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A   ABSTRACT 

 
In this article, the peristaltic transport of blood flow Ree-Eyring 
electrically conducting fluid in a porous medium under the effect of 
magnetohydrodynamic and temperature dependent viscosity 
through an asymetric channel is examined. Governing flow problem 
are based on momentum and energy equations are mathematically 
modelled and investigated in a wave frame of reference moving with 
the velocity of the wave, by considering the assumption of long 
wavelength approximation compared to small Renold’s number they 
simplified and reduced into couple partial differential equations. 
Exact solution for the temperature profile has been obtained whereas 
perturbation method employed to find the approximate solution for 
the stream function. The impact of important physical pertinent 
parameters on flow phenomena are discussed graphically. The 
graphs depict that the dimensionless viscosity parameter has a mixed 
effect on velocity profile moreover the two Ree-Eyring fluid 
parameters 𝐴 and 𝑊 has an opposite influence on the velocity profile.  
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1. Introduction 
 
During many years before, the study of peristaltic flows has been carried out much of 
importance in physiology and biomedical industry. The peristaltic transport can be 
defined as a fluid mechanism transport by way of area of sinusoidal waves. This type 
of such flows can be observed at most in a human body like (food swallowing process, 
the urine movement from kidney to the bladder and the blood flow through a small 
vessel in human circulator system), which gained a large attention because of its 
senior importance in physiological are mentioned in literatures [6,12,15]. 
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     It's important to observe that the fluid concerned in the necessary applications is 
non-Newtonian and such materials flow are those whose viscosity depends onto the 
deformation rate like (blood, molasses, silicon oils, polymer solutions, printer ink, 
sand in water, soap solutions, biological fluids, personal care products, food products, 
building materials, etc.) see refs [2,8].  

      To the best of our knowledgment, Recently The magneto  hydrodynamic (MHD) 

flow in peristaltic transport of fluid takes a major attention of several researchers, 

because of its  helpful role in an industrial process such as (petroleum industries, 

designing of MHD power generators and helps to cure some of the diseases such as 

cancer by using the magnetic drug target). Moreover, it is widely used in blood 

filtration devices, it is useful to control blood flow, design blood pumps, heart lung 

machine, and many other processes, so in refs [4,5,7,9-14,16-18] have been 

investigated different effects on magneto hydrodynamic (MHD) peristaltic flow. 

   The viscosity in general is taken as constant; rarely, the viscosity considered as 

temperature dependent only in cases like higher temperature difference and viscous 

dissipation, see refs. [1,3]. in this work, we search in our work the influence of 

temperature-dependent viscosity on peristaltic transport of (MHD) blood Ree-Eyring 

fluid through a porous medium in an asymmetric channel. Also, we taken into 

consideration the long wave number and low Renolds number to simplify the 

problem. The perturbation method is used to find the last frame of the stream 

function. Finally, the results presented show the effects of various parameters on the 

velocity, temperature distribution, pressure gradient, pressure rise and stream 

function, all the results have been discussed graphically. 

2. Mathematical Modeling 

We introduced the peristaltic transport of incompressible Ree-Eyring fluid through 

an inclined asymmetric channel with a total width (𝑑1 + 𝑑2). The flow is 

characterized by the existence of (MHD) field. A Reynolds number is taken small and 

the induced magnetic wave number 𝛿 is neglected. The flow which is given by the 

peristaltic waves of length 𝜆 moving with a constant speed 𝑐 along the channel walls. 

Geometry of the walls surfaces are given by 

𝑌1 = 𝐻1(�̅�, 𝑡) = 𝑑1 + 𝑎1𝑠𝑖𝑛 (
2𝜋(�̅�−𝑐𝑡)

𝜆
)                              … (1)                                                

𝑌2 = 𝐻2(�̅�, 𝑡) = −𝑑2 − 𝑎2𝑠𝑖𝑛[(
2𝜋(�̅�−𝑐𝑡)

𝜆
)  + Ø]               ... (2)                                                

Where 𝑌1𝑎𝑛𝑑 𝑌2 are the right and the left side of the wall respectively, 𝑑1𝑎𝑛𝑑 𝑑2t are 

the non-uniform parameters, 𝑎1𝑎𝑛𝑑 𝑎2 are the wave amplitudes, 𝑡 is the time and 

(�̅�, �̅�) the rectangular coordinates in a fixed frame. Ø is the phase difference and Ø ∈
[0,𝜋] such that when Ø = 0 corresponds to asymmetric channel with waves out of 

phase, and when  Ø = 𝜋, the waves in phase. Further 𝑎1, 𝑎2, 𝑑1 , 𝑑2 𝑎𝑛𝑑 ∅ satisfy the 

important condition 

𝑎1
2 + 𝑎2

2 + 2𝑎1𝑎2𝑑1 𝑑2𝑐𝑜𝑠∅ ≤ (𝑑1 + 𝑑2)
2.      … (3) 

The fluid satisfies Ree-Eyring model and its extra stress tensor is given as follows  
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𝑆𝑖𝑗
̅̅̅̅ =  𝜇(𝑇)

𝜕𝑉𝑖

𝜕�̅�𝑗
̅̅ ̅ +

1

𝛽
sinh−1 𝜕𝑉𝑖

𝑐1𝜕�̅�𝑗
                              … (4) 

where 

sinh−1 𝜕𝑉𝑖

𝑐1𝜕�̅�𝑗
≈

1

𝑐1

𝜕𝑉𝑖

𝜕�̅�𝑗
−

1

6𝑐1
3 (

𝜕𝑉𝑖

𝜕�̅�𝑗
)3                          … (5) 

and 

𝑆𝑖𝑗 = ( 𝜇(𝑇) +
1

𝛽𝑐1
)

𝜕𝑉𝑖

𝜕�̅�𝑗
̅̅ ̅ −

1

6𝛽𝑐1
3 (

𝜕𝑉𝑖

𝜕�̅�𝑗
)3                   … (6) 

𝜇(𝑇) Is the dynamic variable viscosity. 

