On Semi Feebly Open Set and its Properties

Raad Aziz Hussain Al-Abdulla
Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, raaadhussain@qu.edu.iq

Othman Rhaif Madlooi Al-Chrani
Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, othmanr706@gmail.com

Follow this and additional works at: https://qjps.researchcommons.org/home
Part of the Mathematics Commons

Recommended Citation
DOI: 10.29350/qjps.2020.25.3.1096
Available at: https://qjps.researchcommons.org/home/vol25/iss3/3

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.
On Semi Feebly Open Set and its Properties

1. Introduction

The topological idea from study this set is generalization the properties and using it's to prove the theorems. In [7] N. Leven (1963) gives the definition of semi open(s-open) set, semi closed (s-closed) set and studies the properties of it . He defined a set A named (s-open) set in topological space \mathcal{X} if find an open set $O \subseteq A \subseteq \overline{O}$ where \overline{O} denoted by the closure of O in \mathcal{X}, the complement semi-open (s-open) set called semi-closed (s-closed) set. In (1971) S. G. Crossiey and S. K. Hildebrand defined the concept semi closure and they defined it, the semi closure of a set A in topological space \mathcal{X} is the smallest semi-closed (s-closed) set contained A [2] and shortened by $Scl(A)$ or \overline{A}^s. The truth \overline{A}^s is the intersection of all semi closed sets contained A, $\overline{A}^s \subseteq \overline{A}$ and $\overline{A}^s = \overline{A}^s$. Maheswari and Tapi (1978) in [3] defined feebly closed (f-closed), feebly open (f-open) set. A set A in a topological space \mathcal{X} named feebly open (f-open) set in \mathcal{X} if find an open set V such that $V \subseteq A \subseteq \overline{V}^s$. A set A in a topological space \mathcal{X} is feebly closed...
if it is complement is feebly open. Every open is (f-open)set, but the converse may be not true. Every closed is (f-closed) set, but the converse may be not true.

We will use the (tp-s) symbol to denote the topological space, (s-open) to semi open set, (s-closed) to semi closed set, (f-open) to feebly open set and (f-closed) to feebly closed set. wherever it is found in this paper.

2. Preliminaries

Definition (2.1)[7]: Assume that \((X, t) \) is a tp-s \& \(A \subseteq X \). Then \(A \) is named s-open in \(X \) if there exists \(O \in t : O \subseteq A \subseteq \overline{O} \). Or equivalent [5], \(A \) called s-open in \(X \) \(\iff \) \(A \subseteq \overline{A} \), equivalent \(\overline{A} = \overline{\overline{A}} \), the complement of s-open is named s-closed.

Definition (2.2)[7]: Let \((X, t) \) be tp-s \& \(A \subseteq X \) then \(A \) called s-closed in \(X \) if there exists a closed set \(F \) such that \(F^o \subseteq A \subseteq F \), or equivalent[5], \(A \) is s-closed in \(X \) \(\iff \) \(\overline{A} \subseteq \overline{A} \), equivalent \(A^o \overline{\overline{A}} \).

Definition (2.3)[5]: Let \((X, t) \) be tp-s \& \(A \subseteq X \), then the intersection of all s-closed subset of \(X \) contained \(A \) named (s-closure) of \(A \) and the union of all s-open subset of \(X \) contained \(A \) named (s-interior) of \(A \) and are shortened by \(\overline{A}^s \), \(A^s \) respectively.

Proposition (2.4)[7]: Let \(\{ A_\lambda \}_{\lambda \in \Lambda} \) be a family of s-open in a tp-s \(X \) then \(\bigcup_{\lambda \in \Lambda} A_\lambda \) is s-open.

Proposition (2.5)[7]: Let \(X \) be a tp-s then the intersection of two s-open in \(X \) does not need to be s-open.

