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1. Introduction 

N. Argac [6] studied the commutativity of prime near-ring N using the notion of two sided ߙ- 
derivation .  N. L. Oukhtite and A. Raji [7] continued in the same line , they generalized some 
known  results  involving  semigroup ideal and generalized two sided  ߙ-derivations . M. Ashraf  
et al. [8,9,10,11] studied the commutativity of near-ring N using the notions of n-derivations  , 
,ߪ) ߬ )-n-derivations and generalized n-derivations . Hence, it should be interesting to study the 
commutativity of a near-ring N admitting some conditions on other n-additive mappings . E. F. 
Adhab [5] studied the commutativity of prime near-ring N using the notions of two sided ߙ-n-
derivation and generalized two sided ߙ-n-derivation of near-ring N .  

For more information  see [12, 13, 14 ] 

Let  N be a near –ring  and ߙ is a mapping on N . This paper consists of two sections . In section 
one , we recall some known definitions and necessary lemmas that we will use it later in this 
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Let  N be a near –ring  and ߙ is a mapping on N .In this paper, we will 
introduce the notions of two sided reverse 3-ߙ-derivation and generalized 
two sided reverse 3-ߙ-derivation of N . Then we will study commutativity of 
N under some conditions determined on semigroup ideals of N . 

 
MSC: 16A70 , 16N60 , 16W25 .  

 

 

DOI:https://doi.org/10.29350/ 
jops.2020.25. 4.1150 



10                                                                                                                                     Ikram A. Saed    , Al-Qadisiyah Journal of Pure  Science  25 , 4 (2020) pp. Math. 9–16 
 

paper . In section two , we define the concepts of two sided reverse 3-ߙ-derivation and 
generalized two sided reverse 3-ߙ-derivation of N , also we determine some conditions of 
generalized two sided reverse 3-ߙ-derivation and  semigroup ideals which make prime near-ring 
commutative ring . 

2.Basic Concepts  

Definition 2.1:[1] A right near-ring (resp. a left near-ring ) is a nonempty set N equipped with 
two binary operations + and . such that  

 (i)(N, +)  is a group ( not necessarily abelian ) 

(ii)(N, .) is  a semigroup . 

(iii) For all x,y,z  ∈N , we have  

   (x+y)z = xz + yz ( resp. z(x+y) = zx + zy ) 

Example 2.2:[1]  Let G be a group ( not necessarily abelian ) then all mapping of G  into itself form 
a right near-ring M(G) with regard to point wise addition and multiplication by composite 

Definition 2.3:[2] A near-ring N is called a prime near-ring  if  aNb = {0}, where a,b ∈N, implies 
that either  a = 0 or b = 0 . 

Definition 2.4:[2] Let N be a near-ring . The symbol Z will denote the multiplicative center of N , 
that is   Z = {x∈N /xy = yx  for all  y	∈N } . 

Definition 2.5:[2] Let R be a ring . Define a Lie product [ , ] on R as follows  

[x,y] = xy – yx , for all x,y  ∈R . 

Properties 2.6:[2] Let R be a ring , then for all x,y,z ∈R, we have : 

 1-[x,yz] = y[x,z] + [x,y]z 

 2-[xy,z] = x[y,z] + [x,z]y 

 3-[x+y,z] = [x,z] + [y,z] 

 4-[x,y+z] = [x,y] + [x,z] 

Definition 2.7:[2] A nonempty subset U of  N  will be called a semigroup right ideal ( resp. 
semigroup left ideal ) if UN ⊂ U ( resp. NU⊂ U ) and if U is both  semigroup right ideal and 
semigroup left ideal , it be called a semigroup ideal . 

Remark 2.8:[2] Let N be a near-ring  

(i)N x N x ….x N forms  a near-ring with regard to component wise addition and component wise 
multiplication . 
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(ii)If  U1 , U2 , ….,Un be nonzero semigroup right ideals ( resp. semigroup left ideals ) of N , then  
U1 x U2 x ….x Un forms a nonzero semigroup right ideals ( resp. semigroup left ideas ) of  N x N x 
….x N . 

