[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 25](https://qjps.researchcommons.org/home/vol25) [Number 4](https://qjps.researchcommons.org/home/vol25/iss4) Article 6

10-7-2020

Some Results in a Class of Telescopic Numerical Semigroups

Sedat iLHAN Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır, 21280, TURKEY, sedati@dicle.edu.tr

Follow this and additional works at: [https://qjps.researchcommons.org/home](https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

iLHAN, Sedat (2020) "Some Results in a Class of Telescopic Numerical Semigroups," Al-Qadisiyah Journal of Pure Science: Vol. 25: No. 4, Article 6. DOI: 10.29350/qjps.2020.25.4.1197 Available at: [https://qjps.researchcommons.org/home/vol25/iss4/6](https://qjps.researchcommons.org/home/vol25/iss4/6?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

Some Results in a Class of Telescopic Numerical Semigroups

1. Introduction

Let $\mathbb N$ and $\mathbb Z$ be the sets of nonnegative integers and integers, respectively. The subset *S* of $\mathbb N$ is a numerical semigroup if $0 \in S$, $x + y \in S$, for all $x, y \in S$, and $Card(\mathbb{N}\setminus S) < \infty$ (this condition is equivalent to $gcd(S) = 1$, $gcd(S) =$ greatest common divisor the element of *S*). Let *S* be a numerical semigroup, then $F(S) = \max(\mathbb{Z}\setminus S)$ and $m(S) = \min\{s \in S : s > 0\}$ are called Frobenius number and multiplicity of *S*, respectively. Also, $n(S) = Card({0,1,2,...,F(S)} \cap S)$ is called the number determine of *S*. If $F(S) - x \in S$ then is called symmetric numerical semigroup, for all $x \in \mathbb{Z} \backslash S$. It is known that $S = \langle a, b \rangle$ is symmetric numerical semigroup, and if *S* is a symmetric numerical semigroup then $n(S) = G(S) = \frac{F(S) + 1}{2}$ 2 $n(S) = G(S) = \frac{F(S) + 1}{2}$ (for details see [1], [6]).

If *S* is a numerical semigroup such that $S =$, then we observe that

$$
S = = \left\{ s_0 = 0, s_1, s_2, ..., s_{n-1}, s_n = F(S) + 1, \rightarrow ... \right\}
$$

⁻⁻⁻ ^aDicle University, Faculty of Science, Department of Mathematics, Divarbakır, 21280, TURKEY E-Mail: sedati@dicle.edu.tr

where $s_i < s_{i+1}$, $n = n(S)$, and the arrow means that every integer greater than $F(S) + 1$ belongs to *S*, for $i = 1, 2, ..., n = n(S)$.

If $x \in \mathbb{N}$ and $x \notin S$, then x is called gap of *S*. We denote the set of gaps of *S*, by $H(S)$, i.e, $H(S) = N \ S$ and, the $G(S) = Card(H(S))$ is called the genus of *S*. Also, It is know that $G(S) = F(S) + 1 - n(S)$. Let $S = \langle s_1, s_2, s_3 \rangle$ is a triply-generated telescopic numerical semigroup if $s_3 \in \, < \frac{s_1}{a_3}, \frac{s_2}{a_4}$ $\epsilon < \frac{s_1}{d}, \frac{s_2}{d} >$ where $d = \gcd(s_1, s_2)$ (see [3],[5],[7]). If *S* is a numerical semigroup such that $S =$, then $L(S) = \langle a_1, a_2-a_1, a_3-a_1, ..., a_n-a_1 \rangle$ is called Lipman numerical semigroup of *S* , and it is known that

 $L_0(S) = S \subseteq L_1(S) = L(L_0(S)) \subseteq L_2 = L(L_1(S)) \subseteq ... \subseteq L_m = L(L_{m-1}(S)) \subseteq ... \subseteq \mathbb{N}$.

A numerical semigroup *S* is Arf if $a+b-c \in S$, for all $a,b,c \in S$ such that $a \ge b \ge c$. The intersection of any family of Arf numerical semigroups is again an Arf numerical semigroup. Thus, since $\mathbb N$ is an Arf numerical semigroup, one can consider the smallest Arf numerical semigroup containing a given numerical semigroup. The smallest Arf numerical semigroup containing a numerical semigroup *S* is called the Arf closure of *S*, and it is denoted by $Arf(S)$ (see [4], [6]).

