[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 25](https://qjps.researchcommons.org/home/vol25) [Number 3](https://qjps.researchcommons.org/home/vol25/iss3) [Article 3](https://qjps.researchcommons.org/home/vol25/iss3/3) Article 3

7-7-2020

On Semi Feebly Open Set and its Properties

Raad Aziz Hussain Al-Abdulla Department of Mathematics, Collegeof Science, University of Al-Qadisiyah, Diwaniyah,, Iraq, raad.hussain@qu.edu.iq

Othman Rhaif Madlooi Al-Chrani Department of Mathematics, Collegeof Science, University of Al-Qadisiyah, Diwaniyah,, Iraq, othmanr706@gmil.com

Follow this and additional works at: [https://qjps.researchcommons.org/home](https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Al-Abdulla, Raad Aziz Hussain and Al-Chrani, Othman Rhaif Madlooi (2020) "On Semi Feebly Open Set and its Properties," Al-Qadisiyah Journal of Pure Science: Vol. 25: No. 3, Article 3. DOI: 10.29350/qjps.2020.25.3.1096 Available at: [https://qjps.researchcommons.org/home/vol25/iss3/3](https://qjps.researchcommons.org/home/vol25/iss3/3?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

On Semi Feebly Open Set and its Properties

1. Introduction

 The topological idea from study this set is generalization the properties and using it's to prove the theorems. In [7] N. Leven (1963) gives the definition of semi open $(s\text{-open})$ set, semi closed (s -closed) set and studies the properties of it. He defined a set A named (s -open) set in topological space X if find an open set : $0 \subset A \subset \overline{O}$ where \overline{O} denoted by the closure of O in X, the complement semi-open (s -open) set called semi-closed (s -closed) set. In (1971) S. G. Crossiey and S. K. Hildebrand defined the concept semi closure and they defined it , the semi closure of a set A in topological space X is the smallest semi-closed (s-closed) set contained A [2] and shortened by $\mathcal{S}cl(A)$ or \overline{A}^s . The truth \overline{A}^s is the intersection of all semi closed sets contained A, $\overline{A}^s \subseteq \overline{A}$ and $\overline{\overline{A}^s}^s$ $=\overline{A}^s$. Maheswari and Tapi (1978) in [3] defined feebly closed (fclosed), feebly open (f -open) set. A set A in a topological space X named feebly open (f -open) set in X if find an open set V $\mathop{\rm such\, that}\nolimits V\mathop{\subseteq} A\mathop{\subseteq} \overline{V}^{\mathop{\rm s}\nolimits}.$ A set A in a topological space X is feebly closed

a Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, E-Mail: *raad. hussain@qu. edu. iq* **^bDepartment of Mathematics, College of Science , University of Al-Qadisiyah, Diwaniyah,, Iraq, E-Mail:** othmanr706@gmail.com

if it is complement is feebly open. Every open is $(f$ -open)set, but the converse may be not true. Every closed is $(f - closed)$ set, but the converse may be not true.

We will use the $(p-s)$ symbol to denote the topological space, $(s$ -open) to semi open set, $(s$ closed) to semi closed set,(f -open) to feebly open set and (f -closed) to feebly closed set. wherever it is found in this paper.

2. Preliminaries

Definition(2.1)[7]: Assume that (X, t) is a tp-s & $A \subseteq X$. Then A is named s-open in X if there exists $0\in \mathfrak{t}:0\subseteq A\subseteq\overline{0}$. Or equivalent [5], A called s -open in $\mathfrak{X}\Leftrightarrow \mathfrak{A}\subseteq\overline{\mathfrak{A}}^{\circ}$, equivalent $\overline{\mathfrak{A}}=\overline{\mathfrak{A}}^{\circ}$, the complement of s-open is named s-closed.

