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1. Introduction  

The application of special function on Geometric Function Theory is a current and interesting topic of 
research. It is frequently applied in various branches Mathematics, Physics, Sciences, Engineering and 
Technology. The surprising use of generalized hypergeometric function by L. de Branges [6] in the 
solution of the famous Bieberbach conjecture. There is an extensive literature dealing with analytical and 
geometric properties of various types of special functions, especially for the generalized, Gaussian 
hypergeometric functions [5,10,11,16,18].  

The Touchard polynomials, studied by Jacques Touchard [19], also called the exponential generating 
polynomials (see [3], [15], [17]) or Bell polynomials (see [1]) comprise a polynomial sequence of 
binomial type that for ܺ is a random variable with a Poisson distribution with expected value ℓ, then its 
nth moment is ܧ(ܺ) = ,ߢ)࣮ ℓ), leading to the form:  
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ABSTRACT 
 

The purpose of the present paper is to establish connections between 
various subclasses of analytic univalent functions by applying certain 
convolution operator involving Touchard polynomials. To be more precise, 
we investigate such connections with the classes of analytic univalent 
functions with positive coefficients in the open unit disk ॼ.  
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,ߢ)࣮  ℓ) = ݁ 
݊ℓߢ

݊!

ஶ

ୀ

ݖ  (1.1) 

Touchard polynomials coefficients after the second force as following  

Lately, introduce Touchard polynomials coefficients after the second force as following  

 Φ
ℓ(ݖ) = ݖ + 

(݊ − 1)ℓߢିଵ

(݊ − 1)!

ஶ

ୀଶ

݁ିݖ,  ݖ ∈ ॰, (1.2) 

where ℓ ≥ 0; ߢ > 0 and we note that, by ratio test the radius of convergence of above series is infinity. Let 
ℋ be the class of functions analytic in the unit disk ॼ = ݖ} ∈ ℂ: |ݖ| < 1}. Let ࣛ be the class of functions 
݂ ∈ ℋ of the form  

(ݖ)݂  = ݖ + ܽ

ஶ

ୀଶ

ݖ ݖ			, ∈ ॼ. (1.3) 

We also let ࣭ be the subclass of ࣛ consisting of functions which are normalized by ݂(0) = 0 = ݂ᇱ(0) − 1 
and also univalent in ॼ.  

Denote by ࣰ the subclass of ࣛ consisting of functions of the form 

(ݖ)݂  = ݖ + ܽ

ஶ

ୀଶ

,ܽݖ ≥ 0. (1.4) 

For functions ݂ ∈ ࣛ given by (1.3) and ݃ ∈ ࣛ given by ݃(ݖ) = ݖ +∑ ܾஶ
ୀଶ ݖ , we define the Hadamard 

product (or convolution) of ݂ and ݃ by  

 (݂ ∗ (ݖ)(݃ = ݖ + ܽ

ஶ

ୀଶ

ܾݖ, ݖ     ∈ ॼ. (1.5) 

 

Now, we define the linear operator  

ℐ(݈,݉, ࣛ:(ݖ → ࣛ 

defined by the convolution or hadamard product  

 ℐ(݈,݉, ݂(ݖ = Φ
ℓ (ݖ) ∗ (ݖ)݂ = ݖ + 

(݊ − 1)݉ିଵ

(݊ − 1)!

ஶ

ୀଶ

݁ିܽݖ, (1.6) 

where Φ
ℓ   .is the series given by (1.2) (ݖ)

The class ℳ(ߙ) of starlike functions of order 1 < ߙ ≤ ସ
ଷ
  

ℳ(ߙ): = ቊ݂ ∈ ࣛ:	ℜ
(ݖ)ᇱ݂ݖ
(ݖ)݂

< ,ߙ ݖ ∈ ॼቋ 
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and the class ࣨ(ߙ) of convex functions of order 1 < ߙ ≤ ସ
ଷ
  

:(ߙ)ࣨ = ቊ݂ ∈ ࣛ:	ℜቆ1 +
(ݖ)ᇱᇱ݂ݖ
݂ᇱ(ݖ)

ቇ < ,ߙ ݖ ∈ ॼቋ = {݂ ∈ ᇱ݂ݖ	:ࣛ ∈ ℳ(ߙ)} 

were introduced by Uralegaddi et al. [20] (see[7,9]). Also let ℳ∗(ߙ) ≡ℳ(ߙ) ∩ ࣰ and ࣨ∗(ߙ) ≡ (ߙ)ࣨ ∩
ࣰ.  