 In this paper, we will give some results about Frobenius number, gaps, and determine number of Arf closure of telescopic numerical semigroup S_k such that $S_k = \langle 8, 8k + 2, x \rangle$ where $k \ge 1, k \in \mathbb{Z}$, $j \neq 0, 2, 4, \ldots, 2(k-1)$ and $x = 8k + 2 + (2j + 1)$ is odd integer number. We note that any telescopic numerical semigroup is not symmetric. For example, $S = \langle 6, 9, 23 \rangle$ is telescopic numerical semigroup but it is not symmetric since $F(S) = 40$ and for $x = 3 F(S) - x = 37 \notin S$. But, here $\mathcal{S}_k = \big\langle 8, 8k+2, x \big\rangle$ is symmetric numerical semigroup where $\,k\geq 1,\,k\in\mathbb{Z}$.

2. Main Results

Proposition 1. ([8]) $S_k = \langle 8, 8k + 2, x \rangle$ is a telescopic numerical semigroups where $k \ge 1$, $k \in \mathbb{Z}$, $j \ne 0, 2, 4, ..., 2(k-1)$ and $x = 8k + 2 + (2j + 1)$ is odd integer number.

In this study, we will take $j = 1$ in $S_k = \langle 8, 8k + 2, x \rangle$, i.e., $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$.

Proposition 2. ([2]) Let $S = \langle u_1, u_2, ..., u_n \rangle$ be a numerical semigroup and $d = \gcd\{u_1, u_2, ..., u_{n-1}\}$. If $T = \langle \frac{u_1}{i}, \frac{u_2}{i}, \dots, \frac{u_{n-1}}{i} \rangle$ *d d d* $=\langle \frac{u_1}{u_1}, \frac{u_2}{u_2}, ..., \frac{u_{n-1}}{u_n} \rangle$ numerical semigroup then

(a)
$$
F(S) = d.F(T) + (d-1)u_n
$$

(b) $G(S) = d.G(T) + \frac{(d-1)(u_n-1)}{2}$.

Proposition 3. Let $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$ be a telescopic numerical semigroup, where $k \geq 1, k \in \mathbb{Z}$. Then, we have

(a) $F(S_i) = 32k + 3$ (b) $n(S_k) = 16k + 2$ (c) $G(S_i) = 16k + 2$.

Proof. (a) We find that $F(T) = 16k + 4 - 4k - 4 - 1 = 12k - 1$ since $d = \gcd\{8, 8k + 2\} = 2$ and $\frac{8}{3}, \frac{8k+2}{2} \ge 4, 4k+1$ $2^{'}$ 2 $T = \frac{8}{3}, \frac{8k+2}{2} \ge 4, 4k+1$, where $k \ge 1, k \in \mathbb{Z}$. In this case, we obtain that $F(S) = 2(12k - 1) + (2 - 1)(8k + 5) = 32k + 3$ from Proposition 2/(1). (b)-(c) It is trivial $n(S) = G(S) = \frac{F(S) + 1}{2} = \frac{32k + 4}{2} = 16k + 2$ 2 2 $m(S) = G(S) = \frac{F(S)+1}{2} = \frac{32k+4}{2} = 16k+2$ from S_k is symmetric numerical semigroup.

Theorem 1. Let $S_k = \langle 8, 8k + 2, x \rangle$ be a telescopic numerical semigroup, where $k \geq 1, k \in \mathbb{Z}$. Then, $Arf(S) = \{0, 8, 16, 24, \ldots, 8k, 8k + 2, x - 1, \rightarrow \ldots\}.$

Proof. It is trivial $m_0 = 8$ since $L_0(S) = S$. Thus, we write $L_1(S) = \langle 8,8k - 6, x - 8 \rangle$. In this case,

(1) If $8k - 6 < 8$ (if $k = 1$) then we obtain $L_1(S) = 8,8k - 6, x - 8 > 8, z - 8, m_1 = 2$ and we have $L_2(S) = 8, x - 10 > 1$.

