$$
\begin{align*}
\tilde{x}_{\mu_1(e_1)} &= \tilde{x}_{1, \mu_1(e_1)} + \tilde{x}_{2, \mu_2(e_2)}, \\
\tilde{y}_{\sigma_1(e_1)} &= \tilde{y}_{1, \sigma_1(e_1)} + \tilde{y}_{2, \sigma_2(e_2)} \\
\tilde{x}_{1, \mu_1(e_1)}, \tilde{y}_{1, \sigma_1(e_1)} &\in \tilde{M}_1 \text{ and } \tilde{x}_{2, \mu_2(e_2)}, \tilde{y}_{2, \sigma_2(e_2)} \in \tilde{M}_2 \\
\tilde{a}\tilde{x}_{\mu_1(e_1)} + \tilde{\beta}\tilde{y}_{\sigma_1(e_1)} &= \tilde{a}\left(\tilde{x}_{1, \mu_1(e_1)} + \tilde{x}_{2, \mu_2(e_2)}\right) + \tilde{\beta}\left(\tilde{y}_{1, \sigma_1(e_1)} + \tilde{y}_{2, \sigma_2(e_2)}\right) \\
&= \left(\tilde{a}\tilde{x}_{1, \mu_1(e_1)} + \tilde{\beta}\tilde{y}_{1, \sigma_1(e_1)}\right) + \left(\tilde{a}\tilde{x}_{2, \mu_2(e_2)} + \tilde{\beta}\tilde{y}_{2, \sigma_2(e_2)}\right) \\
\tilde{P}\left(\tilde{a}\tilde{x}_{\mu_1(e_1)} + \tilde{\beta}\tilde{y}_{\sigma_1(e_1)}\right) &= \tilde{a}\tilde{x}_{1, \mu_1(e_1)} + \tilde{\beta}\tilde{y}_{1, \sigma_1(e_1)} = \tilde{a}\tilde{P}\left(\tilde{x}_{\mu_1(e_1)}\right) + \tilde{\beta}\tilde{P}\left(\tilde{y}_{\sigma_1(e_1)}\right) \\
\Rightarrow \tilde{P} \text{ is } \mathcal{FSL} \text{ operator}
\end{align*}
$$

(2) Let $\tilde{x}_{\mu_1(e_1)} \in \tilde{H} \Rightarrow \tilde{x}_{\mu_1(e_1)} = \tilde{x}_{1, \mu_1(e_1)} + \tilde{x}_{2, \mu_2(e_2)}$, where $\tilde{x}_{1, \mu_1(e_1)} \in \tilde{M}_1$ and $\tilde{x}_{2, \mu_2(e_2)} \in \tilde{M}_2$

$$
\begin{align*}
\tilde{P}^2\left(\tilde{x}_{\mu_1(e_1)}\right) &= \tilde{P}\left(\tilde{P}\left(\tilde{x}_{\mu_1(e_1)}\right)\right) \\
&= \tilde{P}\left(\tilde{x}_{1, \mu_1(e_1)} + \tilde{0}\right) = \tilde{x}_{1, \mu_1(e_1)}
\end{align*}
$$

$\Rightarrow \tilde{P}^2 = \tilde{P}$. Therefore \tilde{P} is \mathcal{FS} projection.
Theorem 3.2: FSL – operator \(\tilde{P} \) on \(\tilde{H} \), then FS – projection on \(\tilde{H} = \tilde{M}_1 \oplus \tilde{M}_2 \) subspace if and only if it is idempotent.

Proof: Let \(\tilde{H} = \tilde{M}_1 \oplus \tilde{M}_2 \) and \(\tilde{P} \) be FS – projection. To prove \(\tilde{P}^2 = \tilde{P} \)