Example (2.6): Let \(X = \{ k, v, h \}, t = \{ \{k\}, \{v\}, \{k, v\}, X, \emptyset \} \) then each of \{k, h\}, \{v, h\} are s-open, but \{k, h\} \(\cap \) \{v, h\} = \{h\} not s-open.

Definition (2.7)[4]: The intersection of every semi open subset of tp-s \(X \) contained a set \(A \) is named Semi kernel of \(A \) and shortened by \((S \ker (A)) \).

Means that: \(S \ker (A) = \cap \{ U : U \text{ s-open and } A \subseteq U \} \).

Definition (2.8)[8]: A set \(A \) in a tp-s \(X \) called f-open in \(X \) if there exists an open set \(V \) such that \(V \subseteq A \subseteq \overline{V}^s \), or equivalent, A set \(A \) called f-open in \(X \) if and only if \(A \subseteq \overline{A}^s \), the complement of f-open is called f-closed that \(\overline{A}^s \subseteq A \).

Remark (2.9)[6]: Let \((X, t) \) be tp-s \& \(A \subseteq X \) then \(A \) is f-open and \(A^c \) is f-closed.

But the converse is not true in general as in the next example.

Example (2.10): Assume that \(X = \{1,2,3,4,5\} \) and \(t = \{ \emptyset, X, \{1\}, \{2,4\}, \{1,2,4\} \} \) then, f-open sets are \{\emptyset, X, \{1\}, \{2,4\}, \{1,2,4\}, \{1,2,3,4\} \}, f-closed sets are \{\emptyset, X, \{2,3\}, \{1,3,5\}, \{3,5\}, \{5\} \}.

Take \(A = \{1,2,3,4\} \) is f-open, but it not open set & \(A^c = \{5\} \) f-closed, but it is not closed.

Proposition (2.11)[9]: Assume that \((X, t) \) is a tp-s & \(A, B \) subsets of \(X \) then:
1. A^f f-closed.
2. $A \subseteq A^f$.
3. A is (f-closed) $\iff A = \overline{A^f}$.
4. $A \subseteq B \Rightarrow \overline{A^f} \subseteq \overline{B^f}$.
5. If $\{ A_\lambda \}_{\lambda \in \Lambda}$ be a collection of subset of X then $\bigcup_{\lambda \in \Lambda} \overline{A_\lambda}^f = \bigcup_{\lambda \in \Lambda} \overline{A_\lambda}^f$.
6. If $\{ A_\lambda \}_{\lambda \in \Lambda}$ be a collection of subset of X then $\bigcap_{\lambda \in \Lambda} \overline{A_\lambda}^f \subseteq \bigcap_{\lambda \in \Lambda} \overline{A_\lambda}^f$.
7. $A^f = \overline{A}^f$.
8. $\overline{A}^f \subseteq A$.
9. $\overline{A}^f = \overline{\overline{A}}^f = \overline{A}$.
10. $\overline{A^f} = A \cup A'$.
11. $\overline{A}^f = A \cup \overline{A}$.
12. $x \in \overline{A}^f \iff$ any f-open G contained x, $A \cap G \neq \emptyset$.

Proposition (2.12)[9]: Let X be a tp-s A, B subset of X where B f-open, If $x \in B$ and $A \cap B = \emptyset$ then $x \notin \overline{A}^f$.

Definition (2.13)[10]: Let X be a tp-s a subset A of X is said to be

i. Dense or (every dense) in X $\iff \overline{A} = X$.

ii. Nowhere dense or (non-dense) in X iff $(\overline{A})^* = \emptyset$.

Definition (2.14)[5]: Let (X, t) be a tp-s and $A \subseteq X$, A is named preopen (p-open) if $A \subseteq \overline{A}$ and A^c is named pre closed (p-closed) that $\overline{A}^c \subseteq A$.

Lemma (2.15)[4]: Every singleton $\{ x \}$ in a tp-s X is either nowhere dense or preopen.