In this paper we introduce two new subclasses of ࣭ namely ℳ(ߙ,ߣ) and ࣨ(ߙ,ߣ) to discuss some 
inclusion properties.  

For some 1) ߙ < ߙ ≤ ସ
ଷ
) and 0)ߣ ≤ ߣ < 1), we let ℳ(ߙ,ߣ) and ࣨ(ߙ,ߣ) be two new subclass of ࣭ 

consisting of functions of the form (1.3) satisfying the analytic criteria  

 ℳ(ߙ,ߣ): = ቊ݂ ∈ ࣭:ℜቆ
(ݖ)ᇱ݂ݖ

(1 − (ݖ)݂(ߣ + (ݖ)ᇱ݂ݖߣ
ቇ < ,ߙ ݖ   ∈ ॼቋ. (1.7) 

 

:(ߙ,ߣ)ࣨ  = ቊ݂ ∈ ࣭:ℜቆ
݂ᇱ(ݖ) + (ݖ)ᇱᇱ݂ݖ
݂ᇱ(ݖ) + (ݖ)ᇱᇱ݂ݖߣ

ቇ < ,ߙ ݖ   ∈ ॼቋ. (1.8) 

We also let ℳ∗(ߙ,ߣ) ≡ℳ(ߙ,ߣ) ∩ ࣰ and ࣨ∗(ߙ,ߣ) ≡ (ߙ,ߣ)ࣨ ∩ ࣰ.  

Note that ℳ(0,ߙ) = ℳ(ߙ),  ࣨ(ߙ,0) =  the subclasses of studied by   (ߙ)∗ࣨ and   (ߙ)∗ℳ ;(ߙ)ࣨ
Uralegaddi et al. [20].  

Motivated by results on connections between various subclasses of analytic univalent functions by using 
hypergeometric functions (see [5,10,11,16,18]), we obtain necessary and sufficient condition for function 
Φ(݈,݉,  by applying (ܤ,ܣ)and connections between ℛఛ (ߙ,ߣ)ࣨ , (ߙ,ߣ)to be in the classes ℳ (ݖ
convolution operator.  

 

2. Preliminary results  

To prove our main results we shall require the following definitions and lemmas.  

Definition 2.1. The ݈௧ moment of the Poisson distribution is defined as  

ᇱߤ = 
݊݉

݊!

ஶ

ୀ

݁ି . 

 
Lemma 2.1.  For some 1) ߙ < ߙ ≤ ସ

ଷ
) and 0)ߣ ≤ ߣ < 1), and if ݂ ∈ ࣰ then ݂ ∈ ℳ∗(ߙ,ߣ) if and only 

if  

 [
ஶ

ୀଶ

݊ − (1 + ߣ݊ − |ܽ|[ߙ(ߣ ≤ ߙ − 1. (2.9) 
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Lemma 2.2.  For some 1) ߙ < ߙ ≤ ସ
ଷ
) and 0)ߣ ≤ ߣ < 1), and if ݂ ∈ ࣰ then ݂ ∈  if and only (ߙ,ߣ)∗ࣨ

if  

 ݊
ஶ

ୀଶ

[݊ − (1 + ߣ݊ − ܽ[ߙ(ߣ ≤ ߙ − 1. (2.10) 

 
3. Main Results  

 

For convenience throughout in the sequel, we use the following notations:  

 
݉ିଵ

(݊ − 1)!

ஶ

ୀଶ

= ݁ − 1 (3.11) 

 
݉ିଵ

(݊ − 2)!

ஶ

ୀଶ

= ݉݁ (3.12) 

 
݉ିଵ

(݊ − 3)!

ஶ

ୀଶ

= ݉ଶ݁  (3.13) 

 
݉ିଵ

(݊ − 4)!

ஶ

ୀଶ

= ݉ଷ݁  (3.14) 

 

Theorem 3.1.  If ݉ > 0(݉ ≠ 0,−1,−2, … ), ݈ ∈ ܰ then Φ(݈,݉, (ݖ ∈ ℳ∗(ߙ,ߣ) if and only if  
 

 ൜
(1− ାଵᇱߤ(ߣߙ + (1 − ,ᇱߤ(ߙ 			݈ ≥ 1

(1− +݉(ߣߙ (1 − 1)(ߙ − ݁ି), 			݈ = 0
≤ ߙ − 1. (3.15) 

 
Proof. To prove that  Φ(݈,݉, (ݖ ∈ ℳ∗(ߙ,ߣ), then by virtue of Lemma 2.1, it suffices to show that  

 [
ஶ

ୀଶ

݊ − (1 + ߣ݊ − [ߙ(ߣ
(݊ − 1)݉ିଵ

(݊ − 1)!
݁ି ≤ ߙ − 1. (3.16) 

Now  

	݁ି[
ஶ

ୀଶ

݊(1− (ߙߣ − −1)ߙ [(ߣ
(݊ − 1)݉ିଵ

(݊ − 1)!
 