The fundamental equations of the flow can be written as below: 

∂u

∂x
+

𝜕𝑣

𝜕𝑦
= 0                                                            … (7)  

𝑋-component of momentum equation  

𝜌 (
𝑑𝑈

𝑑𝑡
+ �̅�

𝜕𝑈

𝜕�̅�
+ �̅�

𝜕𝑈

𝜕�̅�
) = −

𝜕�̅�

𝜕𝑋
+

𝜕𝑆�̅̅��̅�

𝜕�̅�
+

𝜕𝑆̅
�̅��̅�

𝜕�̅�
− 𝜎𝛽0

2( �̅�) −
𝜇(𝑇)

𝜅
�̅�        … (8) 

𝑌-component of momentum equation  

𝜌 (
𝑑𝑉

𝑑𝑡
+ �̅�

𝜕𝑉

𝜕�̅�
+ �̅�

𝜕𝑉

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+

𝜕𝑆̅
�̅��̅�

𝜕�̅�
+

𝜕𝑆̅
�̅��̅�

𝜕�̅�
− 𝜎𝛽0

2( �̅�) −
𝜇(𝑇)

𝜅
�̅�          … (9) 

and energy equation with heating effect is 

𝜌𝑐𝑃 (
𝜕𝑇

𝜕�̅�
 + �̅�

𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
) = 𝐾 (

𝜕2𝑇

𝜕�̅�2 +
𝜕2𝑇

𝜕�̅�2) −
𝜕

𝜕�̅�
𝑞𝑟 + 𝜑                          … (10) 

Where                                                                              

𝑞𝑟 =
16 𝜎∗𝑇0

3

3𝐾∗

𝜕𝑇

𝜕�̅�
                                       … (11) 

In which 𝜎  is the electrical conductivity, 𝐾 is the thermal conductivity, 𝜎∗and 𝐾∗ are 

the Stefan Boltzman constant and the mean absorption coefficient respectively, 𝜅 

porosity parameter, 𝜌 density and 𝑐𝑃  specific heat.  

The corresponding boundary conditions are 

𝑇 = 𝑇0 , 𝑢 = 0 , 𝜓 =
𝐹

2
         𝑎𝑡    �̅� = 𝐻1

𝑇 = 𝑇1 , 𝑢 = 0 , 𝜓 = −
𝐹

2
     𝑎𝑡    �̅� = 𝐻2

} .                                             … (12) 

In which  𝑇0𝑎𝑛𝑑 𝑇1  are the temperature at the right and left walls coefficient 

respectively. 

Normalizing flow equations (7) - (12) from laboratory to the steady frame using the 

quantities: 

�̅� = �̅� − 𝑐𝑡, �̅� = �̅� − 𝑐, �̅� = �̅�, 𝑇 = 𝑇, �̅� = �̅�, �̅� = �̅�     … (13) 

Fluid fundamental equations will be such as below 
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∂u

∂x
+

𝜕𝑣

𝜕𝑦
= 0                   … (14) 

𝑋-component of momentum equation: 

𝜌 ((�̅� + 𝑐)
𝜕𝑈

𝜕�̅�
+ �̅�

𝜕𝑈

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+

𝜕𝑆̅
�̅��̅�

𝜕�̅�
+

𝜕𝑆�̅̅��̅�

𝜕�̅�
− 𝜎𝛽0

2(�̅� + 𝑐) −
𝜇(𝑇)

𝜅
(�̅� + 𝑐)      … (15) 

Y-component of momentum equation: 

𝜌 ((�̅� + 𝑐)
𝜕𝑉

𝜕�̅�
+ �̅�

𝜕𝑉

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+

𝜕𝑆̅
�̅��̅�

𝜕�̅�
+

𝜕𝑆�̅̅��̅�

𝜕�̅�
− 𝜎𝛽0

2�̅� −
𝜇(𝑇)

𝜅
�̅�                  … (16) 

𝜌𝑐𝑃 ((�̅� + 𝑐)
𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
) = 𝐾 (

𝜕2𝑇

𝜕�̅�2
+

𝜕2𝑇

𝜕�̅�2
) −

𝜕

𝜕�̅�
𝑞𝑟 + 𝜑                 … (17) 

Now by using the following dimensionless quantities  

𝑥 =
�̅�

𝜆
, 𝑦 =

�̅�

𝑑1
, 𝑢 =

𝑢

𝑐
, 𝑣 =

𝜆�̅�

𝑑1𝑐
, ℎ1 =

𝐻1

𝑑1
, ℎ2 =

𝐻2

𝑑1
 , 𝑝 =  

𝑑1
2�̅�

𝜆𝜇𝑐
, 𝛿 =

𝑑1

𝜆
 , 𝛽1

∗ =
𝛽1

𝑑1
, 𝑆 =

 
𝑑1𝑆̅(�̅�)

𝜇𝑐
 , 𝑅𝑒 =

𝜌𝑐𝑑1

𝜇
, 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
, 𝑃𝑟 =

𝜇𝑐𝑃

𝑘
 , 𝐻 = 𝛽0𝑑1√

𝜎

𝜇
 , B =

𝜑 𝑑1
2

𝑘(∆𝑇)
 , 𝑎 =

𝑎1

𝑑1
 , 𝑏 =

𝑎2

𝑑1
 , 𝑅𝑛 =

16 𝜎∗𝑇0
3

3 𝑘∗𝜅
, 𝜇(𝜃) =

 𝜇(𝑇)

𝜇
, 𝑑 =

𝑑2

𝑑1
,𝑊 =

1

𝜇𝛽𝑐1
, 𝐴 =

𝑊

6𝛽𝑐1
              … (18) 

     Where ℎ1𝑎𝑛𝑑 ℎ2 are the dimensionless right and left walls surface, 𝑥, 𝑦, 𝑢, 𝑣 

components of the dimensionless coordinates, axial velocity, transverse component 

of velocity, 𝛿 is the wave number, 𝑅𝑒 is the Reynolds number, 𝜃 is the temperature 

distribution vector, 𝑃𝑟 Prandtl number, 𝐻 is the Hartman number, 𝐵 is the heat 

generation parameter, 𝑅𝑛 is thermal radiation parameter, note that we omitted 

asterisks for simplicity. 