3. The Main Results

Definition (3.1): Assume that (X, t) is a tp-s then a subset A in a space X is named semi feebly open (sf-open) set in a space X if $A \subseteq U$ where U semi open set in X then $\overline{A}^f \subseteq U$. The complement of semi feebly open is called semi feebly closed (sf-closed) it is as follows $U \subseteq A^{sf}$ where U semi closed set in X.
Example (3.2): Let $X = \{k, v, h\}$, $\tau = \{X, \emptyset, \{k\}\}$ then

open set: $\{X, \emptyset, \{k\}\}$, closed set: $\{\emptyset, X, \{v, h\}\}$

s-open: $\{\emptyset, X, \{k\}, \{k, v\}, \{k, h\}\}$, s-closed: $\{\emptyset, X, \{v, h\}, \{h\}, \{v\}\}$

f-open: $\{\emptyset, X, \{k\}, \{k, v\}, \{k, h\}\}$, f-closed: $\{\emptyset, X, \{v, h\}, \{h\}, \{v\}\}$

$s f$-open \emptyset: $\{\emptyset, X, \{v\}, \{h\}, \{v, h\}\}$

we notes that $\{(k), \{k, v\}, \{k, h\}\}$ not sf-open because $\{k\} \subseteq \{k\}$ where $\{k\}$ s-open, but $\{k\}^f = X \varsubsetneq \{k\}$, $\{k\}$ is not sf-open.

$\{k, v\} \subseteq \{k, v\}$ where $\{k, v\}$ s-open, but $\{k, v\}^f = X \varsubsetneq \{k, v\}$, $\{k, v\}$ is not sf-open.

$\{k, h\} \subseteq \{k, h\}$ where$\{k, h\}$ s-open, but $\{k, h\}^f = X \varsubsetneq \{k, h\}$, $\{k, h\}$ is not sf-open.

Remark (3.3): Each f-closed is sf-open.

Proof: Let A be f-closed set in a tp-s X. $A \subseteq U$, U s-open, A is (f-closed) set then $A = \overline{A}^f$ and $A = \overline{A}^f \subseteq U$ $\Rightarrow A$ is $(sf$-open$)$ set.

The converse of (Remark(3-3)) is not true in general, as in the next example shows:

Example (3.4): Let $X = \{1,2,3,4,5\}$, $\tau = \{X, \emptyset, \{1\}, \{3,4\}, \{1,3,4\}, \{2,3,4,5\}\}$ and $A = \{1,2,4,5\}$ then A is sf-open not f-closed.

Proof: The open sets are $\{X, \emptyset, \{1\}, \{3,4\}, \{13,4\}, \{2,3,4,5\}\}$,

the closed sets are $\{\emptyset, X, \{2,3,4,5\}, \{1,2,5\}, \{2,5\}, \{1\}\}$ and

s-open sets are $\{X, \emptyset, \{1\}, \{3,4\}, \{13,4\}, \{2,3,4,5\}, \{2,3,4\}, \{3,4,5\}, \{1,2,3,4\}, \{13,4,5\}\}$

Let $A = \{1,2,4,5\}$ and $U = X$ which is s-open, then $A \subseteq U$

$\overline{A}^f = \{1,2,4,5\} \cup \overline{\{1,2,4,5\}}^g$ [Proposition (2.11)(11)]

$\overline{A}^f = \{1,2,4,5\} \cup X = X \subseteq U = X$ $\Rightarrow A$ sf-open set, but A not f-closed because $\overline{\{1,2,4,5\}}^g = X \varsubsetneq \{1,2,4,5\}$.

Remark (3.5): Every closed set is sf-open set.

Proof: Let A closed set $\Rightarrow A$ is f-closed by [Remark (1.15)] A is sf-open set.