Let \(\tilde{x}_{\mu(g)}(e) \in \tilde{H} \Rightarrow \tilde{x}_{\mu(g)} = \tilde{x}_{1\mu_{1\tilde{g}(e_1)}} + \tilde{x}_{2\mu_{2\tilde{g}(e_2)}} \), where \(\tilde{x}_{1\mu_{1\tilde{g}(e_1)}} \in \tilde{M}_1 \) and \(\tilde{x}_{2\mu_{2\tilde{g}(e_2)}} \in \tilde{M}_2 \Rightarrow \)

\[
\tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{x}_{1\mu_{1\tilde{g}(e_1)}},
\]

\[
\tilde{P}^2(\tilde{x}_{\mu(g)}) = \tilde{P}(\tilde{P}(\tilde{x}_{\mu(g)})) = \tilde{P}(\tilde{x}_{1\mu_{1\tilde{g}(e_1)}) = \tilde{x}_{1\mu_{1\tilde{g}(e_1)} + \tilde{0} = \tilde{x}_{1\mu_{1\tilde{g}(e_1)}},
\]

\[
\Rightarrow \text{ Therefor } \tilde{P} \text{ is idempotent}
\]

Conversely, let \(\tilde{P}^2 = \tilde{P} \) to prove \(\tilde{P} \) is FS – projection

Let \(\tilde{M}_1 = \{ \tilde{x}_{\mu(g)}(e) \in \tilde{H} : \tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{x}_{\mu(g)} \} \), and

\(\tilde{M}_2 = \{ \tilde{x}_{\mu(g)}(e) \in \tilde{H} : \tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{0} \}
\)

\(\Rightarrow \tilde{M}_1, \tilde{M}_2 \) are subspace of \(\tilde{H} \). To prove \(\tilde{H} = \tilde{M}_1 \oplus \tilde{M}_2 \)

Let \(\tilde{x}_{\mu(g)}(e) \in \tilde{H} \Rightarrow \tilde{x}_{\mu(g)} = \tilde{P}(\tilde{x}_{\mu(g)} + \tilde{0} \tilde{P}(\tilde{x}_{\mu(g)})
\]

Put \(\tilde{x}_{1\mu_{1\tilde{g}(e_1)}} = \tilde{P}(\tilde{x}_{\mu(g)}) \) and \(\tilde{x}_{2\mu_{2\tilde{g}(e_2)}} = \tilde{x}_{\mu_{2\tilde{g}(e_2)}} - \tilde{P}(\tilde{x}_{\mu_{2\tilde{g}(e_2)})}
\]

\[
\tilde{P}(\tilde{x}_{1\mu_{1\tilde{g}(e_1)}) = \tilde{P}(\tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{P}^2(\tilde{x}_{\mu(g)}) = \tilde{x}_{1\mu_{1\tilde{g}(e_1)}), \text{ where } \tilde{x}_{1\mu_{1\tilde{g}(e_1)}} \in \tilde{M}_1
\]

\[
\tilde{P}(\tilde{x}_{2\mu_{2\tilde{g}(e_2)}) = \tilde{P}(\tilde{x}_{\mu(g)} - \tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{P}(\tilde{x}_{\mu(g)}) - \tilde{P}(\tilde{x}_{\mu(g)})
\]

\[
= \tilde{P}(\tilde{x}_{\mu(g)}) - \tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{0}, \text{ where } \tilde{x}_{2\mu_{2\tilde{g}(e_2)} \in \tilde{M}_2
\]

\(\tilde{x}_{\mu(g)}(e) = \tilde{x}_{1\mu_{1\tilde{g}(e_1)} + \tilde{x}_{2\mu_{2\tilde{g}(e_2)}} \Rightarrow \tilde{H} = \tilde{M}_1 + \tilde{M}_2
\]

Let \(\tilde{x}_{\mu(g)}(e) \in \tilde{M}_1 \cap \tilde{M}_2 \Rightarrow \tilde{x}_{\mu(g)}(e) \in \tilde{M}_1 \) and \(\tilde{x}_{\mu(g)}(e) \in \tilde{M}_2
\]

\(\tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{0} \) and \(\tilde{P}(\tilde{x}_{\mu(g)}) = \tilde{x}_{\mu(g)} \Rightarrow \tilde{x}_{\mu(g)} = \tilde{0}
\]

\(\Rightarrow \tilde{M}_1 \cap \tilde{M}_2 = \{ \tilde{0} \} \Rightarrow \tilde{H} = \tilde{M}_1 \oplus \tilde{M}_2
\]