Defining the stream function 𝜓(𝑥, 𝑦, 𝑡)  by 𝑢 = 𝜓𝑦 , 𝑣 = −𝛿𝜓𝑥                                                                                                                    

Applying Eqs. (18) Into Eqs. (12) – (17) and making use of stream function. Flow 

equations have the following form  

𝛿𝑅𝑒(−(𝜓𝑦 + 1)𝜓𝑥𝑦 − 𝛿𝜓𝑥𝜓𝑥𝑦) = −𝑃𝑥 + 𝛿
𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝜕𝑆𝑥𝑦

𝜕𝑦
− 𝐻2(𝜓𝑦 + 1) −

𝜇(𝜃)

𝜅
(𝜓𝑦 + 1)                                                              

… (19) 

𝛿3𝑅𝑒(−(𝜓𝑦 + 1)𝜓𝑥 − 𝜓𝑥𝜓𝑥𝑦) = −𝑃𝑦 + 𝛿
𝜕𝑆𝑦𝑦

𝜕𝑦
+ 𝛿2 𝜕𝑆𝑦𝑥

𝜕𝑥
+ 𝛿2  

𝜇(𝜃)

𝜅
𝜓𝑥 + 𝛿2𝐻2  𝜓𝑥                                                                                                                          

… (20) 

𝛿𝑅𝑒𝑃𝑟 ((𝜓𝑦 + 1)
𝜕𝜃

𝜕𝑥
− 𝜓𝑥

𝜕𝜃

𝜕𝑦
) = 𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 − 𝑅𝑛 
𝜕2𝜃

𝜕𝑦2 + B     … (21)  

Espousing the supposition of peristaltic long wavelength and low Reynolds number, 

Eqs. (19)- (21) will be reduced to the following form 

𝑃𝑥 =
𝜕𝑆𝑥𝑦

𝜕𝑦
− 𝐻2(𝜓𝑦 + 1) −

𝜇(𝜃)

𝜅
(𝜓𝑦 + 1),                       … (22) 

𝑃𝑦 = 0,                                                                                      … (23) 
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𝜕2𝜃

𝜕𝑦2 − 𝑅𝑛
𝜕2𝜃

𝜕𝑦2 + B = 0,                                                          … (24) 

From Eq. (6), we obtain 

𝑆𝑥𝑦 = (𝜇(Ɵ) + 1

𝜇𝛽𝑐
)𝜓𝑦𝑦 − 1

6𝛽𝜇𝑐𝑑1
2 (𝜓𝑦𝑦)

3

𝑆𝑦𝑥 = (𝜇(Ɵ) +
1

𝜇𝛽𝑐
)𝜓𝑦𝑦 −

1

6𝛽𝜇𝑐𝑑1
2 (𝜓𝑦𝑦)

3

]
 
 
 
 

     … (25) 

𝑆𝑥𝑥 = 𝛿 ( 𝜇(Ɵ)𝜓
𝑥𝑦

+
1

𝛽𝑐
𝜓

𝑥𝑦
−

1

6𝛽𝜇𝑐𝜆2
(𝜓

𝑥𝑦
)
3
)  

𝑆𝑦𝑦 = 𝛿 (−𝜇(Ɵ)𝑐𝛿𝜓
𝑥𝑦

− 𝛿
1

𝜇𝛽
𝜓

𝑥𝑦
+

1

6𝛽𝜇𝜆2
(𝛿𝜓

𝑥𝑦
)
3
)  

𝑆𝑥𝑥 = 0, 𝑆𝑦𝑦 = 0                                                        … (26) 

Connected with the following dimensionless temperature and velocity conditions 

𝜃 = 0  , 𝜓 =
𝐹

2
           𝑎𝑡 𝑦 = ℎ1

𝜃 = 1 , 𝜓 =
−𝐹

2
          𝑎𝑡 𝑦 =   ℎ2     
  

𝑢 = −1  𝑎𝑡  𝑦 = ℎ1, ℎ2 ]
 
 
 
 

 .                          … (27) 

Where 

 ℎ1 = 1 + 𝑎 (𝑠𝑖𝑛(2𝜋𝑥)) ,  ℎ2 = −𝑑 − 𝑏(𝑠𝑖𝑛(2𝜋𝑥 + ∅))                    

Furthermore, through Eqs. (22) And (23), we obtain 

𝜕2𝑆𝑥𝑦

𝜕𝑦2 − 𝐻2(𝜓𝑦𝑦) −
𝜕

𝜕𝑦
(

𝜇(𝜃)

𝜅
(𝜓𝑦 + 1)) = 0              … (28) 

Put a dimensionless approximate expression for 𝜇(𝜃) such [8] 

𝜇(𝜃) = 𝑒−𝜖𝜃 = 1 − 𝜖𝜃,     where 𝜖 < 1, 

𝜖 Is a non- dimensional viscosity parameter. 

The instantaneous volume flow rate in the laboratory frame is given as 

𝑄 = ∫ �̅�(�̅�, �̅�, 𝑡)𝑑�̅�
𝐻2

𝐻1
            … (29) 

Eq. (29) rewritten in wave frame as 

𝑞 = ∫ �̅�(�̅�, �̅�)𝑑�̅�
ℎ2

ℎ1
                  … (30) 

Using Eq. (13), the relationship between the two expressions is 

𝑄 = 𝑞 + 𝑐(ℎ1(�̅�) − ℎ2(�̅�))   … (31) 

The time mean flow over a period 𝑇1 = (𝜆/𝑐) at fixed frame is derived as 
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�̌� =
1

𝑇1
∫ 𝑄𝑑𝑡

𝑇1

0
                  … (32) 

Integrating the above equation and using Eq. (30), yields 

Φ = 𝑞 + 𝑐(𝑑1 + 𝑑2)       … (33) 

Introducing the dimensionless time mean flows, Φ and 𝐹, in fixed and wave frame, 

respectively as 

Φ =
Q̌

cd1
 , and  𝐹 =

𝑞

𝑐𝑑1
    … (34) 

In the fixed and moving frames, we can write Eq. (33) as 

Φ = F + 𝑑 + 1                 … (35) 

Where 

𝐹 = ∫ 𝑢(𝑥, 𝑦)𝑑𝑦
ℎ2(𝑥)

ℎ1(𝑥)
       

The non- dimensional pressure rise ∆𝑝 is obtained by the following expression  

∆𝑝 = ∫
𝑑𝑝

𝑑𝑥
𝑑𝑥

1

0
                … (36) 

3. Solution Technique  

We have two different ways to solve our equations are mentioned below: 