Definition(2.2)[7]: Let (X, t) be tp-s & $A \subset X$ then A called s-closed in X if there exists a closed set F such that $F\degree\subseteq A\subseteq F$, or equivalent[5], A is s -closed $\,$ in $\chi \Leftrightarrow {\overline{A}}\degree\subseteq A$, equivalent $A\degree={\overline{A}}\degree$ *.*

Definition(2.3)[5]: Let (X, t) be tp -s& $A \subset X$, then the intersection of all s-closed subset of X contained A named (s-closure) of A and the union of all s-open subset of X contained A named (s-interior) of A and are shortened by \overline{A}^s , A^{ss} respectively.

Proposition (2.4)[7]: Let $\{A_{\lambda}\}_{\lambda \in \Lambda}$ be a family of s-open in a t p -s $\ X$ then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is s-open .

Proposition (2.5)[7]: Let X be a tp-s then the intersection of two s-open in X does not need to be s-open.

Example (2.6): Let $X = \{k, v, h\}$, $t = \{\{k\}, \{v\}, \{k, v\}, X, \emptyset\}$ then each of $\{k, h\}$, $\{v, h\}$ are *s*-open, but $\{k, h\} \cap \{v, h\} = \{h\}$ not s-open.

Definition(2.7)[4]: The intersection of every semi open subset of tp-s X contained a set A is named Semi kernel of A and shortened by $(S \text{ ker}(A))$.

Means that : S ker (A) = \cap {U : U s-open and A \subseteq U}.

Definition(2.8)[8]: A set A in a tp-s X called f-open in X if there exists an open set V such that $V_{A}\subseteq\overline{V}^s$, or equivalent, A set A called $\,f$ -open in X if and only if $A\subseteq\overline{A}^{\circ}$, the complement of f open is called f -closed that $\overline{\overline{A}^{\circ}} \subseteq$ A .

Remark(2.9)[6]: Let (X, t) be tp -s $\& A \subseteq t$ then A is f -open and A^c is f -closed.

But the converse is not true in general as in the next example.

Example (2.10): Assume that $X = \{1,2,3,4,5\}$ and $t = \{\emptyset, X, \{1\}, \{2,4\}, \{1,2,4\}\}\$ then, f-open sets are $\{\emptyset, X, \{1\}, \{2,4\}, \{1,2,4\}, \{1,2,3,4\}\},$ f-closed sets are $\{\emptyset, X, \{2,3\}, \{1,3,5\}, \{3,5\}, \{5\}\}.$

Take $A = \{1,2,3,4\}$ is f-open, but it not open set & $A^c = \{5\}$ f-closed, but it is not closed.

Proposition (2.11)[9]: Assume that (X, ξ) is a tp-s $\& A, B$ subsets of X then :

1. \overline{A}^f f-closed .

.

- 2. $A \subseteq \overline{A}^f$
- 3. A is (f-closed) $\Leftrightarrow A = \overline{A}^f$.
- 4. $A \subseteq B \implies \overline{A}^f \subseteq \overline{B}^f$.
- 5. If $\{A_{\lambda}\}_{{\lambda \in \Lambda}}$ be a collection of subset of X then $\overline{U_{\lambda \in \Lambda} A_{\lambda}}^f = U_{\lambda \in \Lambda} \overline{A_{\lambda}}^f$.
- 6. If $\{A_{\lambda}\}_{{\lambda \in \Lambda}}$ be a collection of subset of X then $\overline{A_{\lambda}A_{\lambda}}^f$ $\subseteq \bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}^f$ *.*
- *7.* $\frac{1}{\sqrt{2}}f$ $=\overline{A}^f$ *.* 8. $\overline{A}^f \subseteq \overline{A}$ 9. f $=$ \overline{A} \overline{I} $= A$. $10.\overline{A}^f = A \cup A'^f$. 11. $\overline{A}^f = A \cup \overline{\overline{A}^{\circ}}$. 12. $x \in \overline{A}^f \iff \text{any } f\text{-open } G \text{ contained } x, A \cap G \neq \emptyset.$

Proposition(2.12)[9]: Let X be a tp-s & A, B subset of X where B f-open, If $x \in B$ and $A \cap B =$ \emptyset then $x \notin \overline{A}^f$.