Let \(\tilde{x}_{\mu(g)}(e) \in \tilde{H} \Rightarrow \tilde{x}_{\mu(g)} = \tilde{x}_{1\mu_{1\tilde{g}(e_1)} + \tilde{x}_{2\mu_{2\tilde{g}(e_2)}}, \text{ where } \tilde{x}_{1\mu_{1\tilde{g}(e_1)} \in \tilde{M}_1 \text{ and } \tilde{x}_{2\mu_{2\tilde{g}(e_2)} \in \tilde{M}_2
\]
\(\tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right) = \tilde{P} \left(\tilde{x}_{1\mu_1(\epsilon_1)} + \tilde{x}_{2\mu_2(\epsilon_2)} \right) = \tilde{P} \left(\tilde{x}_{1\mu_1(\epsilon_1)} \right) + \tilde{P} \left(\tilde{x}_{2\mu_2(\epsilon_2)} \right) = \tilde{x}_{1\mu_1(\epsilon_1)} \)

Remark 3.1: From above theorem, we have the \(FS - projection \) \(\tilde{P} \) on \(\tilde{H} \), determines a pair of subspaces of \(\tilde{M}_1, \tilde{M}_2 \) such that \(\tilde{H} = \tilde{M}_1 \oplus \tilde{M}_2 \), where \(\tilde{M}_1 \) is the range of \(\tilde{P} \) i.e. \(\tilde{M}_1 = \{ \tilde{P} (\tilde{x}_{\mu(\epsilon)}) = \tilde{x}_{\mu(\epsilon)} : \tilde{x}_{\mu(\epsilon)} \in \tilde{H} \} \) and \(\tilde{M}_2 \) is the kernel of \(\tilde{P} \) i.e. \(\tilde{M}_2 = \{ \tilde{P} (\tilde{x}_{\mu(\epsilon)}) = 0 : \tilde{x}_{\mu(\epsilon)} \in \tilde{H} \} \).

Theorem 3.3: Let \(\tilde{P} \) be \(FS - projection \) on \(FSH - space \) \(\tilde{H} \). Then the range of \(\tilde{P} \) is the set of all \(FS - vectors \) which are fixed under \(\tilde{P} \) i.e.

\[
\text{Ran}(\tilde{P}) = \{ \tilde{x}_{\mu(\epsilon)} \in \tilde{H} : \tilde{P} (\tilde{x}_{\mu(\epsilon)}) = \tilde{x}_{\mu(\epsilon)} \}
\]

Proof: Suppose that \(\tilde{A} = \{ \tilde{x}_{\mu(\epsilon)} \in \tilde{H} : \tilde{P} (\tilde{x}_{\mu(\epsilon)}) = \tilde{x}_{\mu(\epsilon)} \} \).

Let \(\tilde{x}_{\mu(\epsilon)} \in \text{Ran}(\tilde{P}) \Rightarrow \) there exists \(\tilde{y}_{\sigma(\epsilon)} \in \tilde{H} \) such that \(\tilde{P} (\tilde{y}_{\sigma(\epsilon)}) = \tilde{x}_{\mu(\epsilon)} \)

\[
\frac{\tilde{P} \left(\tilde{y}_{\sigma(\epsilon)} \right)}{\tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right)} = \tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right) \Rightarrow \tilde{P}^2 \left(\tilde{y}_{\sigma(\epsilon)} \right) = \tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right)
\]

\[
\Rightarrow \tilde{P} \left(\tilde{y}_{\sigma(\epsilon)} \right) = \tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right) , \text{ because } \tilde{P}^2 = \tilde{P}
\]

But \(\tilde{P} \left(\tilde{y}_{\sigma(\epsilon)} \right) = \tilde{x}_{\mu(\epsilon)} \Rightarrow \tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right) = \tilde{x}_{\mu(\epsilon)}
\]

\[
\Rightarrow \tilde{x}_{\mu(\epsilon)} \in \tilde{A} \Rightarrow \text{Ran}(\tilde{P}) \subseteq \tilde{A} \quad \ldots \ldots \ (1)
\]

But \(\tilde{x}_{\mu(\epsilon)} = \tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right) \Rightarrow \tilde{x}_{\mu(\epsilon)} \in \text{Ran}(\tilde{P}) \Rightarrow \tilde{A} \subseteq \text{Ran}(\tilde{P}) \quad \ldots \ldots \ (2)
\]

From (1) and (2), we have \(\tilde{P} = \tilde{A} \).