Definition 2.9:[3] Suppose that W is a near-ring  . An 3-additive mapping  d :W x W x W → W  is 
called  3-derivation  if  the  relations :  
d(s1s1/, s2 , s3 ) =d(s1, s2 , s3 )s1/ + s1 d(s1/, s2 , s3 ) 
d(s1, s2s2/ , s3 ) =d(s1, s2 , s3 )s2/ + s2 d(s1, s2/ , s3 ) 
d(s1, s2, s3s3/ ) = d(s1, s2 , s3 )s3/ + s3 d(s1, s2 , s3/ ) 
hold for all  s1 , s1/ , s2 , s2/ , s3  , s3/ ∈ W .  
Example 2.10 :[4] Let S be a commutative near-ring . 
Let us define  
W= ቄቀݎ ݑ

0 0ቁ : ,ݎ ,	ݑ 0	 ∈ ܵቅ . 
And  d : WxWx W→ W  

d൬ቀݎଵ ଵݑ
0 0 ቁ	 , ቀ

ଶݎ ଶݑ
0 0 ቁ	 , ቀ

ଷݎ ଷݑ
0 0 ቁ൰ = ቀ0 ଷݎଶݎ	ଵݎ

0 0 ቁ 

Then  d  is 3-derivation of  W . 
Definition 2.11:[4] Suppose that  W  is a near-ring  and d  be 3- derivation of  W . An 3-additive 
mapping  f : WxWxW→ W is said to be generalized 3-derivation of  W  associated  with d  if the 
relations  
f(s1s1/, s2 , s3 ) = f(s1, s2 , s3 )s1/ + s1 d(s1/, s2 , s3 ) 
f(s1, s2s2/ , s3 ) = f(s1, s2 , s3 )s2/ + s2 d(s1, s2/ , s3 ) 
f(s1, s2, s3s3

/ ) = f(s1, s2 , s3 )s3
/ + s3 d(s1, s2 , s3

/ ) 
hold for all  s1 , s1

/ , s2 , s2
/ , s3  , s3

/ ∈ W .  
Example 2.12 :[4] Let S be a commutative near-ring . 
Let us define  
W = ቄቀ0 ݎ

0 ቁݑ : ,ݎ ,	ݑ 0	 ∈ ܵቅ . 

And d, f : WxWxW→ W  ,  

d ቆ൬0 ଵݎ
0 ଵݑ

൰	 , ൬0 ଶݎ
0 ଶݑ

൰	 , ൬0 ଷݎ
0 ଷݑ

൰ቇ = ቀ0 ଷݎଶݎ	ଵݎ
0 0 ቁ 

f ቆ൬0 ଵݎ
0 ଵݑ

൰	 , ൬0 ଶݎ
0 ଶݑ

൰	 , ൬0 ଷݎ
0 ଷݑ

൰ቇ = ൬0 0
0 ଷݑଶݑ	ଵݑ

൰  

Then f  is a generalized 3-derivation  of  W . 
Lemma 2.13:[5] Let N be a prime near-ring and U be a nonzero semigroup right ideal ( resp. 
semigroup left ideal ) of N  and x is an element of N such that Ux = {0} (resp. xU = {0} ) , then       
x = 0 . 

Lemma 2.14:[5] Let N be a prime near-ring and U be a nonzero semigroup  ideal  of N  . If  x,y ∈N  
and  xUy = {0}, then x = 0 or y = 0 . 

Lemma 2.15:[5] Let N be a prime near-ring and Z contains a  nonzero semigroup left ideal  or 
nonzero semigroup right ideal  , then N  is a commutative ring . 

3.Main  Results 
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First  we introduce  the basic definitions in this paper  

Definition 3.1: Let N be a near-ring .An 3-additive mapping d :N x N x N → N  is said to be two 
sided reverse 3-ߙ-derivation if there exists a function ߙ: N → N  such that the relations : 
d(x1/x1, x2 , x3 ) = d(x1 , x2 , x3 )x1/ + ߙ(x1)d(x1/, x2 , x3 )   
                          = d(x1 , x2 , x3 )ߙ(x1/) + x1d(x1/, x2 , x3 ) 
   
d(x1, x2/x2 , x3 ) = d(x1 , x2 , x3 )x2/ + ߙ(x2)d(x1, x2/ , x3 )   
                          = d(x1 , x2 , x3 )ߙ(x2/) + x2d(x1, x2/ , x3 )   
 