But the converse of (Remark(3-5)) in general is not true as in our [Example (3.4)] shows:

$A = \{1,2,4,5\}$ sf-open, $\overline{A} = X \neq A \Rightarrow \overline{A} \neq A$ then A is not closed.
The next diagram explains the relationship these types of sets.

\[
\begin{align*}
\text{Open} & \quad \leftrightarrow \quad f\text{-open} & \quad \leftrightarrow \quad s\text{-open} \\
\uparrow & & \downarrow \\
S_f\text{-open} & & \\
\downarrow & & \uparrow \\
\text{Closed} & \quad \leftrightarrow \quad f\text{-closed} & \quad \leftrightarrow \quad s\text{-closed}
\end{align*}
\]

Notes (3.6)

For each \(tp\)- set \(\emptyset, X \) are \(sf\)-open.

Every subset of discreet or indiscreet \(tp\)- set is \(sf\)-open.

Every closed interval in \((R, U) \) where \(U \) is usual topology is \(sf\)-open.

Proposition (3.7): Let \(X \) be \(tp\)- set then the union of all \(sf\)-open sets in \(X \) is also \(sf\)-open set.

Proof: Let \(\bigcup_{\lambda \in \Lambda} A_\lambda \subseteq U, U \) semi-open in a topological space \(X \) then

\[
A_\lambda \subseteq \bigcup_{\lambda \in \Lambda} A_\lambda \subseteq U \Rightarrow A_\lambda \subseteq U \quad \Rightarrow \quad \overline{A_\lambda}^f \subseteq U \Rightarrow \bigcup_{\lambda \in \Lambda} \overline{A_\lambda}^f \subseteq U
\]

since \(\{A_\lambda\}_{\lambda \in \Lambda} \) be a collection of all subset of \(X \) then \(\bigcup_{\lambda \in \Lambda} \overline{A_\lambda}^f = \bigcup_{\lambda \in \Lambda} A_\lambda^f \leftarrow U \)

\[
\Rightarrow \bigcup_{\lambda \in \Lambda} \overline{A_\lambda}^f \subseteq U \quad \Rightarrow \quad \bigcup_{\lambda \in \Lambda} \overline{A_\lambda}^f \subseteq U \quad \text{is} \quad \bigcup_{\lambda \in \Lambda} \overline{A_\lambda}^f \quad sf\text{-Open}.
\]

Proposition (3.8): Let \(A \) be nowhere dense in a \(tp\)- set \(X \) then \(A \) is \(f\)-closed.
Proof: Assume that A is a subset of X so that A is nowhere dense then $(\overline{A})^* = \emptyset$ and $(\overline{A})^0 = \emptyset$, but $\emptyset \subseteq A \Rightarrow A$ is f-closed set.

Lemma (3.9): A subset A of a tp-s X is sf-open iff $\overline{A}^f \subseteq S\ker(A)$.

Proof: (\Rightarrow) Let A be sf-open in X, then $\overline{A}^f \subseteq U$ when $A \subseteq U$ and U is sf-open in X, this emplace $\overline{A}^f \subseteq \cap \{U : A \subseteq U$ and $U \in s$-open$\}) = S\ker(A)$. (\Leftarrow) Conversely, assume that $\overline{A}^f \subseteq S\ker(A)$ $\Rightarrow \overline{A}^f \subseteq \cap \{U : A \subseteq U$ and $U \in s$-open$\}) \Rightarrow \overline{A}^f \subseteq U$ for all s-open set U in X.

Proposition (3.10): Let X be tp-s, then the arbitrary intersection of sf-open sets in X is sf-open set.

Proof: Let $\{A_{\lambda} : \lambda \in \Lambda \}$ be arbitrary collection of sf-open sets in a space X, and let $A = \cap A_{\lambda}$, let $x \in \overline{A}^f$ then by [Lemma (2.15)] we consider the following two cases.

Case 1: \{x\} is nowhere dense

If $x \notin A$ then for some $\alpha \in \Lambda$ we have $x \notin A$, as nowhere dense subset are feebly closed [Proposition (3.8)] there for $x \notin S\ker(A)$.