Theorem 3.4: Let \(\tilde{H} \) be \(FSH - space \) and let \(\tilde{P} : \tilde{H} \rightarrow \tilde{H} \) be \(FSL - operator \). Then \(\tilde{P} \) is \(FS - projection \) on \(\tilde{H} \) **if and only if** \(\tilde{I} - \tilde{P} \) is \(FS - projection \) on \(\tilde{H} \).

Proof: Suppose \(\tilde{P} \) is \(FS - projection \) on \(\tilde{H} \). To prove \(\tilde{I} - \tilde{P} \) is \(FS - projection \)

1) To prove \(\tilde{I} - \tilde{P} \) is \(FSL - operator \). Let \(\tilde{x}_{\mu(\epsilon)}, \tilde{y}_{\sigma(\epsilon)} \in \tilde{H} \) and \(\tilde{a}, \tilde{\beta} \in C(A) \)

\[
(\tilde{I} - \tilde{P}) \left(\tilde{a} \tilde{x}_{\mu(\epsilon)} + \tilde{\beta} \tilde{y}_{\sigma(\epsilon)} \right) = \tilde{a} \left(\tilde{I} \left(\tilde{x}_{\mu(\epsilon)} \right) - \tilde{P} \left(\tilde{x}_{\mu(\epsilon)} \right) \right) + \tilde{\beta} \left(\tilde{I} \left(\tilde{y}_{\sigma(\epsilon)} \right) - \tilde{P} \left(\tilde{y}_{\sigma(\epsilon)} \right) \right)
\]

\[
= \tilde{a} \left(\tilde{I} - \tilde{P} \right) \left(\tilde{x}_{\mu(\epsilon)} \right) + \tilde{\beta} \left(\tilde{I} - \tilde{P} \right) \left(\tilde{y}_{\sigma(\epsilon)} \right)
\]

2) To prove \((\tilde{I} - \tilde{P})^2 = (\tilde{I} - \tilde{P}) \)

\[
(\tilde{I} - \tilde{P})^2 = \tilde{I} - \tilde{P} - \tilde{P} + \tilde{P}^2 = \tilde{I} - \tilde{P}^2 - \tilde{P}^2 + \tilde{P}^2 , \text{ because } \tilde{P}^2 = \tilde{P} \Rightarrow \tilde{I} - \tilde{P}^2 = \tilde{I} - \tilde{P} \Rightarrow \tilde{I} - \tilde{P} \text{ is } FS - projection \text{ on } \tilde{H}
\]

Conversely, let \(\tilde{I} - \tilde{P} \) is \(FS - projection \) on \(\tilde{H} \) \(\Rightarrow \) \((\tilde{I} - \tilde{P})^2 = (\tilde{I} - \tilde{P}) \)
\[I - \bar{P} - \bar{P}^2 = I - \bar{P} \Rightarrow \bar{P}^2 = \bar{P} \Rightarrow \bar{P} \text{ is } FS - \text{projection on } \bar{H}. \]

Definition: Let \(\bar{H} \) be \(FSH - \text{space} \) and let \(\bar{P} \in \bar{B}(\bar{H}) \), we say that \(\bar{P} \) is a **fuzzy soft** on \(\bar{H} \) (\(FS - \text{perpendicular projection} \)) if \(\bar{P}^2 = \bar{P} \) and \(\bar{P}^* = \bar{P} \).

Example 3.2: fuzzy soft identity operator and zero operators are \(FS - \text{perpendicular projection} \).

Theorem 3.5: Let \(\bar{H} \) be \(FSH - \text{space} \), and let \(\bar{P} \) is \(FS - \text{projection} \) on \(\bar{H} \). Then \(\bar{P} \) is \(FS - \text{perpendicular projection} \) on \(\bar{H} \) if and only if the range and kernel of \(\bar{P} \) are orthogonal.