= ݁ି[
ஶ

ୀଶ

(݊ − 1)(1 − (ߙߣ + 1− [ߙ
(݊ − 1)݉ିଵ

(݊ − 1)!
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= ݁ି[
ஶ

ୀଵ

݊(1 − (ߙߣ + 1− [ߙ
݊݉

݊!
 

= ݁ି[
ஶ

ୀଵ

(1 − (ߙߣ
݊ାଵ݉

݊!
+ (1− (ߙ

݊݉

݊!
] 

= ൜
(1 − ାଵᇱߤ(ߣߙ + (1 − ,ᇱߤ(ߙ 			݈ ≥ 1

(1− +݉(ߣߙ (1− −1)(ߙ ݁ି), 			݈ = 0
 

 

But this expression is bounded above by ߙ − 1 if and only if (3.15) holds. Thus the proof is complete. � 

Theorem 3.2.  If ݉ > 0(݉ ≠ 0,−1,−2, … ), ݈ ∈ ܰ then Φ(݈,݉, (ݖ ∈   if and only if (ߙ,ߣ)∗ࣨ
 

 

൜
(1 − ାଶᇱߤ(ߣߙ + (2 − ߣߙ − ାଵᇱߤ(ߙ + (1− ,ᇱߤ(ߙ 			݈ ≥ 1

(1 − ଶ݉)(ߣߙ +݉) + (2 − ߣߙ − ݉(ߙ + (1− −1)(ߙ ݁ି), 			݈ = 0

≤ ߙ − 1. 
(3.17) 

 
Proof. To prove that Φ(݈,݉, (ݖ ∈   then by virtue of Lemma 2.2, it suffices to show that ,(ߙ,ߣ)∗ࣨ

 ݊
ஶ

ୀଶ

[݊ − (1 + ߣ݊ − [ߙ(ߣ
(݊ − 1)݉ିଵ

(݊ − 1)!
݁ି ≤ ߙ − 1. (3.18) 

Now  

	݁ି݊
ஶ

ୀଶ

[݊(1− (ߙߣ − −1)ߙ [(ߣ
(݊ − 1)݉ିଵ

(݊ − 1)!
 

= ݁ି[
ஶ

ୀଶ

(1− ݊)(ߙߣ − 1)ଶ + (2 − ߣߙ − ݊)(ߙ − 1) + 1− [ߙ
(݊ − 1)݉ିଵ

(݊ − 1)!
 

= ݁ି[
ஶ

ୀଶ

(1− (ߙߣ
(݊ − 1)ାଶ݉ିଵ

(݊ − 1)!
+ (2 − ߣߙ − (ߙ

(݊ − 1)ାଵ݉ିଵ

(݊ − 1)!
+ (1 − (ߙ

(݊ − 1)݉ିଵ

(݊ − 1)!
] 

= ൜
(1 − ାଶᇱߤ(ߣߙ + (2− ߣߙ − ାଵᇱߤ(ߙ + (1 − ,ᇱߤ(ߙ 			݈ ≥ 1

(1 − ଶ݉)(ߣߙ +݉) + (2 − ߣߙ − ݉(ߙ + (1− −1)(ߙ ݁ି), 			݈ = 0
 

 

But this expression is bounded above by ߙ − 1 if and only if (3.17) holds. Thus the proof is complete.  
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4.Inclusion Properties 

A function ݂ ∈ ࣛ is said to be in the class ℛఛ(ܤ,ܣ), (߬ ∈ ℂ\{0},   −1 ≤ ܤ < ܣ ≤ 1), if it satisfies the 
inequality  

ቤ
݂ᇱ(ݖ) − 1

ܣ) − ߬(ܤ − (ݖ)ᇱ݂]ܤ − 1]
ቤ < ݖ)			1 ∈ ॼ). 

The class ℛఛ(ܤ,ܣ) was introduced earlier by Dixit and Pal [8].  