Definition(2.13)[10]: Let X be a tp-s a subset A of X is said to be

i. Dense or (every dense) in $X \Leftrightarrow \overline{A} = X$.

ii. Nowhere dense or (non-dense) in X iff $(\overline{A})^{\circ} = \emptyset$.

Definition(2.14)[5]: Let (X,t)be a tp-s and $A \subseteq X$, A is named preopen (p-open) if $A \subseteq \overline{A}$ and A^c is named pre closed (p -closed) that $A\degree{\subseteq}A.$

Lemma(2.15)[4]: Every singleton $\{x\}$ in a tp-s X is either nowhere dense or preopen.

3. The Main Results

Definition(3.1): Assume that (X, t) is a tp-s then a subset A in a space X is named semi feebly open (sf-open) set in a space X if $A\subseteq U$ where U semi open set in X then $\overline{A}^f\subseteq U.$ The complement of semi feebly open is called semi feebly closed (*sf* -closed) it is as follows $\mathit{U}{\subseteq}$ $\mathit{A}^{\circ f}$ where U semi closed set in X .

Example (3.2): Let $X = \{k, v, h\}$, $t = \{X, \emptyset, \{k\}\}\)$ then

open set : $\{X, \emptyset, \{k\}\}\)$, closed set : $\{\emptyset, X, \{v, h\}\}\$

 $s\text{-open}: {\emptyset, X, \{k\}, \{k, v\}, \{k, h\}\}\text{, } s\text{-closed}: {\emptyset, X, \{v, h\}, \{h\}, \{v\}\}\$

 $f\text{-open}: \{\emptyset, X, \{k\}, \{k, v\}, \{k, h\}\}, f\text{-closed}: \{\emptyset, X, \{v, h\}, \{h\}, \{v\}\}$

 sf -open : { \emptyset , X , { v }, { h }, { v , h }}

we notes that $\{\{k\},\{k,\nu\},\{k,h\}\}$ not sf -open because $\{k\}\!\subseteq\!\{k\}$ where $\{k\}$ s-open, but $\overline{\{k\}}^f=$ $\{X \subset \{k\}, \{k\}$ is not sf-open.

 $\{k, v\} \subseteq \{k, v\}$ where $\{k, v\}$ s-open, but $\overline{\{k, v\}}^f = \mathcal{X} \subset \{k, v\}$, $\{k, v\}$ is not sf-open.

 $\{k,h\}\subseteq \{k,h\}$ where $\{k,h\}$ s-open, but $\overline{\{k,h\}}^f=\mathrm{X} \ \mathcal{L}\{k,h\}, \{k,h\}$ is not sf -open.

Remark(3.3): Each f-closed is sf-open.

Proof : let A be f-closed set in a tp-s X. $A \subseteq U$, U s-open, A is (f-closed) set then $A =$ \overline{A}^f and $A = \overline{A}^f \subseteq U \Rightarrow A$ is (sf-open) set.

The converse of (Remark(3-3)) is not true in general, as in the next example shows:

Exampl(3.4):Let $X = \{1,2,3,4,5\}$, $t = \{X, \emptyset, \{1\}, \{3,4\}, \{1,3,4\}, \{2,3,4,5\}\}$ and $A = \{1,2,4,5\}$ then A is sf-open not f-closd.

Proof: The open sets are $\{X, \emptyset, \{1\}, \{3,4\}, \{1,3,4\}, \{2,3,4,5\}\}\$

the closed sets are $\{\emptyset, X, \{2,3,4,5\}, \{1,2,5\}, \{2,5\}, \{1\}\}\$ and

-open sets are {Ӽ, ∅,{1},{3,4},{1,3,4},{2,3,4,5},{2,3,4},{3,4,5},{1,2,3,4},{1,3,4,5}}

Let $A = \{1,2,4,5\}$ and $U = X$ which is s-open, then $A \subseteq U$

 $\overline{A}^f = \{1,2,4,5\} \cup \overline{\{1,2,4,5\}}^{\circ}$ $[Proposition (2.11)(11)]$

 $\overline{A}^f = \{1,2,4,5\}$ ∪ $X = X \subseteq U = X$ \Rightarrow *A sf* -open set, but *A* not *f*-closed because $\overline{\{1,2,4,5\}}^\circ =$ $X \subset \{1.2.4.5\}$

Remark(3.5): Every closed set is sf-open set.