Proof: Let \(\bar{M} \) be the range of \(\bar{P} \) and \(\bar{N} \) is the kernel of \(\bar{P} \) i.e.

\[
\bar{M} = \{ \bar{P}(\bar{x}_{\mu(e)}^g) = \bar{x}_{\mu(e)}^g : \bar{x}_{\mu(e)}^g \in \bar{H} \} \quad \text{and} \quad \bar{N} = \{ \bar{P}(\bar{x}_{\mu(e)}^g) = 0 : \bar{x}_{\mu(e)}^g \in \bar{H} \}
\]

\[\Rightarrow \bar{H} = \bar{M} \oplus \bar{N} \]

Suppose that \(\bar{P} \) is \(FS - \text{perpendicular projection} \) on \(\bar{H} \). To prove \(\bar{M} \perp \bar{N} \)

Let \(\bar{x}_{\mu(e)}^g \in \bar{M}, \bar{y}_{\sigma(e)} \in \bar{N} \Rightarrow \bar{P}(\bar{x}_{\mu(e)}^g) = \bar{x}_{\mu(e)}^g, \bar{P}(\bar{y}_{\sigma(e)}) = 0 \)

\[\langle \bar{P}(\bar{x}_{\mu(e)}^g), \bar{y}_{\sigma(e)} \rangle = \langle \bar{P}(\bar{x}_{\mu(e)}^g), \bar{P}(\bar{y}_{\sigma(e)}) \rangle = \langle \bar{x}_{\mu(e)}^g, \bar{y}_{\sigma(e)} \rangle = 0 \Rightarrow \bar{x}_{\mu(e)}^g \perp \bar{y}_{\sigma(e)} \]

Conversely, suppose that \(\bar{M} \perp \bar{N} \). To prove \(\bar{P} \) is \(FS - \text{perpendicular projection} \)

Let \(\bar{z}_{\delta(e)} \in \bar{H} \), then \(\bar{z}_{\delta(e)} \) can be uniquely written as \(\bar{z}_{\delta(e)} = \bar{x}_{\mu(e)}^g + \bar{y}_{\sigma(e)} \) where \(\bar{x}_{\mu(e)}^g \in \bar{M}, \bar{y}_{\sigma(e)} \in \bar{N} \Rightarrow \bar{P}(\bar{z}_{\delta(e)}) = \bar{x}_{\mu(e)}^g \)

\[\langle \bar{P}(\bar{z}_{\delta(e)}), \bar{z}_{\delta(e)} \rangle = \langle \bar{P}(\bar{x}_{\mu(e)}^g + \bar{y}_{\sigma(e)}), \bar{z}_{\delta(e)} \rangle = \langle \bar{x}_{\mu(e)}^g, \bar{z}_{\delta(e)} \rangle + \langle \bar{y}_{\sigma(e)}^g, \bar{z}_{\delta(e)} \rangle \]

Since \(\langle \bar{x}_{\mu(e)}^g, \bar{y}_{\sigma(e)} \rangle = 0 \Rightarrow \langle \bar{x}_{\mu(e)}^g, \bar{x}_{\mu(e)}^g \rangle \) \quad (3)

\[\langle \bar{P}^*(\bar{z}_{\delta(e)}), \bar{z}_{\delta(e)} \rangle = \langle \bar{z}_{\delta(e)}^g, \bar{P}(\bar{z}_{\delta(e)}^g) \rangle = \langle \bar{z}_{\delta(e)}^g, \bar{x}_{\mu(e)}^g \rangle = \langle \bar{x}_{\mu(e)}^g, \bar{y}_{\sigma(e)}^g \rangle + \langle \bar{y}_{\sigma(e)}^g, \bar{x}_{\mu(e)}^g \rangle \]

Since \(\langle \bar{x}_{\mu(e)}^g, \bar{y}_{\sigma(e)} \rangle = 0 \Rightarrow \langle \bar{x}_{\mu(e)}^g, \bar{x}_{\mu(e)}^g \rangle \) \quad (4)

From (3) and (4), we have \(\langle \bar{P}(\bar{z}_{\delta(e)}), \bar{z}_{\delta(e)} \rangle = \langle \bar{P}^*(\bar{z}_{\delta(e)}), \bar{z}_{\delta(e)} \rangle \)

\[\Rightarrow (\bar{P}^* - \bar{P})(\bar{z}_{\delta(e)}), \bar{z}_{\delta(e)} \rangle = 0, \text{ for all } \bar{z}_{\delta(e)} \in \bar{H} \]

\[\Rightarrow \bar{P} - \bar{P}^* = 0 \Rightarrow \bar{P}^* = \bar{P} \]
\(\Rightarrow \hat{P} \) is \(FS - \) perpendicular projection on \(\hat{H} \).