3.1 Exact Solution 

The temperature equation is solved exactly by integrating Eq. (24) twice with respect 

to 𝑦 as below 

𝜃 = −
𝑦2B

2
+ 𝑟1 + 𝑦r2.                                                        

Where  

r1 = −
2h2 + h1

2h2B − h1h2
2B

2(h1 − h2)
, 

𝑟2 = −
2 + h1

2B − h2
2B

2(−h1 + h2)
, 

3.2 Perturbation Method 

   We used the perturbation method for small non- dimensional viscosity parameter 𝜖 

and expanding the flow quantities in a power series of 𝜖 in the form 

 𝜓 = 𝜓0 + 𝜖 𝜓1                                      … (37) 

Substituting Eq. (37) in Eqs. (28) and (27), then comparing the coefficients of same 

power of 𝜖 up to the first order we obtain the following two systems 

3.2.1 Zeroth order system 

     The general form of zeroth- order system is: - 
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(1 + 𝑊) 𝜓0𝑦𝑦𝑦𝑦 − 𝐴
𝜕2

𝜕𝑦2
(𝜓0𝑦𝑦)

3
− (𝐻2 +

1

𝜅
)𝜓0𝑦𝑦 = 0             … (38) 

Now, we use the perturbation to 𝜓0 again for small Ree-Eyring fluid parameter 𝐴 as : 

𝜓0 = 𝜓00 + 𝐴𝜓01 + ⋯                       … (39) 

Substituting Eq. (39) in Eq. (38) gives: 

3.2.1.1 Zeroth order 𝑨𝟎 

(1 + 𝑊) 𝜓00𝑦𝑦𝑦𝑦 − (𝐻2 +
1

𝜅
)𝜓00𝑦𝑦 = 0                         … (40) 

3.2.1.2 First order 𝑨𝟏 

(1 + 𝑊) 𝜓01𝑦𝑦𝑦𝑦 −
𝜕2

𝜕𝑦2 ((𝜓00𝑦𝑦)
3
) − (𝐻2 +

1

𝜅
)𝜓01𝑦𝑦 = 0         … (41) 

    3.2.2 First order system 𝝐𝟏  

The general form of the first order system is 

(1 + 𝑊) 𝜓1𝑦𝑦𝑦𝑦 − 𝜃 𝜓0𝑦𝑦𝑦𝑦 − 2
𝜕𝜃

𝜕𝑦
 𝜓0𝑦𝑦𝑦 −

𝜕2𝜃

𝜕𝑦2  𝜓0𝑦𝑦 − 𝐴
𝜕2

𝜕𝑦2 ((𝜓0𝑦𝑦)
2
(𝜓1𝑦𝑦)) −

(𝐻2 +
1

𝜅
)𝜓1𝑦𝑦 +

1

𝜅

𝜕𝜃

𝜕𝑦
( 𝜓0𝑦 + 1) +

𝜃

𝜅
 𝜓0𝑦𝑦 = 0   … (42) 

By using the perturbation to 𝐴 again as follows  

𝜓1 = 𝜓10 + 𝐴𝜓11                                   … (43) 

Substituting Eq. (43) in Eq. (42) gives: 

3.2.2.1 Zeroth order for  𝝐𝟏, 𝑨𝟎  

(1 + 𝑊) 𝜓10𝑦𝑦𝑦𝑦 − 𝜃 𝜓00𝑦𝑦𝑦𝑦 − (𝐻2 +
1

𝜅
)𝜓10𝑦𝑦 +

𝜃

𝜅
 𝜓00𝑦𝑦 +

1

𝜅

𝜕𝜃

𝜕𝑦
( 𝜓00𝑦 + 1) −

𝜃 𝜓00𝑦𝑦𝑦𝑦 − 2
𝜕𝜃

𝜕𝑦
 𝜓00𝑦𝑦𝑦 −

𝜕2𝜃

𝜕𝑦2  𝜓00𝑦𝑦 = 0             … (44) 

3.2.2.2 First order for 𝑨𝟏   

(1 + 𝑊) 𝜓11𝑦𝑦𝑦𝑦 − 𝜃 𝜓01𝑦𝑦𝑦𝑦 −
𝜕2

𝜕𝑦2 ((𝜓00𝑦𝑦)
2
( 𝜓10𝑦𝑦)) − (𝐻2 +

1

𝜅
)𝜓11𝑦𝑦 +

𝜃

𝜅
 𝜓01𝑦𝑦 +

1

𝜅

𝜕𝜃

𝜕𝑦
( 𝜓01𝑦 + 1) − 2

𝜕𝜃

𝜕𝑦
 𝜓01𝑦𝑦𝑦 −

𝜕2𝜃

𝜕𝑦2  𝜓01𝑦𝑦 = 0                    … (45) 

Solving the both of systems using Mathematica program we get the closed form for 𝜓 

𝜓 = 𝜓00 + 𝐴𝜓01 + 𝜖(𝜓10 + 𝐴𝜓11) . 

Where 

𝜓00 =
𝑒−𝜉𝑦(𝑒2𝜉𝑦𝑐1+𝑐2)

𝑣2 + 𝑐3 + 𝑦𝑐4, 

𝜓10 = 𝑐11 + 𝑦𝑐12 + 𝐾1(−𝑒2𝜉𝑦𝐵1(𝐴2 + 𝐴3) + 𝐴4) , 

𝜓11 = 𝐾2(𝐷1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7 + 𝐷8 + 𝐷9 + 𝐷10 + 𝐷11 + 𝐷12 + 𝐷13 +

𝐷14) + 𝑐15 +  𝑦𝑐16. 
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In which  

A1 =
(18𝑒4𝜉𝑦(−5+2𝜉𝑦)𝑐1

2𝑐2+18𝑒2𝜉𝑦(5+2𝜉𝑦)𝑐1𝑐2
2−𝑐2

3))

24𝜉3(1+𝑊)
  

𝐿1 =
(𝑒−3𝜉𝑦(24𝑒2𝜉𝑦𝜉(𝑒2𝜉𝑦𝑐5+𝑐6)+𝑒6𝜉𝑦𝑐1

3)

24𝜉3(1+𝑊)
  

 