d(x1, x2 , x3 /x3 ) = d(x1 , x2 , x3 )x3/ + ߙ(x3)d(x1 , x2 , x3/ )   
                          = d(x1 , x2 , x3 )ߙ(x3/) + x3d(x1 , x2 , x3/ )  
hold for all x1, x1/, x2 , x2/ , x3  , x3/ ∈ N. 
Definition 3.2: Let N be a near-ring and d :N x N x N → N  be a two sided reverse 3-ߙ-derivation of 
N . An 3-additive mapping f : N x N x N → N  is said to be generalized two sided reverse 3-ߙ-
derivation associated  with two sided reverse 3-ߙ-derivation d if the relations : 
f(x1/x1, x2 , x3 ) = d(x1 , x2 , x3 )x1/ + ߙ(x1)f(x1/, x2 , x3 )   
                          = d(x1 , x2 , x3 )ߙ(x1/) + x1f(x1/, x2 , x3 ) 
f(x1, x2

/x2 , x3 ) = d(x1 , x2 , x3 )x2
f(x1, x2(x2)ߙ + /

/ , x3 )   
                          = d(x1 , x2 , x3 )ߙ(x2

/) + x2f(x1, x2
/ , x3 )   

 
f(x1, x2 , x3 /x3 ) = d(x1 , x2 , x3 )x3/ + ߙ(x3)f(x1 , x2 , x3/ )   
                          = d(x1 , x2 , x3 )ߙ(x3/) + x3f(x1 , x2 , x3/ )  
hold for all x1, x1/, x2 , x2/ , x3  , x3/ ∈ N. 
 
We begin with the following lemmas which are essential for developing the proofs of our main 
results , ߙ will represent a homomorphism of N . 
Lemma 3.3 : Let N be a near-ring and d be a two sided reverse 3-ߙ-derivation of N , then  
d(x1/x1, x2 , x3 ) = x1d(x1/, x2 , x3 ) + d(x1 , x2 , x3 )ߙ(x1/) 
  /d(x1/, x2 , x3 )  + d(x1 , x2 , x3 )x1(x1)ߙ =                           
 
d(x1, x2/x2 , x3 ) = x2d(x1, x2/ , x3 ) +  d(x1 , x2 , x3 )ߙ(x2/)  
  /d(x1, x2/ , x3 )  + d(x1 , x2 , x3 )x2(x2)ߙ =                          
 
d(x1, x2 , x3 /x3 ) = x3d(x1 , x2 , x3/ )  + d(x1 , x2 , x3 )ߙ(x3/)  
  /d(x1 , x2 , x3/ )  + d(x1 , x2 , x3 )x3(x3)ߙ =                            
hold for all x1, x1/, x2 , x2/ , x3  , x3/ ∈ N. 
Lemma 3.4 : Let N be a near-ring and d be a two sided reverse 3-ߙ-derivation of N , then  
(i)(	ߙ(x1)d(x1/, x2 , x3 ) + d(x1 , x2 , x3 )x1/ )y = ߙ(x1)d(x1/, x2 , x3 )y +d(x1 , x2 , x3 )x1/ y 
 d(x1, x2/ , x3 )y  + d(x1 , x2 , x3 )x2/ y(x2)ߙ = y( /d(x1, x2/ , x3 )  + d(x1 , x2 , x3 )x2(x2)ߙ)
 d(x1 , x2 , x3/ )y  + d(x1 , x2 , x3 )x3/ y(x3)ߙ = y( /d(x1 , x2 , x3/ ) + d(x1 , x2 , x3 )x3(x3)ߙ)
for all x1, x1/, x2 , x2/ , x3  , x3/ , y ∈ N.  
 
(ii)(x1d(x1/, x2 , x3 )+ d(x1 , x2 , x3 )	ߙ(x1/))y= x1d(x1/, x2 , x3 )y+ d(x1 , x2 , x3 )	ߙ(x1/)y 
(x2d(x1, x2/ , x3 ) + d(x1 , x2 , x3 )	ߙ(x2/)) y = x2d(x1, x2/ , x3 )y + d(x1 , x2 , x3 )	ߙ(x2/)y  
(x3d(x1 , x2 , x3/ ) + d(x1 , x2 , x3 )	ߙ(x3/))y = x3d(x1 , x2 , x3/ )y + d(x1 , x2 , x3 )	ߙ(x3/)y  
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for all x1, x1/, x2 , x2/ , x3  , x3/ , y ∈ N. 
Lemma 3.5 : Let N be a prime near-ring and d be a nonzero two sided reverse 3-ߙ-derivation of N 
. Let U1 , U2 , U3  be a nonzero semigroup ideals of N . If  
d(U1 , U2 , U3 ) = {0} , then d(N,N,N) = {0} .  
 