Remarks 3.2:

(1) From above theorem if \(\bar{M} \perp \bar{N} \), we have \(\bar{N} = \bar{M}^\perp \) and hence \(\hat{H} = \bar{M} \oplus \bar{M}^\perp \)

(2) If \(\hat{P} \) is \(FS - \) perpendicular projection on \(\hat{H} \), then \(\bar{M} \) is closed subspace of \(\hat{H} \). If \(\bar{N} \) is kernel of \(\hat{P} \), then is also closed subspace of \(\hat{H} \) , and \(\bar{N} = \bar{M}^\perp \). Further if \(\bar{M} \) is closed subspace of \(\hat{H} \), then \(\hat{H} = \bar{M} \oplus \bar{M}^\perp \). Therefore there exists \(FS - \) projection \(\hat{P} \) on \(\hat{H} \) with range \(\bar{M} \). This \(FS - \) projection \(\hat{P} \) is defined by \(\hat{P} (\hat{x}_{\mu(e)} + \hat{y}_{\sigma(e)}) = \hat{x}_{\mu(e)} \), where \(\hat{x}_{\mu(e)} \in \bar{M} \) and \(\hat{y}_{\sigma(e)} \in \bar{M}^\perp \).

Theorem 3.6: Let \(\hat{H} \) be \(FS\hat{H} - \) space and let \(\hat{P} \in B(\hat{H}) \). Then \(\hat{P} \) is \(FS - \) perpendicular projection on closed subspace \(\bar{M} \) of \(\hat{H} \) if and only if \(\bar{I} - \hat{P} \) is \(FS - \) perpendicular projection on \(\bar{M}^\perp \).

Proof: Suppose \(\hat{P} \) is \(FS - \) perpendicular projection on closed subspace \(\bar{M} \) of \(\hat{H} \) \(\Rightarrow \hat{P}^* = \hat{P} \), \(\hat{P}^2 = \hat{P} \)

1) \((\bar{I} - \hat{P})^* = \bar{I}^* - \hat{P}^* = \bar{I} - \hat{P} \)

2) \((\bar{I} - \hat{P})^2 = (\bar{I} - \hat{P})(\bar{I} - \hat{P}) = \bar{I} - \hat{P} - \hat{P} + \hat{P}^2 = \bar{I} - \hat{P} - \hat{P} + \hat{P} = \bar{I} - \hat{P} \)

\(\Rightarrow \bar{I} - \hat{P} \) is \(FS - \) perpendicular projection on \(\hat{H} \)

Now, we show that if \(\bar{M} \) is the range of \(\hat{P} \), then \(\bar{M}^\perp \) is the range of \(\bar{I} - \hat{P} \)

Let \(\bar{N} \) be the range \(\bar{I} - \hat{P} \), then \(\bar{x}_{\mu(e)} \in \bar{N} \Rightarrow (\bar{I} - \hat{P}) (\bar{x}_{\mu(e)}) = \bar{x}_{\mu(e)} \)

\(\Rightarrow \bar{x}_{\mu(e)} - \hat{P}(\bar{x}_{\mu(e)}) = \bar{x}_{\mu(e)} \Rightarrow \hat{P}(\bar{x}_{\mu(e)}) = 0 \)

\(\Rightarrow \bar{x}_{\mu(e)} \in \ker(\hat{P}) \Rightarrow \bar{x}_{\mu(e)} \in \bar{M}^\perp \Rightarrow \bar{N} \subseteq \bar{M}^\perp \)(5)

Again \(\bar{x}_{\mu(e)} \in \bar{M}^\perp \Rightarrow \hat{P}(\bar{x}_{\mu(e)}) = 0 \Rightarrow \bar{x}_{\mu(e)} - \hat{P}(\bar{x}_{\mu(e)}) = \bar{x}_{\mu(e)} \)

\(\Rightarrow (\bar{I} - \hat{P})(\bar{x}_{\mu(e)}) = \bar{x}_{\mu(e)} \)