Proof: Let *A* closed set \Rightarrow *A* is *f*-closed by [Remark (1.15)] *A* is *sf*-open set.

But the converse of (Remark(3-5)) in general is not true as in our [Example (3.4)] shows :

 $A = \{1,2,4,5\}$ sf-open, $\overline{A} = X \neq A \Rightarrow \overline{A} \neq A$ then A is not closed.

The next diagram explains the relationship these types of sets.

Notes(3.6)

For each $tp-s$ \emptyset , X are sf -open.

Every subset of discreet or indiscreet $tp-s$ is sf -open.

Every closed interval in (R, U) where U is usual topology is sf -open.

Proposition(3.7): Let X be tp-s then the union of all sf-open sets in X is also sf-open set.

Proof: Let $\bigcup_{\lambda \in \Lambda} A_{\lambda} \subseteq U, U$ semi-open in a topological space X then

 $A_\lambda\subseteq\bigcup_{\lambda\in\Lambda}A_\lambda\subseteq U\Rightarrow A_\lambda\subseteq U\Rightarrow\overline{A_\lambda}^f\subseteq U\Rightarrow\cup_{\lambda\in\Lambda}\overline{A_\lambda}^f\subseteq U$ since $\{A_\lambda\}_{\lambda\in\Lambda}$ be a collection of all subset of X then $\overline{\bigcup_{\lambda\in\Lambda}A_\lambda}^f=\bigcup_{\lambda\in\Lambda}\overline{A_\lambda}^f$ λ∈Λ $\Rightarrow \overline{U_{\lambda\in\Lambda} A_{\lambda}}^f = U_{\lambda\in\Lambda} \overline{A_{\lambda}}^f \subseteq U \Rightarrow \overline{U_{\lambda\in\Lambda} A_{\lambda}}^f \subseteq U \text{ is } U_{\lambda\in\Lambda} A_{\lambda} \text{ s.f-open.}$ **Proposition(3.8):** Let *A* be nowhere dense in a tp-s *X* then *A* is *f*-closed.

Proof: Assume that A is a subset of X so that A is nowhere dense then $(\overline{A})^{\circ} = \emptyset$ and $(\overline{\overline{A}})^{\circ} = \emptyset$, but $\emptyset \subseteq A \Rightarrow A$ is f-closed set.

 ${\bf Lemma (3.9):}$ A subset A of a t p -s χ is sf -open iff $\overline{A}^f \subseteq Sker~(A).$

Proof:(⇒) Let A be sf-open in X, then $\overline{A}^f \subseteq U$ when $A \subseteq U$ and U is sf-open in X, this emplace $\overline{A}^f \subseteq \cap \,\{U \colon \, A \subseteq U \, \text{and} \, \, \text{U} \in \text{s-open}(X)\}$ = $S \, \textit{ker} \, \, (A) .$ (\Leftarrow) Conversely,

assume that $\overline{A}^f \subseteq S$ ker $(A) \implies \overline{A}^f \subseteq \cap \{U : A \subseteq U \text{ and } U \in \text{s-open}(X)\} \Rightarrow \overline{A}^f \subseteq U$ for all s-open set U in Ӽ.

Proposition(3.10): Let X be tp-s, then the arbitrary intersection of sf-open sets in X is sf-open set.

Proof: Let { A_λ : $\lambda \in \Lambda$ } be arbitrary collection of sf-open sets in a space X, and let $A = \cap A_{\lambda}$ _{$\lambda \in \Lambda}$}, let x∈ \overline{A}^f then by [Lemma(2.15)] we consider the following two cases.

Case 1: $\{x\}$ is nowhere dense

If $x \notin A$ then for some $\alpha \in \Lambda$ we have $x \notin A$, as nowhere dense subset are feebly closed [Proposition(3.8)] there fore $x \notin S$ *ker* (A). On the other hand by [Lemma(3.9)] A_{α} is sf -open, then, $x \in \overline{A}^f \subseteq \overline{A}_\alpha^f \subseteq S$ ker (A)

paradoxically $x \in A$ and hence $x \in S$ $ker (A) \implies \overline{A}^f \subseteq S$ $ker (A),$ A sf -open set.