On the other hand by [Lemma (3.9)] A_{α} is sf-open, then $x \in \overline{A}^f \subseteq \overline{A_{\alpha}}^f \subseteq S\ker(A)$ paradoxically $x \in A$ and hence $x \in S\ker(A)$ $\Rightarrow \overline{A}^f \subseteq S\ker(A)$, A sf-open set.

Case 2: \{x\} is preopen, Let $F = \overline{\{x\}}^0$ and $x \notin S\ker(A)$, \exists semi closed set C containing X, so that $C \cap A = \emptyset$, $x \in F = \overline{\{x\}}^0 \subseteq \overline{C} \subseteq C$. As F is an open set containing x and $x \in \overline{A}^f$ therefore, $F \cap A \neq \emptyset$ as $F \subseteq C \Rightarrow C \cap A = \emptyset$ paradoxically $x \in S\ker(A) \Rightarrow A$ sf-open set.

Proposition (3.11): If A is sf-open and B f-closed in a tp-s X then $A \cap B$ is sf-open in X.

Proof: Assume that $A \cap B \subseteq U$ where U is s-open set then $A \cap B \cap U^c = \emptyset$

$\Rightarrow A \cap (B \cap U^c) = \emptyset \Rightarrow A \subseteq B^c \cup U$,but $B^c \cup U$ s-open $\overline{A}^f \subseteq B^c \cup U$

$\Rightarrow \overline{A}^f \cap (B^c \cup U)^c = \emptyset \Rightarrow \overline{A}^f \cap B \subseteq U \Rightarrow \overline{A \cap B}^f \subseteq U \Rightarrow A \cap B$ sf-open.

Proposition (3.12): Assume that X is a tp-s & $A \subseteq X$ then \overline{A}^f is sf-open set.

Proof: Let $\overline{A}^f \subseteq G$ where G is s-open set, since $\overline{\overline{A}^f} = \overline{A}^f \subseteq U$

$\Rightarrow \overline{A}^f \subseteq G \Rightarrow \overline{A}^f$ sf-open set.

Proposition (3.13): Assume that X is a tp-s & $A \subseteq X$ then \overline{A} is sf-open set.
Proof: Let $\overline{A} \subseteq U$ where U is s-open set, since $\overline{\overline{A}} = \overline{A} = \overline{A}$ [Proposition(2.11)(9)]. Then $\overline{\overline{A}} = \overline{A} \Rightarrow \overline{\overline{A}} \subseteq U$ where U is s-open $\Rightarrow \overline{A}$ is sf-open set.

Proposition(3.14): Assume that X is an $tp-s$ & $A \subseteq X$, if A is s-closed and pre closed then A is sf-open set.

Proof: Let A is s-closed then $A^o = \overline{A}$, since A pre closed then $\overline{A^o} \subseteq A$, but $A^o = \overline{A}$ then $\overline{\overline{A}} \subseteq A \Rightarrow A$ f-closed by using [Remark(3.3)] A is sf-open set.

Definition(3.15): Assume that X is a $tp-s$ & $A \subseteq X$.Then the intersection of all sf-closed of X which containing A is named sf-closure of A and shortened by A^{sf}, that means $A^{sf} = \cap \{F: F \text{ is sf-closed in } X\}$.

Lemma(3.16): Assume that X is a $tp-s$ & $A \subseteq X$. Then $x \in A^{sf}$ iff for all sf-open set G and $x \in G$, $G \cap A \neq \emptyset$.

Proof:(\Rightarrow) Assume that $x \notin A^{sf}$ then $x \notin \{F: F \text{ is sf-closed in } X\}$ and $A \subseteq F$, then $x \in [\cap F]^C$, $[\cap F]^C$ sf-open containing x. Hence $[\cap F]^C \cap A \subseteq [\cap F]^C \cap [\cap F] = \emptyset$.($\Leftarrow$) Conversely, Suppose that \exists sf-open set G so that $x \in G$, $G \cap A = \emptyset$ then $A \subseteq G^C$, G^C is sf-closed hence $x \notin A^{sf}$.