\(\Rightarrow \bar{x}_{\mu(e)} \in \bar{N} \Rightarrow \bar{M}^\perp \subseteq \bar{N} \)(6)

From (5) and (6) we get \(\bar{N} = \bar{M}^\perp \)

Hence \(\bar{I} - \hat{P} \) is \(FS - \) perpendicular projection on \(\bar{M}^\perp \)

Conversely, suppose \(\bar{I} - \hat{P} \) is \(FS - \) perpendicular projection on \(\bar{M}^\perp \)

To prove \(\hat{P} \) is \(FS - \) perpendicular projection on \(\bar{M} \), we have

\(\bar{I} - (\bar{I} - \hat{P}) \) is \(FS - \) perpendicular projection on \((\bar{M}^\perp)^\perp \), by hypothesis
\[\overset{\circ}{P} \text{ is } FS - \text{perpendicular projection on } (\overset{\circ}{M})^\perp \Rightarrow \overset{\circ}{P} \text{ is } FS - \text{perpendicular projection on } \overset{\circ}{M} \]

Theorem 3.7: Let \(\overset{\circ}{H} \) be \(FSH - space \) and let \(\overset{\circ}{P} \) be \(FS - \text{perpendicular projection} \) on the closed subspace \(\overset{\circ}{M} \) of \(\overset{\circ}{H} \). Then \(\overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \) if and only if \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{x}_{\mu_{g}(e)} \).

Proof: Suppose \(\overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \). To prove \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{x}_{\mu_{g}(e)} \).

Let \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{y}_{\sigma_{T}(e)}, \) then we must prove \(\overset{\circ}{x}_{\mu_{g}(e)} = \overset{\circ}{y}_{\sigma_{T}(e)} \).

We have \(\overset{\circ}{P} (\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)})) = \overset{\circ}{P} (\overset{\circ}{y}_{\sigma_{T}(e)}) \Rightarrow \overset{\circ}{P}^2 (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{P} (\overset{\circ}{y}_{\sigma_{T}(e)}) \)

\[\Rightarrow \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{P} (\overset{\circ}{y}_{\sigma_{T}(e)}) \Rightarrow \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)} - \overset{\circ}{y}_{\sigma_{T}(e)}) = \overrightarrow{0} \]

\[\Rightarrow \overset{\circ}{x}_{\mu_{g}(e)} - \overset{\circ}{y}_{\sigma_{T}(e)} \in \ker(\overset{\circ}{P}) \Rightarrow \overset{\circ}{x}_{\mu_{g}(e)} - \overset{\circ}{y}_{\sigma_{T}(e)} \in \overset{\circ}{M}^\perp \]

\[\Rightarrow \overset{\circ}{z}_{\delta_{K}(e)} = \overset{\circ}{x}_{\mu_{g}(e)} - \overset{\circ}{y}_{\sigma_{T}(e)} \, \text{, where } \overset{\circ}{z}_{\delta_{K}(e)} \in \overset{\circ}{M}^\perp \Rightarrow \overset{\circ}{x}_{\mu_{g}(e)} = \overset{\circ}{y}_{\sigma_{T}(e)} + \overset{\circ}{z}_{\delta_{K}(e)} \]

Since \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{y}_{\sigma_{T}(e)} \Rightarrow \overset{\circ}{y}_{\sigma_{T}(e)} \) in the range of \(\overset{\circ}{P} \) i.e. \(\overset{\circ}{y}_{\sigma_{T}(e)} \in \overset{\circ}{M} \).

Thus we have \(\overset{\circ}{x}_{\mu_{g}(e)} = \overset{\circ}{y}_{\sigma_{T}(e)} + \overset{\circ}{z}_{\delta_{K}(e)} \), where \(\overset{\circ}{y}_{\sigma_{T}(e)} \in \overset{\circ}{M}, \overset{\circ}{z}_{\delta_{K}(e)} \in \overset{\circ}{M}^\perp \).

But \(\overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \), so we can write \(\overset{\circ}{x}_{\mu_{g}(e)} = \overset{\circ}{x}_{\mu_{g}(e)} + \overrightarrow{0} \), where \(\overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \), \(\overrightarrow{0} \in \overset{\circ}{M}^\perp \).