In here, $x-10 > 2$ and $m_2 = 2$. So, we have $L_3(S) = 2, x-12 > 1$.

In here, if $x-12 < 2$ (if $x=13$) then $L_3(S) = 2,1> = 1, m_3 = 1$.

If $x-12>2$ then we find that $m₃=2$ since $L₃(S) = < 2, x-12>$ If we are continued, we have that $L_i(S) = \langle 2, x - 2(i + 3) \rangle$ and $m_i = 2$ or $m_i = 1$, for $i \ge 1$. Thus, we obtain

$$
Arf(S) = \{0,8,16,24,...,8k,8k+2,x-1,\rightarrow...\}.
$$

(2) If $8k - 6 > 8$ then $m_1 = 8$, and we have $L_2(S) = 8,8k - 14, x - 16 > 8$. In this case, if $8k - 14 < 8$ (if $k = 2$) then $L_2(S) = 8,8k - 14$, $x - 16 > 8,2$, $x - 16 > 8,2$, $x - 16 > 8,2$ and $m_2 = 2$ from $x-16 > 2$. Thus, we have $L_x(S) = < 2, x-18 >$. In here,

if $x-18 < 2$ (if $x=13$) then $L_3(S) = <2,1> = <1>$, $m_3 = 1$.

if $x - 18 > 2$ then we write that $m₃ = 2$ since $L₃(S) = < 2, x - 18 >$.

If we are continued, we have that $L_i(S) = < 2, x - 2(i + 6) >$, and $m_i = 2$ or $m_i = 1$, for $i \ge 2$. So, we obtain $Arf(S) = \{0,8,16,24,...,8k,8k+2,x-1,\rightarrow ...\}$.

Corollary 1 . Let $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$ be a telescopic numerical semigroup, where $k \ge 1$, $k \in \mathbb{Z}$. Then, we have

(a)
$$
F(Arf(S_k)) = x-2 = 8k+3
$$

(b)
$$
n(Arf(S_k)) = k + 2
$$

(c) $G(Arf(S_k)) = 7k + 2$.

Proof. (a) It is clear.

(b) Let A_1 and A_2 be the cardinalities of the subsets $\{8,16,24,...,8k\}$ and $\{4k+2,x-1\}$ of $Arf(S) = \{0, 8, 16, 24, ..., 8k, 8k + 2, x - 1, \rightarrow ... \}$, respectively. In this case, we have $a_1 = \frac{8k-8}{8}+1$ 8 $A_1 = \frac{8k-8}{8} + 1 = k$ and $A_2 = 2$. Thus, we obtain $n(Arf(S_k)) = A_1 + A_1 = k + 2$.

(c)
$$
G(Arf(S_k)) = F(Arf(S_k)) + 1 - n(Arf(S_k)) = 8k + 3 + 1 - (k + 2) = 7k + 2
$$
.

Corollary 2. Let $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$ be a telescopic numerical semigroup, where $k \ge 1$, $k \in \mathbb{Z}$. Then, we have

(a) $F(S_i) = F(Arf(S_i)) + 24k$ (b) $n(S_i) = n(Arf(S_i)) + 15k$

$$
(c) G(Sk) = G(Arf(Sk))+9k
$$

Proof. It is trivial from Proposition 3 and Corollary 1.

The following corollaries are satisfied from Propositions 3 and Corollary 1:

Corollary 3. Let $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$ be a telescopic numerical semigroup where $k \ge 1$, $k \in \mathbb{Z}$. Then, it satisfies following equalities:

(a) $F(S_{k+1}) = F(S_k) + 32$ (b) $n(S_{k+1}) = n(S_k) + 16$ (c) $G(S_{k+1}) = G(S_k) + 16$.

Corollary 4. Let $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$ be a telescopic numerical semigroup, where $k \ge 1$, $k \in \mathbb{Z}$. Then, we have :

(a)
$$
F(Arf(S_{k+1})) = F(Arf(S_k)) + 8
$$

(b) $n(Arf(S_{k+1})) = n(Arf(S_k)) + 1$

(c)
$$
G(Arf(S_{k+1})) = G(Arf(S_k)) + 7
$$
.