Definition(3.17): Let X be a $tp-s$, $x \in X$ & $A \subseteq X$.The point x is called sf-limit point of A if each sf-open set containing U, contains a point of A distinct from x. We shall call the set of all sf-limit point of A the sf-derivative set of A and denoted by A^{isf}. Therefore $x \in A^{isf}$ if for every sf-open set U in X such $x \in V$ implies that $\cap(A - \{x\}) \neq \emptyset$.

Proposition(3.18): Let X be a $tp-s$ and $A \subseteq B \subseteq X$. Then:

1. $A^{sf} = A \cup A^{isf}$.
2. A is an sf-closed set iff $A^{isf} \subseteq A$.
3. $A^{isf} \subseteq B^{isf}$.

Proof: 1- By definition $A \subseteq \overline{A}^{sf}$(1). Let $x \in A^{isf} \Rightarrow x \notin A$. Then \forall sf-open set U contained x, then $(U \cap A) - \{x\} \neq \emptyset$. Then \forall sf-open set in U contained x, then $U \cap A \neq \emptyset$ by [Lemma(3.16)]. Then $x \in \overline{A^{isf}} \Rightarrow A^{isf} \subseteq A^{sf}$(2). From (1) and (2) $A \cup A^{isf} \subseteq \overline{A^{sf}}$.

Let $x \in \overline{A^{sf}}$. Since $A \subseteq \overline{A^{sf}}$ by definition and $\forall x \in \overline{A^{sf}}$ Then either $x \in A$ or $x \notin A$. If $x \in A \Rightarrow x \in A \cup A^{isf}$ and if $x \notin A$. Since $x \in \overline{A^{sf}} \Rightarrow \forall$ sf-open set U contained x, then $U \cap A \neq \emptyset$, Since $x \notin A$ then $(U \cap A) - \{x\} \neq \emptyset$. Then $x \in A^{isf} \Rightarrow x \in A \cup A^{isf}$ then $\overline{A^{sf}} \subseteq A \cup A^{isf}$ then $\overline{A^{sf}} \subseteq A \cup A^{isf}$.
2- (⇒) Let $A^{sf} \subseteq A$. $\overline{A}^sf = A \cup A^{sf} \subseteq A$, since $A \subseteq \overline{A}$ then $A = \overline{A}^sf$, then A is an sf-closed set.

(⇐) Let A be sf-closed set. Thus $A = \overline{A}^sf$ from [proposition (3.18)(1)]. $A = A \cup A^{sf}$ then $A^{sf} \subseteq A$.

3- Let $A \subseteq B$ and let $x \in A^{sf}$, $\forall U$ is sf-open set contained x then $(U \cap A) - \{x\} \neq \emptyset$. Since $A \subseteq B \Rightarrow (U \cap B) - \{x\} \neq \emptyset$. Then $x \in B^{sf}$ then $A^{sf} \subseteq B^{sf}$.

Remark(3.19): Assume that χ is a tp-s & $A \subseteq \chi$, then \overline{A}^sf is smallest sf-closed set containing A.

proof: Suppose that B is sf-closed set contend such that $A \subseteq B$ since $\overline{A}^{sf} = A \cup A^{sf}$. And $\overline{A}^{sf} \subseteq B^{sf}$, $A \subseteq B$, then $\overline{A}^{sf} = A \cup A^{sf} \subseteq A \cup A^{sf} \subseteq B$, then $\overline{A}^{sf} \subseteq B$ therefore \overline{A}^{sf} is smallest sf-closed set contained A.