𝐾1 =
1

48𝜉6𝜅
𝑒−𝜉𝑦 , 

𝐴2 = (−𝑒2𝜉𝑦(45 − 42𝑣𝑦 + 3𝜉2(6𝑦2 − 𝜅) − 6𝜉4𝑦2𝜅 + 4𝜉5𝑦3𝜅 + 𝜉3(−4𝑦3 + 6𝑦𝜅))𝑐1), 

𝐴3 = (−45 − 42𝜉𝑦 + 6𝜉4𝑦2𝜅 + 4𝜉5𝑦3𝜅 + 3𝜉2(−6𝑦2 + 𝜅) + 𝜉(−4𝑦3 + 6𝑦𝜅))𝑐2 −

8𝑒𝜉𝑦𝜉4𝑦3𝑐4), 

𝐴4 = 6𝜉 (𝑒2𝜉𝑦𝑐1(2𝜉(−5 + 2𝜉𝑦)(−1 + 𝜉2𝜅)𝑟1 + (−7 + 6𝜉𝑦 − 2𝜉3𝑦𝜅 + 2𝜉4𝑦2𝜅 −

𝜉2(2𝑦2 + 3𝜅))𝑟2) + 𝑐2(−2𝜉(5 + 2𝜉𝑦)(−1 + 𝜉2𝜅)𝑟1 + (7 + 6𝜉𝑦 − 2𝜉3𝑦𝜅 − 2𝜉4𝑦2𝜅 +

𝜉2(2𝑦2 + 3𝜅))𝑟2) + 4𝜉3 (2𝜅(𝑒2𝜉𝑦𝑐9 + 𝑐10)) + 𝑒𝜉𝑦𝑦2𝑐4𝑟2) , 

𝜉 = √(𝐻2 +
1

𝜅
) ,   𝐵1 =

1

(1+𝑅𝑛)
  

𝐾2 = 
1

27648𝜉7𝜅
𝑒−3𝜉𝑦 , 

𝐷1 = −𝐵1(𝑒
6𝜉𝑦(−115 + 3𝜉(−171 + 52𝑦) − 9𝜉2(−36𝑦 + 8𝑦2 − 63𝜅) + 648𝜉5𝑦2𝜅 +

288𝜉6𝑦3𝜅 + 27(8𝑦2 + 7𝜅 − 36𝑦𝜅) − 36𝜉4𝑦(8𝑦2 + 21𝜅 − 18𝑦𝜅))𝑐1
3, 

𝐷2 =  288𝑒2𝜉𝑦(621 + 3𝜉(7 + 198𝑦) + 18𝜉2(𝑦 + 15𝑦2 − 𝜅) + 𝜉7𝑦4𝜅 − 𝜉6𝑦3(16 +

9𝑦)𝜅 + 𝜉4𝑦(4𝑦2 + 9𝑦3 − 12𝜅 − 36𝑦𝜅) + 𝜉3(9𝑦2 + 72𝑦3 + 6𝜅 − 36𝑦𝜅) −

𝜉5𝑦2(𝑦2 + 21𝜅 + 24𝑦𝜅))𝑐1𝑐2
2, 

𝐷3 = (115 + 3𝜉(−171 + 52𝑦) + 9𝜉2(−36𝑦 + 8𝑦2 − 63𝜅) + 648 𝜉5𝑦2𝜅 −

288𝜉6𝑦3𝜅 + 27𝜉3(8𝑦2 + 7𝜅 − 36𝑦𝜅) + 36𝜉4𝑦(8𝑦2 + 21𝜅 − 18𝑦𝜅))𝑐2
3, 

𝐷4 =  3072𝑒𝜉𝑦𝜉2(4 + 3𝜉𝑦)𝑐2
2𝑐4, 

𝐷5 =  96𝑒4𝜉𝑦𝑐1
2(−621 + 3𝜉(7 + 198𝑦) − 18𝜉2(𝑦 + 15𝑦2 − 𝜅) + 𝜉6𝑦3(16 + 9𝑦)𝜅 +

𝜉3(9𝑦2 + 72𝑦3 + 6𝜅 − 36𝑦𝜅) − 𝜉5𝑦2(𝑦2 + 21𝜅 + 24𝑦𝜅) + 𝜉4𝑦(−4𝑦2 − 9𝑦3 + 12𝜅 +

36𝑦𝜅))𝑐2 + 32𝑒𝜉𝑦𝜉2(−4 + 3𝜉𝑦)𝑐4), 

𝐷6 =  576𝑒2𝜉𝑦𝜉(𝑒2𝜉𝑦(45 − 42𝜉𝑦 + 3𝜉2(6𝑦2 − 𝜅) − 6𝜉4𝑦2𝜅 + 4𝜉5𝑦3𝜅 + 𝜉3(−4𝑦3 +

6𝑦𝜅))𝑐5 + (45 + 42𝜉𝑦 + 3𝜉2(6𝑦2 − 𝜅) − 6𝜉4𝑦2𝜅 − 4𝜉5𝑦3𝜅 + 𝜉3(4𝑦3 − 6𝑦𝜅))𝑐6 +

8𝑒𝜉𝑦𝜉4𝑦3𝑐8)), 

𝐷7 =  12(𝑒6𝜉𝑦𝜉𝑐1
3(12𝜉(−1 + 15𝜉 − 15𝜉3𝜅 + 12𝜉4𝑦𝜅 + 𝜉2(−12𝑦 + 9𝜅))𝑟1 +

(13 − 3𝜉(−9 + 4𝑦) + 9𝜉2(4𝑦 − 9𝜅) + 108𝑦𝜅𝜉4 + 72𝜉5𝑦2𝜅 − 9𝜉3(8𝑦2 + 23𝜅 −

12𝑦𝜅))𝑟2), 

𝐷8 =  𝜉𝑐2
3(−12𝜉(−1 − 15𝜉 + 15𝜉3𝜅 + 12𝜉4𝑦𝜅 + 𝜉2(−12𝑦 + 9𝜅))𝑟1 + (13 +

3𝜉(−9 + 4𝑦) + 9𝜉2(4𝑦 − 9𝜅) + 108𝜉4𝑦𝜅 − 72𝜉5𝑦2𝜅 + 9𝜉3(8𝑦2 + 23𝜅 − 12𝑦𝜅))𝑟2), 
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𝐷9 = −96𝑐2
2(6𝑒2𝜉𝑦𝜉5(5 + 2𝜉𝑦)𝜅𝑐9 − 3𝜉5𝜅𝑐10 − 2𝑒𝜉𝑦𝑐4𝑟2), 