Example 7. We put $k = 1$ in $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$ triply-generated telescopic numerical semigroups. Then we have

$$
S_1 = <8,10,13> = \{0,8,10,13,16,18,20,21,23,24,26,28,29,30,31,32,33,34,36,\rightarrow \ldots\}.
$$

In this case, we obtain

$$
F(S_1) = 35, \; n(S_1) = 18, \; H(S_1) = \{1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19, 22, 25, 27, 35\} \; ,
$$

\n
$$
G(S_1) = 18, \; Arf(S_1) = \{0, 8, 10, 12, \rightarrow \ldots\} \; ,
$$

\n
$$
F(Arf(S_1)) = 11, \; H(Arf(S_1)) = \{1, 2, 3, 4, 5, 6, 7, 9, 11\}
$$

\n
$$
G(Arf(S_1)) = 9 \text{ and } \; n(Arf(S_1)) = 3 \; .
$$

If $k = 2$ then we write in $S_k = \langle 8, 8k + 2, 8k + 5 \rangle$ triply-generated telescopic numerical semigroups. Then we write

$$
S_2=<8,18,21>=\left\{0,8,16,18,21,24,26,29,32,34,36,37,39,40,42,44,45,47,48,50,52,...,60,61,...,66,68\rightarrow ...\right\}.
$$

Thus, we have

$$
F(S_2) = 67
$$
, $n(S_2) = 34$, $G(S_2) = 34$, $Arf(S_2) = \{0,8,16,18,20,\rightarrow...\}$,

$$
F(\text{Arf}(S_2)) = 19
$$
, $n(\text{Arf}(S_2)) = 4$ and $G(\text{Arf}(S_2)) = 16$.

So, we obtain

$$
G(Arf(S_1)) + 9 = 9 + 9 = 18 = G(S_1),
$$

\n
$$
F(Arf(S_1)) + 24 = 11 + 24 = 35 = F(S_1),
$$

\n
$$
n(Arf(S_1)) + 15 = 3 + 15 = 18 = n(S_1),
$$

\n
$$
F(S_1) + 32 = 35 + 32 = 67 = F(S_2),
$$

\n
$$
n(S_1) + 16 = 18 + 16 = 34 = n(S_2),
$$

\n
$$
G(S_1) + 16 = 18 + 16 = 34 = G(S_2) \text{ and}
$$

\n
$$
F(Arf(S_1)) + 8 = 11 + 8 = 19 = F(Arf(S_2)),
$$

\n
$$
n(Arf(S_1)) + 1 = 3 + 1 = 4 = n(Arf(S_2)),
$$

\n
$$
G(Arf(S_1)) + 7 = 9 + 7 = 16 = G(Arf(S_2)).
$$

References

- [1] R. Froberg, C. Gotlieb and R. Haggkvist, On numerical semigroups. Semigroup Forum, 35, (1987), pp.63-68.
- [2] S.M. Johnson, A Linear diophantine problem, Canad. J. Math., 12, (1960), pp.390-398.
- [3] Ilhan S., On a class of telescopic numerical semigroups, Int. J. Contemporary Math. Sci., Vol 1, no 2, (2006), pp.81-83.
- [4] S. ilhan and H.i. Karakaş, Arf numerical semigroups, Turkish Journal of Mathematics, 41, (2017), pp.1448-1457.
- [5] C. Kirfel and R. Pellikaan, The minimum distance of codes in an array coming telescopic semigroups, Special issue on algebraic geometry codes, IEEE Trans. Inform. Theory, 4, (1995), pp.1720-1732.
- [6] J.C. Rosales and P.A. Garcia-Sanchez, Numerical semigroups. New York: Springer 181, (2009).
- [7] M. Süer and S. İlhan, All Telescopic Numerical Semigroups With Multiplicity Four and Six Journal of Science and Technology, Erzincan Üniversitesi,12 (1), 457-462, (2019), pp.457-462.
- [8] M. Süer and S. İlhan, On triply generated telescopic semigroups with multiplicity 8 and 9, Comptes Rendus de l'Academie bulgare des Sciences, 72(3), (2020), pp.315-319.