Proposition(3.20): Let χ be a tp-s & A, B are subset of χ with B sf-open set. If $x \in B$ and $B \cap A = \emptyset$ then $x \notin \overline{A}^{sf}$.

proof: Suppose $x \in \overline{A}^{sf}$, then either $x \in A$ or $x \in A^{sf}$. If $x \in A$, then $B \cap A \neq \emptyset$ which contradicts the assumption and if $x \in A^{sf}$ and $x \notin A$, then $(B \cap A) - \{x\} \neq \emptyset$ for every sf-open G in χ containing x and hence $G \cap A \neq \emptyset$ which is a contradiction since B is sf-open set containing x and $B \cap A = \emptyset$ and hence $x \notin \overline{A}^{sf}$.

Definition(3.21): Assume that χ is a tp-s & $B \subseteq X$. An sf-neighborhood of B is any subset of χ which contains an sf-open set containing B. The sf-neighborhood of a subset $\{x\}$ is also called sf-neighborhood of the point x.

Definition(3.22): Assume that A is a subset of a tp-s χ. For each $x \in \chi$, then x is said to be sf-boundary point of A if each sf-neighborhood U_x of x, we have $U_x \cap A \neq \emptyset$ and $U_x \cap A^c \neq \emptyset$. The set of all sf-boundary point of A is denoted by $b_{sf}(A)$.

Proposition(3.23): Assume that χ is a tp-s and $A, B \subseteq \chi$, then

1. A is an sf-closed set $\iff A = \overline{A}^{sf}$.
2. $\overline{A}^{sf} \subseteq \overline{A}$.
3. $\overline{A}^{sf} = \overline{A}^{sf}$.
4. If $A \subseteq B$ then $\overline{A}^{sf} \subseteq B^{sf}$.

proof: 1- (⇒) Let A is an sf-closed set. Since $A \subseteq \overline{A}^{sf}$. Then $\overline{A}^{sf} \subseteq A$ (since \overline{A}^{sf} is the smallest sf-closed set containing A), then $A = \overline{A}^{sf}$.

\((\Leftarrow) \) Let \(\overline{A}^{sf} = A \). Then \(\overline{A}^{sf} \) is an \(sf \)-closed set. As \(A = \overline{A}^{sf} \Rightarrow A \) is a \(sf \)-closed set.

2- Let \(x \in \overline{A}^{sf} \) and \(A \) is a \(sf \)-closed set, then \(A = \overline{A}^{sf} \Rightarrow x \in A \subseteq \overline{A} \). Then \(x \in \overline{A} \). Therefore \(\overline{A}^{sf} \subseteq \overline{A} \).

3- Since \(\overline{A}^{sf} \) is \(sf \)-closed set, then \(\overline{A}^{sf} = \overline{A}^{sf} \overline{A}^{sf} \) by (2).

4- Let \(A \subseteq B \) and \(B \subseteq \overline{B}^{sf} \), then \(A \subseteq \overline{B}^{sf} \Rightarrow \overline{B}^{sf} \) is a \(sf \)-closed set containing \(A \). Since \(\overline{A}^{sf} \) is smallest \(sf \)-closed set containing \(A \). Then \(\overline{A}^{sf} \subseteq \overline{B}^{sf} \).

Definition (3.24): Assume that \(\chi \) is \(tp-s \) and \(A \subseteq \chi \). The union of all \(sf \)-open sets of \(\chi \) contained in \(A \) is named \(sf \)-Interior of \(A \), shortened by \(A^{sf} \) or \(sf-\text{In}_t(A) \), that means \(sf-\text{In}_t(A) = \cup \{ B : B \subseteq A \} \text{ is } sf \text{-open in } X \text{ and } B \subseteq A \).

Proposition (3.25): Assume that \(\chi \) is \(tp-s \) and \(A \subseteq X \). Then \(\overline{A}^{sf} = \left(A^{c^{sf}} \right)^c \).

Proof: Since \(A \subseteq \overline{A}^{sf} \Rightarrow \overline{A}^{sf} \subseteq A^c \Rightarrow \overline{A}^{sf} \subseteq A^c \Rightarrow A^{c^{sf}} \subseteq A^{c^{sf}} \Rightarrow A^{c^{sf}} \subseteq A^{c^{sf}} \subseteq \overline{A}^{sf} \)(1).