𝐷10 =  24𝑒4𝜉𝑦𝑐1
2(12𝑒2𝜉𝑦𝜉5𝜅𝑐9 + 24𝜉5(−5 + 2𝜉𝑦)𝜅𝑐10 − 396𝜉2𝑐2𝑟1 − 72𝜉3𝑐2𝑟1 +

216𝜉3𝑦𝑐2𝑟1 + 48𝜉4𝑦𝑐2𝑟1 − 36𝜉4𝑦2𝑐2𝑟1 − 12𝜉5𝑦2𝑐2𝑟1 + 36𝜉4𝜅𝑐2𝑟1 + 72𝜉5𝜅𝑐2𝑟1 −

72𝜉5𝑦𝜅𝑐2𝑟1 − 48𝜉6𝑦𝜅𝑐2𝑟1 + 36𝜉6𝑦2𝜅𝑐2𝑟1 + 12𝜉7𝑦2𝜅𝑐2𝑟1 + 459𝜉𝑐2𝑟2 + 15𝜉2𝑐2𝑟2 −

414𝜉2𝑦𝑐2𝑟2 + 18𝜉3𝑦𝑐2𝑟2 + 162𝜉3𝑦2𝑐2𝑟2 − 12𝜉4𝑦2𝑐2𝑟2 − 24𝜉4𝑦3𝑐2𝑟2 − 4𝜉5𝑦3𝑐2𝑟2 +

9𝜉3𝜅𝑐2𝑟2 − 39𝜉4𝜅𝑐2𝑟2 + 54𝜉4𝑦𝜅𝑐2𝑟2 − 66𝜉5𝑦𝜅𝑐2𝑟2 − 54𝜉5𝑦2𝜅𝑐2𝑟2 + 48𝜉6𝑦2𝜅𝑐2𝑟2 +

24𝜉6𝑦3𝜅𝑐2𝑟2 + 4𝜉7𝑦3𝜅𝑐2𝑟2 + 8𝑒𝜉𝑦𝑐4𝑟2), 

𝐷11 =  24𝑒2𝜉𝑦𝜉𝑐1𝑐2(48𝑒2𝜉𝑦𝜉4(−5 + 2𝜉𝑦)𝜅𝑐9 − 48𝜉4(5 + 2𝜉𝑦)𝜅𝑐10 + 𝑐2(12𝜉(33 +

6𝜉(−1 + 3𝑦) + 𝜉2(−4𝑦 + 3𝑦2 − 3𝜅) + 𝜉4(4 − 3𝑦)𝑦𝜅 + 𝜉5𝑦2𝜅 − 𝜉3(𝑦2 − 6𝜅 +

6𝑦𝜅))𝑟1, 

𝐷12 = (459 + 3𝜉(−5 + 138𝑦) + 4𝜉6𝑦3𝜅 − 24𝜉5𝑦2(2 + 𝑦)𝜅 + 9𝜉2(2𝑦 + 18𝑦2 + 𝜅) +

3𝜉3(4𝑦2 + 8𝑦3 + 13𝜅 − 18𝑦𝜅) − 2𝜉4𝑦(2𝑦2 + 33𝜅 + 27𝑦𝜅))𝑟2)), 

𝐷13 =  288𝑒2𝜉𝑦𝜉2(𝑒2𝜉𝑦𝑐5(2𝜉(−5 + 2𝜉𝑦)(−1 + 𝜉2𝜅)𝑟1 + (−7 + 6𝜉𝑦 − 2𝜉3𝑦𝜅 +

2𝜉4𝑦2𝜅 − 𝜉2(2𝑦2 + 3𝜅))𝑟2), 

𝐷14 = 𝑐6(−2𝜉(5 + 2𝜉𝑦)(−1 + 𝜉2𝜅)𝑟1 + (7 + 6𝜉𝑦 − 2𝜉3𝑦𝜅 − 2𝜉4𝑦2𝜅 + 𝜉2(2𝑦2 +

3𝜅))𝑟2) + 4𝜉3(2𝜅(𝑒2𝜉𝑦𝑐13 + 𝑐14) + 𝑒𝜉𝑦𝑦2𝑐8𝑟2))).  

And 

𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8, 𝑐9, 𝑐10, 𝑐11, 𝑐12, 𝑐13, 𝑐14, 𝑐15, 𝑐16 can be found By applying the 

boundary conditions using simple calculations. 

4. Result and Discussions 

In this section, we displayed graphically the effect of different physical parameters on 
velocity profile, temperature distribution, pressure rise, pressure gradient. In 
addition, the stream function that corresponds to a specific situation for Ree-Eyring. 
The solutions of the temperature distributions have been found analytically, while for 
finding the velocity, temperature distribution, stream function, pressure gradient and 
pressure rise we employed a method of perturbation by using the software 
MATHEMATICA. 
 

4.1. Velocity distribution 

This part shows the behavior of velocity distribution with the following 
parameters (𝐻, 𝐴, 𝜅,𝑊,𝐵, 𝜖) and for fixed values of (𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.3,Rn =

0.3, 𝜙 =
Pi

6
, 𝑥 = 0.1, Φ = 0.1) are investigated graphically. The graphs depict that the 

velocity profile is a concave downward also we noticed that the magnitude of velocity 

reach a fixed value in the central part of the channel, figure 1(a) is plotted to describe 

the action of Hartman number 𝐻 on velocity distribution it shows that the velocity 

axial is a decreasing behavior toward the walls while a certain magnitude is seen in 

the range(−0.2 ≤ 𝑥 ≤ 1.1). Similar observation is seen for different values of the Ree-

Eyring parameter 𝐴 see figure 1(b) While it turns out from figure 2(a), 2(b) and figure 

3(a) that the impact of permeability parameter 𝜅, the Ree-Eyring parameter 𝑊 and 𝐵 

are same i.e. they have an increment action on 𝑢(𝑦) near the right and left walls. 
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Whereas figure 3(b) reveals that 𝑢(𝑦) increases near the left wall for ascending 

magnitude of 𝜖 non- dimensional viscosity parameter while it decreases near the 

right wall and its value keeps fixed in the central part.   