It is of interest to note that if  

߬ = 1, ܣ   = ܤ   and ߚ = 0)  ߚ− < ߚ ≤ 1), 

we obtain the class of functions ݂ ∈ ࣛ satisfying the inequality  

ቤ
݂ᇱ(ݖ) − 1
݂ᇱ(ݖ) + 1

ቤ < ݖ) ߚ ∈ ॼ) 

which was studied by (among others) Padmanabhan [13] and Caplinger and Causey [4].  

Lemma 4.3. [8] If ݂ ∈ ℛఛ(ܤ,ܣ) is of form (1.3), then  
 |ܽ| ≤ ܣ) − (ܤ

|߬|
݊

, ݊ ∈ ℕ ∖ {1}. (4.1) 

The result is sharp.  
Making use of the Lemma 4.3 we will study the action of the Poissons distribution series on the class 
ℳ(ߙ,ߣ).  

Theorem 4.3.  Let > 0(݉ ≠ 0,−1,−2, … ), ݈ ∈ ܰ. If ݂ ∈ ℛఛ(ܤ,ܣ),then ℐ(݈,݉, ݂(ݖ ∈  if (ߙ,ߣ)∗ࣨ
and only if  

ܣ)  − |߬|(ܤ ൜
(1− ାଵᇱߤ(ߣߙ + (1 − ,ᇱߤ(ߙ 			݈ ≥ 1

(1− +݉(ߣߙ (1 − 1)(ߙ − ݁ି), 			݈ = 0
 

≤ ߙ − 1. 
(4.2) 

 
Proof. Let ݂ be of the form (1.3) belong to the class ℛఛ(ܤ,ܣ). By virtue of Lemma 2.2, it suffices to show 
that  

݊
ஶ

ୀଶ

[݊ − (1 + ߣ݊ − [ߙ(ߣ
(݊ − 1)݉ିଵ

(݊ − 1)!
|ܽ| ≤ ߙ − 1. 

Let Now  

	݁ି [
ஶ

ୀଶ

݊(1 − (ߙߣ − 1)ߙ − [(ߣ
(݊ − 1)݉ିଵ

(݊ − 1)!
|ܽ| 

≤ ܣ) − ]ି݁|߬|(ܤ
ஶ

ୀଶ

(݊ − 1)(1− (ߙߣ + 1− [ߙ
(݊ − 1)݉ିଵ

(݊ − 1)!
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= ܣ) − ]ି݁|߬|(ܤ
ஶ

ୀଵ

݊(1− (ߙߣ + 1− [ߙ
݊݉

݊!
 

= ܣ) − ]ି݁|߬|(ܤ
ஶ

ୀଵ

(1 − (ߙߣ
݊ାଵ݉

݊!
+ (1 − (ߙ

݊݉

݊!
] 

= ܣ) − |߬|(ܤ ൜
(1 − ାଵᇱߤ(ߣߙ + (1 − ,ᇱߤ(ߙ 			݈ ≥ 1

(1− +݉(ߣߙ (1− −1)(ߙ ݁ି), 			݈ = 0
 

≤ ߙ − 1. 

Theorem 4.4.  Let ݉ > 0(݉ ≠ 0,−1,−2, … ), ݈ ∈ ܰ then ℒ(݈,݉, (ݖ = ∫ ℐ(,,௧)
௧

௭
  if (ߙ,ߣ)∗ࣨ is in ݐ݀

and only if inequality (3.15) is satisfied.  
Proof. Since  

ℒ(݈,݉, (ݖ = ݖ + 
(݊ − 1)݉ିଵ

(݊ − 1)!

ஶ

ୀଶ

݁ି 	
ݖ

݊
. 

By virtue of Lemma 3.1, it suffices to show that  

݊
ஶ

ୀଶ

[݊ − (1 + ߣ݊ − [ߙ(ߣ
(݊ − 1)݉ିଵ

݊(݊ − 1)!
݁ି ≤ ߙ − 1. 

Now,  

݊
ஶ

ୀଶ

[݊ − (1 + ߣ݊ − [ߙ(ߣ
(݊ − 1)݉ିଵ

݊(݊ − 1)!
݁ି = [

ஶ

ୀଶ

݊ − (1 + ߣ݊ − [ߙ(ߣ
(݊ − 1)݉ିଵ

(݊ − 1)!
݁ି . 

Proceeding as in Theorem 3.1 we obtain the required result.  �

4. Open Problems  

t is interesting to find the result of Theorems 3.1-4.4, when ݈ is a real number.  
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