Now , we will prove the main results : 
Theorem 3.6 : Let N be a prime near-ring and d be a nonzero two sided reverse 3-ߙ-derivation of 
N . Let U1 , U2 , U3  be a nonzero semigroup ideals of N . If  
d(U1 , U2 , U3 )	⊆ Z , then N is a commutative  ring .  
Proof : We are given that  
d(u1 , u2 , u3 ) ∈ Z  for all u1 ∈ U1 , u2 ∈ U2 , u3 ∈ U3 .                 (3.1) 
Therefore 
t d(u1/u1 , u2 , u3) = d(u1/u1 , u2 , u3) t   for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , t ∈ N. 
By Lemma 3.4 (ii) and defining property of d we get  
t u1 d(u1/, u2 , u3) + t d(u1 , u2 , u3)	ߙ(u1/)  
= u1 d(u1/, u2 , u3)t +  d(u1 , u2 , u3)	ߙ(u1/)t 
for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , t ∈ N. Using (3.1) again , we obtain  
 d(u1/, u2 , u3)t u1+  d(u1 , u2 , u3)	ݐ	ߙ(u1/) = d(u1/, u2 , u3) u1 t +  d(u1 , u2 , u3)	ߙ(u1/)t  
for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , t ∈ N.                 (3.2)  
Replacing t by ߙ(u1/) in  (3.2) , we get  
d(u1/, u2 , u3) ߙ(u1/) u1 = d(u1/, u2 , u3) u1 ߙ(u1/)  for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3.  
i.e.; d(u1/, u2 , u3)N [ߙ(u1/), u1 ] = {0}     for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3.  
Primeness of N yields that for each u1/ ∈ U1 , we get either d(u1/, u2 , u3) = 0  for all 
u2 ∈ U2 , u3 ∈ U3  or  [ߙ(u1/), u1 ] = 0   for all  u1 ∈ U1 .  
If  d(u1/, u2 , u3) = 0  for all u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3  , then by Lemma 3.5 we conclude that 
d(N,N,N) = {0} , leading to a contradiction as d is a nonzero two sided reverse 3-ߙ-derivation of 
N . Therefore there exist  x1 ∈ U1 , x2 ∈ U2 , x3 ∈ U3 all being nonzero such that  d(x1 , x2 , x3 ) ≠0 
and  ߙ(x1) u = u ߙ(x1)  for all  u ∈ U1 , replacing  u by ut  where  t ∈ N , we get  
U1 [ߙ(x1) , t ] = {0} , for all  t ∈ N . By Lemma 2.13  we get   ߙ(x1) ∈ Z .  
Taking x1 instead of  u1/ , x2 instead of u2 , x3 instead of u3 in (3.2) , we obtain  
d(x1 , x2 , x3 )tu1 = d(x1 , x2 , x3 )u1t   for all  u1 ∈ U1 , t ∈ N .  
i.e.; d(x1 , x2 , x3 )[t , u1] = 0 , accordingly  
d(x1 , x2 , x3 ) N [t , u1] = {0}   for all  u1 ∈ U1 , t ∈ N .  
Primeness of N and d(x1 , x2 , x3 ) ≠0  yield that  U1 ⊆ Z , by Lemma 2.15  we conclude  that  N is a 
commutative ring .  
Theorem 3.7 : Let N be a prime near-ring admitting a generalized two sided reverse 3-ߙ-
derivation f associated  with  a nonzero two sided reverse 3-ߙ-derivation d . Let U1 , U2 , U3  be a 
nonzero semigroup ideals of N . If  f ([u1 , u1/ ] , u2 , u3 )= 0 , for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , 
then  N is a commutative  ring .  
Proof : By our hypothesis we have  
f ([u1 , u1/ ] , u2 , u3 )= 0 , for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 . 