                                       

 

 

 

 

                                        (a)                                                                 (b) 

 
Figure 1:  Velocity distribution is for different values of (a) Hartman number 𝐻 (b) Ree-Eyring 

parameter A and when {𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.3, Rn = 0.3,𝜙 =
Pi

6
, 𝑥 = 0.1,Φ = 0.1}                                                     

                                        (a)                                                                                              (b) 

 
Figure 2:  Velocity distribution is for different values of (a) permeability parameter 𝜅  (b) Ree-Eyring 

parameter W and when {𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.3, Rn = 0.3,𝜙 =
Pi

6
, 𝑥 = 0.1,Φ = 0.1} 
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(a)                                                                         (b) 

  

Figure 3: Velocity distribution is for different values of non-dimensional (a) heat source parameter 𝐵  

(b) viscosity parameter ϵ and when {𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.3, Rn = 0.3,𝜙 =
Pi

6
, 𝑥 = 0.1, Φ = 0.1} 

 

4 .2 Pumping characteristics 

 

 In this part of work, the response in pressure gradient 𝑑𝑝/𝑑𝑥 and the pressure rise 
per wavelength ∆𝑝 to various emerging parameters involving in our problem is 
present. Figures 4(a)-5(b) illustrate the variation in 𝑑𝑝/𝑑𝑥 against axial coordinate. 
Figures 4(a)-5(b), demonstrate two different observations for Ree-Eyring fluid 
parameter and Hartman number 𝑊𝑎𝑛𝑑 𝐻, phase difference parameter ∅ and porous 
permeability 𝜅 variation respectively, we visualized from figures of 𝑑𝑝/𝑑𝑥 that the 
pressure gradient curve behaviors is an oscillatory in nature. Moreover some points 
of reflections on the 𝑑𝑝/𝑑𝑥 curves which opposite the state from increase to decrease 
and vice versa are depicted. We noticed that the enhancement of  𝑊 and  𝐻 values 
required modification in pressure gradient 𝑑𝑝/𝑑𝑥 in the central part of the channel to 
pass the same amount of fluid flux pass it more than near the right and left walls 
which means the flow can be easily passedwithout imposing much 𝑑𝑝/𝑑𝑥 in those 
regions, whereas opposite situations induced for ascending values of 𝐴 and 𝜅 
parameters.  

   The evolution of pressure rise per wavelength ∆𝑝𝜆 versus alteration in flow rate Φ is 

recorded in figures 6(a)-7(b) for fixed parameters (𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.03,Rn =

0.3, 𝐵 = 0.4, 𝜙 =
Pi

3
, 𝑦 = 0.1, 𝑑 = 0.1, 𝐴 = 0.4) and variation magnitude of(𝐻, 𝜅, 𝜖, 𝐴).  

A linear relationship between  ∆𝑝𝜆 and Φ is proven from these figures. Figure 6(a) 
exhibits elevation in pumping rate(∆𝑝𝜆 > 0,Φ > 0) , and retrograde pumping region 
(∆𝑝𝜆 > 0,Φ < 0) however, a depressing in co-pumping region (∆𝑝𝜆 < 0,Φ > 0) with 
enhancement of Hartman number𝐻. While the rise in permeability parameter 𝜅 tends 
to damp pumping rate(∆𝑝𝜆 > 0), and retrograde pumping region (Φ < 0) whereas 
this behavior is reversed in co-pumping region see figure 6(b). Higher values of 
dimensionless viscosity parameter 𝜖 is a decreasing function on both regions 
pumping region and retrograde pumping but it is found an increment in the co-
pumping region via Figure. 7(a). It is noted from figure 7(b) that an increase in Ree-
Eyring fluid parameter 𝑊 modified the retrograde pumping region (∆𝑝𝜆 > 0,Φ < 0) 
and diminished co-pumping region(∆𝑝𝜆 < 0,Φ > 0). 
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                                     (a)                                                                       (b) 

 
Figure 4:  Pressure gradient versus axial distance 𝑥 is for different values of (a) Ree-Eyring fluid 

parameter 𝑊 (b) Hartman number H and when { 𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.03, Rn = 0.3, 𝐵 = 0.4,𝜙 =
Pi

3
, 𝑦 = 0.1, 𝑑 = 0.1, 𝐴 = 0.4} 

                                       

 

 

 

 

 

                                 (a)                                                                          (b) 

 
Figure 5: Pressure gradient versus axial distance 𝑥 is for different values of (a) phase difference 

parameter 𝜙 (b) porosity parameter 𝜅 and when { 𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.03, Rn = 0.3, 𝐵 = 0.4,𝜙 =
Pi

3
, 𝑦 = 0.1, 𝑑 = 0.1, 𝐴 = 0.4} 
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                                           (a)                                                                                           (b) 

 
Figure 6: Pressure rise against flow rate Φ is for different values of (a) Hartman number 𝐻 (b) 

porosity parameter𝜅 and when { 𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.03, Rn = 0.3, 𝐵 = 0.4,𝜙 =
Pi

3
, 𝑦 = 0.1, 𝑑 =

0.1, 𝐴 = 0.4} 

                                        (a)                                                                     (b) 

 
Figure 7:  pressure rise is for different values of (a) dimensionless viscosity parameter 𝜖 (b) Ree-

Eyring fluid parameter W and when { 𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.03, Rn = 0.3, 𝐵 = 0.4, 𝜙 =
Pi

3
, 𝑦 =

0.1, 𝑑 = 0.1, 𝐴 = 0.4} 

 

4.3. Temperature distribution 

 

Behavior of dimensionless temperature distribution profile against the perpendicular 

coordinate 𝑦 is analyzed graphically for variation values of thermal radiation 

parameter 𝑅𝑛 heat generation parameter 𝐵, phase difference parameter ∅, right wall 

amplitude ratio parameter 𝑎. Figure 8(a) shows an increment behavior on 𝜃(𝑦) for 

higher values of 𝑅𝑛 toward the left and right walls while hardly effect is seen near the 
middle part of peristaltic wave for(−1 ≤ 𝑦 ≤ 2). Whereas quite opposite features of 

increasing magnitude of 𝐵 on 𝜃(𝑦) is noticed i.e. reduction function depicted near the 

walls however rise in the profile is observed at the central region of the channel see 

figuer 8(b). Two different situations in figure 9(a) is concluded for ascending values 
of ∅ a decreasing function for 𝜃(𝑦) at the region 𝑦 ∈ (−4, 1) while the feature 

reversed to an enhancement in for 𝜃(𝑦) at 𝑦 ∈ (2, 6). It can be seen from figure 9(b) 

that increase value of 𝑎 reduces the temperature distribution profile. 
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                                    (a)                                                                           (b) 