Since \(\overset{\circ}{H} = \overset{\circ}{M} \oplus \overset{\circ}{M}^\perp \). Therefor we must have \(\overset{\circ}{z}_{\delta_{K}(e)} = \overrightarrow{0}, \overset{\circ}{x}_{\mu_{g}(e)} = \overset{\circ}{y}_{\sigma_{T}(e)} \).

Conversely, suppose that \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{x}_{\mu_{g}(e)} \). To prove \(\overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \).

Since \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) \in \overset{\circ}{M} \Rightarrow \overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \).

Theorem 3.8: Let \(\overset{\circ}{H} \) be \(FS\overset{\circ}{H} - space \) and let \(\overset{\circ}{P} \) be \(FS - \text{perpendicular projection} \) on the closed subspace \(\overset{\circ}{M} \) of \(\overset{\circ}{H} \). Then \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{x}_{\mu_{g}(e)} \), where \(\overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \) if and only if \(\| \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) \| = \| \overset{\circ}{x}_{\mu_{g}(e)} \| \).

Proof: Suppose \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{x}_{\mu_{g}(e)} \), where \(\overset{\circ}{x}_{\mu_{g}(e)} \in \overset{\circ}{M} \).

\[\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{x}_{\mu_{g}(e)}, \text{ then } \| \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) \| = \| \overset{\circ}{x}_{\mu_{g}(e)} \| \]

Conversely, suppose \(\| \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) \| = \| \overset{\circ}{x}_{\mu_{g}(e)} \| \). To prove \(\overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{x}_{\mu_{g}(e)} \).

Since \(\overset{\circ}{x}_{\mu_{g}(e)} = \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) + \overset{\circ}{x}_{\mu_{g}(e)} - \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) = \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) + (I - \overset{\circ}{P}) (\overset{\circ}{x}_{\mu_{g}(e)}) \)

\[\Rightarrow \| \overset{\circ}{x}_{\mu_{g}(e)} \|^2 = \| \overset{\circ}{P} (\overset{\circ}{x}_{\mu_{g}(e)}) + (I - \overset{\circ}{P}) (\overset{\circ}{x}_{\mu_{g}(e)}) \|^2 \]
Now, \(\tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) \in \tilde{M} \). Also \(\tilde{\mathcal{P}} \) is \(\mathcal{F} \mathcal{S} \) – perpendicular projection on \(\tilde{M} \)

\(\Rightarrow \tilde{I} - \tilde{\mathcal{P}} \) is \(\mathcal{F} \mathcal{S} \) – perpendicular projection on \(\tilde{M}^\perp \) by theorem (3.6)

Therefore \((\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) \in \tilde{M}^\perp \Rightarrow \tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) \) and \((\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) \) are orthogonal

Now, by theorem (2.10) we have

\[
\left\| \tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) + (\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) \right\|^2 = \left\| \tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) \right\|^2 + \left\| (\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) \right\|^2 \quad \text{… (8)}
\]

From (7) and (8), we get \(\left\| \tilde{x}_{\mu(e)} \right\|^2 = \left\| \tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) \right\|^2 + \left\| (\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) \right\|^2 \)

Since \(\left\| \tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) \right\| \right\|^2 = \left\| \tilde{x}_{\mu(e)} \right\| \Rightarrow \left\| (\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) \right\|^2 = 0

\(\Rightarrow \left\| (\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) \right\| = \tilde{0} \Rightarrow (\tilde{I} - \tilde{\mathcal{P}}) \left(\tilde{x}_{\mu(e)} \right) = \tilde{0}

\(\Rightarrow \tilde{I} \left(\tilde{x}_{\mu(e)} \right) - \tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) = \tilde{0}

\(\Rightarrow \tilde{\mathcal{P}} \left(\tilde{x}_{\mu(e)} \right) = \tilde{x}_{\mu(e)} \)

4. Conclusion

The combination of fuzzy and soft sets gives us original results that are more extended, generalized and precised. Few researchers have studied some of the principles of these general extensions such as fuzzy soft normed spaces, fuzzy soft Hilbert space and fuzzy soft linear operators. In our study, a special type of fuzzy soft linear operators, which is the fuzzy soft projection operator and fuzzy soft perpendicular projection operator has been introduced and explored

References