Replacing u1/ by u1/u1  in preceding equation and using it again we get  
d(u1 , u2 , u3)	[u1 , u1/ ] = 0 , for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 . 
i.e.; d(u1 , u2 , u3)	u1 u1/ = d(u1 , u2 , u3)	u1/ u1 , 
 for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3                   (3.3)    
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Replacing u1/ by u1/r , where r∈ N , in (3.3) and using it again we get  
d(u1 , u2 , u3)	u1/[u1,r] = 0 , for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , r∈ N . 
Therefore d(u1 , u2 , u3)	U1[u1,r] ={0} , for all u1 ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , r∈ N . 
By Lemma 2.14 , we conclude that  for each u1∈ U1  either u1 ∈ Z or d(u1 , u2 , u3) = 0 
for all  u2 ∈ U2 , u3 ∈ U3 .                (3.4)  
Let x1 ∈ U1∩Z , by Lemma 3.3 and defining property of d , we have for all y∈ N . 
d(yx1 , u2 , u3) = x1 d(y, u2 , u3) + d(x1 , u2 , u3)	ߙ(y) 
                        = d(x1y , u2 , u3) 
= d(y , u2 , u3)x1 + ߙ(y) d(x1 , u2 , u3) 
for all  u2 ∈ U2 , u3 ∈ U3 ,  y∈ N . Which  implies that  
d(x1 , u2 , u3)	ߙ(y)= ߙ(y) d(x1 , u2 , u3) 
for all  u2 ∈ U2 , u3 ∈ U3 ,  y∈ N . 
In view of equation (3.4)  we get  
d(u1 , u2 , u3)	ߙ(y)= ߙ(y) d(u1 , u2 , u3) 
for all u1 ∈ U1 , u2 ∈ U2 , u3 ∈ U3 ,  y∈ N .           (3.5) 
On the other hand , 
d(tx1 , u2 , u3) = d(x1 , u2 , u3)t +	ߙ(x1)d(t , u2 , u3) = d(x1t , u2 , u3) 
                        = td(x1 , u2 , u3) + d(t , u2 , u3)	ߙ(x1) 
for all  u2 ∈ U2 , u3 ∈ U3 ,  t ∈ N .  
It follows that  for all  u2 ∈ U2 , u3 ∈ U3 ,  t ∈ N  , we get  
d(x1 , u2 , u3)t +	ߙ(x1)d(t , u2 , u3) = td(x1 , u2 , u3) + d(t , u2 , u3)	ߙ(x1)    (3.6) 
In particular , taking t ∈ U1 in (3.6) and using (3.5) , we get  
d(x1 , u2 , u3)t = td(x1 , u2 , u3)   for all t ∈ U1 ,  u2 ∈ U2 , u3 ∈ U3 . 
Replacing t by ty , where  y∈ N , in the preceding equation and using it again to get  
tyd(x1 , u2 , u3) =  d(x1 , u2 , u3)ty = td(x1 , u2 , u3) y 
for all t ∈ U1 ,  u2 ∈ U2 , u3 ∈ U3 , y∈ N , that is  
t[d(x1 , u2 , u3) , y] = 0    for all t ∈ U1 ,  u2 ∈ U2 , u3 ∈ U3 , y∈ N . 
Therefore 
U1 [d(x1 , u2 , u3) , y] = {0} , by Lemma 2.13  we get  d(x1 , u2 , u3) ∈ Z . According to (3.4) we 
conclude that  d(u1 , u2 , u3)	∈ Z   for all u1 ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , and  hence  N is a commutative  
ring  by application of  Theorem 3.6  .  
Corollary 3.8 : Let N be a prime near-ring admitting a nonzero two sided reverse 3-ߙ-derivation d 
. Let U1 , U2 , U3  be a nonzero semigroup ideals of N . If  d ([u1 , u1/ ] , u2 , u3 )= 0 , for all u1 ,u1/ ∈ 
U1 , u2 ∈ U2 , u3 ∈ U3 , then  N is a commutative  ring .  
 