 

Figure 8: Temperature distribution profile is for different values of (a) thermal radiation parameter 

𝑅𝑛 (b) heat generation parameter𝐵 and when {𝑎 = 0.1, 𝑏 = 0.1, 𝑑 = 0.1,𝜙 =
Pi

6
, 𝑥 = 0.1} 

                                   (a)                                                                          (b) 

 
Figure 9: Temperature distribution profile is for different values of (a) phase difference parameter 
∅(b) right wall amplitude parameter 𝑎 and when {𝑏 = 0.1, 𝑑 = 0.1, Rn = 0.1, 𝐵 = 0.2, 𝑥 = 0.1}. 
 

 

4.4. Trapping: stream lines 

 

 A phenomenon is another interesting part in our work which defines bolus as a 

closed amount of fluid trapped by streamlines. We displayed some results of the 

phenomenon of trapping in figures 10-14. Graphical results show that for ascending 

values of dimensionless viscosity parameter(𝜖) the trapping bolus shrink in size as 

shown in figure 10. While figure 11. Highlighted that an increment of Hartman 

number H due to increases in Lorentz force which resist the fluid flow and as a result 

the size of trapping bolus decreases. The influences of the porosity parameter on 

streamlines are shown in figure 12. It shows that rise in porosity parameter 𝜅 values 

tends the trapped bolus to enhance in size and number. From figure 13 we 

demonstrate that a larger value of phase difference (∅ = 𝜋) diminished the trapped 
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bolus. We observe that the size and number of the trapped bolus enhance with 

increasing of Ree-Eyring parameter 𝐴 shown in figure 14. 

                                 

                                   (a)                                                                             (b) 

 
Figure 10: Streamlines is for variation of dimensionless viscosity parameter 𝜖 = {0.1,0.5} and for fixed 

parameters {𝑎 = 0.01, 𝑏 = 0.1, d1 = 0.3, Rn = 0.3, 𝐵 = 0.4,𝜙 =
Pi

6
, 𝑊 = 0.1, 𝐻 = 0.1, 𝜅 = 0.1, 𝐴 =

0.3,𝛷 = 0.1} 

 
 

 

                                        (a)                                                                                             (b) 

 
Figure 11: Streamlines is for variation of Hartman number  𝐻 = {0.5,1} and for fixed parameters  {𝑎 =

0.01, 𝑏 = 0.1, d2 = 0.3, Rn = 0.3, 𝐵 = 0.4,𝜙 =
Pi

6
, 𝑊 = 0.1, 𝜅 = 0.1, 𝜖 = 0.1, 𝐴 = 0.3,𝛷 = 0.1} 
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                                   (a)                                                                            (b) 

 

Figure 12: Streamlines is for variation of porosity parameter 𝜅 = {0.5, 2} and for fixed parameters 

{𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.3, Rn = 0.3, 𝐵 = 0.4,𝜙 =
Pi

6
,𝑊 = 0.1,𝐻 = 0.1, 𝜖 = 0.1, 𝐴 = 0.3,𝛷 = 0.1} 

                                          

 

                                     (a)                                                                          (b) 

 

Figure 13:  Streamlines is for variation of phase difference parameter 𝜙 = {
𝜋

6
, 𝜋} and for fixed 

parameters   {𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.3, Rn = 0.3, 𝐵 = 0.4,𝑊 = 0.1, 𝜅 = 0.1,H = 0.1, 𝜖 = 0.1, 𝐴 =

0.3,𝛷 = 0.1}      
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                                   (a)                                                                            (b) 

 
Figure 14: Streamlines is for variation of Ree-Eyring fluid parameter  𝐴 = {0.1, 0.5} and for fixed 

parameters  {𝑎 = 0.01, 𝑏 = 0.1, d2 = 0.3, Rn = 0.3, 𝐵 = 0.4, 𝜙 =
Pi

6
, 𝑊 = 0.1, 𝐻 = 0.1, 𝜅 = 0.1, Gr =

0.1, 𝜖 = 0.1} 

 

 

5. Conclusion 

     

   The peristaltic transport of non- Newtonian (MHD) blood flow Ree-Eyring fluid with 
temperature-dependent viscosity influence through a porous medium flows in an 
asymmetric channel is studied. Considering assumptions of long wavelength and low 
Reynolds number the problem are simplified and reduced into a set of nonlinear 
differential equations in which the equations of temperature distributions is solved 
analytically, while for finding the stream function we employed a perturbation 
method. A parametric analysis is permitted through various graphs that made us 
found conclusions with some important perceptions 
 
1. The velocity profile attained a parabolic structure as well as its magnitude remains 

stable in the central part of the channel for all parameters. Moreover, we noticed from 

figures that the velocity axial reduces due to increases in Hartman number 𝐻 whereas 

opposite behavior for porosity parameter 𝜅. 

2.  The two Ree-Eyring parameters 𝐴 and 𝑊 have an opposite effect on velocity axial. 

However, the velocity profile enhances along the left wall while, inverse relationship 

is seen toward the right wall for higher values of dimensionless viscosity parameter 𝜖. 

3. The temperature distribution is an increasing function near the walls and 

reduction function in the middle region from the channel with the thermal radiation 

parameter 𝑅𝑛, but the feature is reversed for increment magnitude of heat generation 

parameter 𝐵. 
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4. Rise in 𝐻 and Ree-Eyring 𝑊 parameters caused deceleration in the axial pressure 

gradient near the walls and increases at the central part of the channel. While, the 

behavior is reflected for high values of phase difference parameter 𝜙, and porosity 𝜅. 

5. The impact of 𝜖 and 𝜅 on pressure rise are qualitatively similar. They enhance the 

pumping region and retard the augment pumping region while the impact of 𝐻 and 𝑊 

parameters on pressure rise are quite opposite. 

6. It is predicted that the trapped bolus disappeared when the phase difference 
parameter is (𝜙 = 𝜋). Furthermore, larger value of 𝐴 parameter increases the 

trapped bolus in size and number. 
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