Since \(A^{c^{sf}} \subseteq A^c \Rightarrow A \subseteq A^{c^{sf}} \Rightarrow \overline{A}^{sf} \subseteq A^{c^{sf}} \subseteq A^{c^{sf}} \subseteq \overline{A}^{sf} \)(2). From (1) and (2) we get \(\overline{A}^{sf} = \left(A^{c^{sf}} \right)^c \).

Proposition (3.26): Assume that \(\chi \) is \(tp-s \) and \(A \subseteq \chi \). Then \(x \in A^{sf} \) iff there is an \(sf \)-open set \(U \) containing \(x \) so that \(x \in U \subseteq A \).

Proof: Assume that \(x \in A^{sf} \Leftrightarrow x \in \bigcup \{ U : U \subseteq A \text{ such that } U \text{ is } sf \text{-open in } X \} \Leftrightarrow \exists U \text{ is } sf \text{-open in } X \text{ so that } x \in U \subseteq A \).

Proposition (3.27): Assume that \(\chi \) \(tp-s \) and \(A \subseteq B \subseteq \chi \), then:

1. \(A^{sf} \) is an \(sf \)-open set.
2. \(A \) is an \(sf \)-open set iff \(A = A^{sf} \).
3. \(A^{sf} = A^{sf^{sf}} \).
4. If \(A \subseteq B \) then \(A^{sf} \subseteq B^{sf} \).

Proof: 1- \(A^{sf} = \bigcup \{ B : B \text{ is } sf \text{-open and } B \subseteq A \} \), by [proposition (3.7)]. Then \(A^{sf} \) is an \(sf \)-open set.

2- \(\Rightarrow \) Let \(A \) be an \(sf \)-open set from definition. \(A^{sf} \subseteq A, A^{sf} = \bigcup \{ U : U \subseteq A, U \text{ is an } sf \text{-open set in } X \} \). Since \(A \) is \(sf \)-open set in \(X \). Then \(A \subseteq A^{sf} \Rightarrow A = A^{sf} \).

\(\Leftarrow \) Let \(A = A^{sf} \), since \(A^{sf} \) is the union \(sf \)-open sets and since \(A^{sf} = A \Rightarrow A \) is a \(sf \)-open set.
3- Let $A^{\text{sf}} = \bigcup \{ B : B \text{ is an sf-open set in } X \text{ and } B \subseteq A \}$. Then $A^{\text{sf}} = A^{\text{sf}}$. By (2) $A^{\text{sf}} = A^{\text{sf}}$.

4- Let $A \subseteq B$ & $x \in A^{\text{sf}}$. Then \exists sf-open U in X such that $x \in U \subseteq A$. Since $A \subseteq B$. Then \exists sf-open U in X such that $x \in U \subseteq A \subseteq B$. $x \in U \Rightarrow x \in B^{\text{sf}}$. Then $A^{\text{sf}} \subseteq B^{\text{sf}}$.

Proposition (3.28): Assume that χ is a tp-s & $A \subseteq \chi$. Then:

1. $b_{\text{sf}}(A) = A^{\text{sf}} \cap \overline{A}^{\text{sf}}$.
2. $A^{\text{sf}} = A - b_{\text{sf}}(A)$.
3. $\overline{A}^{\text{sf}} = A \cup b_{\text{sf}}(A)$.

Proof: Clear

Proposition (3.29): Assume that χ is a tp-s & $A \subseteq \chi$. Then:

1. $A^{\text{sf}} = A^{\text{sf}} \cup b_{\text{sf}}(A)$.
2. A is an sf-open set $\Leftrightarrow b_{\text{sf}}(A) \subseteq A^c$.
3. $(A^{\text{sf}})^c = \left(\overline{A}^{\text{sf}} \right)^c$.

Proof: Clear

References