Theorem 3.9 : Let N be a prime near-ring admitting a nonzero generalized two sided reverse 3-ߙ-
derivation f associated  with  a nonzero two sided reverse 3-ߙ-derivation d of  N . Let U1 , U2 , U3  
be a nonzero semigroup ideals of N.If  f ([u1 , u1/ ] , u2 , u3 )= ± [u1 , u1/ ] , for all u1 ,u1/ ∈ U1 , u2 ∈ 
U2 , u3 ∈ U3 , then  N is a commutative  ring .  
Proof : By our hypothesis , we have  
f ([u1 , u1/ ] , u2 , u3 )= ± [u1 , u1/ ] , for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 .   (3.7)  
Replacing u1/ by u1/u1  in  (3.7) and using it again we get  
d(u1 , u2 , u3)	ߙ(	[u1 , u1/ ] ) = 0 , for all u1 ,u1/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3 . 
i.e.; d(u1 , u2 , u3)	ߙ(u1) ߙ(u1/) = d(u1 , u2 , u3)	ߙ(u1/) ߙ(u1)  , let  ߙ	(U1) = V1   since  ߙ is surjective 
, then V1 is a semigroup ideal of N .  Now let  ߙ(u1/) = v1/ ,where v1/ ∈ V1 so we have  for all u1 ∈ 
U1 , u2 ∈ U2 , u3 ∈ U3 , v1/ ∈ V1 .  
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d(u1 , u2 , u3)	ߙ(u1) v1/ = d(u1 , u2 , u3)	v1/ ߙ(u1)           (3.8)  
Replacing v1/ by v1/r  , where r ∈ N , in (3.8) and using it again we get  
d(u1 , u2 , u3)	v1/ [ߙ(u1) , r] = 0   for all u1 ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , v1/ ∈ V1 , r ∈ N . 
i.e.; d(u1 , u2 , u3)	V1 [ߙ(u1) , r] ={0}   for all u1 ∈ U1 , u2 ∈ U2 , u3 ∈ U3 , r ∈ N . 
By Lemma 2.14 , we get for all u1 ∈ U1 ,either  ߙ(u1) ∈ Z or  d(u1 , u2 , u3)	= 0  
for all  u2 ∈ U2 , u3 ∈ U3                  (3.9)  
Let u∈ U1 such that  d(u , u2 , u3)	= 0  , for all  u2 ∈ U2 , u3 ∈ U3  , then  
d(uu/, u2 , u3)	= d(u/ , u2 , u3)	u + ߙ(u/) d(u , u2 , u3) = d(u/ , u2 , u3)	u   and  
d(uu/, u2 , u3)	= d(u/ , u2 , u3)ߙ(u)	+ u/ d(u , u2 , u3) = d(u/ , u2 , u3)	ߙ(u)	  
for all u/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3  . 
Combining both expressions of  d(uu/, u2 , u3) , we obtain 
 d(u/ , u2 , u3)(ߙ(u)	- u ) = 0  for all u/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3  .       (3.10) 
Replacing  u/ by wu/  , where w ∈ U1 , in (3.10) and using it again to get  
d(u/ , u2 , u3)	ݓ(ߙ(u)	- u ) = 0  for all u/ , w ∈ U1 , u2 ∈ U2 , u3 ∈ U3  . 
i.e.; d(u/ , u2 , u3)	Uଵ(ߙ(u)	- u ) ={0}  for all u/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3  . 
By Lemma 2.14  we conclude that either  d(u/ , u2 , u3) = 0  for all u/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3  or  
 . u =	(u)ߙ
If  d(u/ , u2 , u3) = 0  for all u/ ∈ U1 , u2 ∈ U2 , u3 ∈ U3  , then  by Lemma 3.5  we conclude  d = 0 , 
which contradicts our original assumption that  d≠0 .  
Hence , we conclude that  ߙ(u)	= u . According to (3.9) we arrive at a conclusion .  
For each  u1∈ U1 , either ߙ(u1)	∈ Z  or  d(ߙ(u1)	 , u2 , u3) = 0  for all  u2 ∈ U2 , u3 ∈ U3 
It follows  for all  v1	∈ V1 , we get either  v1∈ Z  or  d(v1 , u2 , u3) = 0  for all  u2 ∈ U2 , u3 ∈ U3 . 
Which is identical with the equation (3.4) in Theorem 3.7 . Now arguing in the same way in 
corollary 3.8  we conclude that  d(v1 , u2 , u3)	∈ Z  for all  v1	∈ V1 ,  u2 ∈ U2 , u3 ∈ U3 , and hence  N 
is a commutative  ring by application of Theorem 3.6  
 
Conclusion 
In present paper we introduce the notions of two sided reverse 3-ߙ-derivation  and generalized 
two sided reverse 3-ߙ-derivation in near-ring and we see that a near-ring can be make 
commutative with help of generalized two sided reverse 3-ߙ-derivation and other conditions . 
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