Case 2: {*x*} is preopen, Let $F = \overline{\{x\}}^{\circ}$ and $x \notin S$ *ker* (*A*), ∃ semi closed set C containing *X*, so that $C \cap A = \emptyset$, $x \in F = \overline{\{x\}}^{\circ} \subseteq \overline{C}^{\circ} \subseteq C.A$ s F is an open set containing x and $x \in \overline{A}$ \int therefore, $F \cap A \neq \emptyset$ as $F \subseteq C \implies C \cap A = \emptyset$ paradoxically $x \in S$ ker $(A) \implies A$ sf-open set.

Proposition(3.11): If A is sf -open and B f -closed in a tp -s χ then $A \cap B$ is sf -open in χ .

Proof: Assume that $A \cap B \subseteq U$ where U is s-open set then $A \cap B \cap U^c = \emptyset$

$$
\implies A \cap (B \cap U^c) = \emptyset \implies A \subseteq B^c \cup U, \text{but } B^c \cup U \text{ s-open } \overline{A}^f \subseteq B^c \cup U
$$

$$
\Rightarrow \overline{A}^f \cap (B^c \cup U)^c = \emptyset \Rightarrow \overline{A}^f \cap B \subseteq U \Rightarrow \overline{A \cap B}^f \subseteq U \Rightarrow A \cap B \text{ sf-open.}
$$

 $\bf{Proposition (3.12):}$ Assume that \c{X} is a tp -s & $A \subseteq X$ then \overline{A}^f is sf -open set.

Proof: Let $\overline{A}^f \subseteq G$ where G is s-open set, since \overline{A}^f $=\overline{A}^f\subseteq U$

 $\Rightarrow \overline{A}^{f}$ \subseteq $G \;\; \Rightarrow$ $\overline{A}^{f} \;\; sf$ -open set.

Proposition(3.13): Assume that X is a tp -s& $A \subseteq X$ then \overline{A} is sf-open set.

Proof: Let $A ⊆ U$ where U is s-open set, since A f $=$ \overline{A} \overline{I} $= A$ [Proposition(2.11)(9)]. Then \overline{A} f $= A \Rightarrow A$ f $\subseteq U$ where U is s-open \Rightarrow A is sf-open set.

Proposition(3.14): Assume that X is an tp -s & $A \subseteq X$, if A is s-closed and pre closed then A is sf-open set.

Proof: Let A is s-closed then $A^{\circ} = \overline{A}^{\circ}$, since A pre closed then $\overline{A^{\circ}} \subseteq A$, but $A^{\circ} = \overline{A}^{\circ}$ then $\overline{A}^{\circ} \subseteq A$ \Rightarrow A f-closed by using [Remark(3.3)] A is sf-open set.

Definition(3.15): Assume that X is a tp-s & $A \subseteq X$. Then the intersection of all sf-closed of X which containing A is named sf-closure of A and shortened by \overline{A}^{sf} , that means $\overline{A}^{sf} = \cap$ ${F: F \text{ is sf-closed in } X}.$

Lemma(3.16): Assume that X is a tp-s & A \subseteq X. Then $x \in \overline{A}^{sf}$ iff for all sf -open set G and $x \in G$, $G \cap A \neq \emptyset$.

Proof:(⇒) Assume that $x \notin \overline{A}^{sf}$ then $x \notin \cap \{F : F \text{ is sf-closed in X}\}$ and $A \subseteq F$, then $x \in [\cap F]^{c}$, $\lceil \bigcap F \rceil^c$ sf-open containing x .Hence $\lceil \bigcap F \rceil^c \cap A \subseteq \lceil \bigcap F \rceil^c \cap \lceil \bigcap F \rceil = \emptyset$. (\Leftarrow) Conversely, Suppose that $\exists s f$ -open set G so that $x \in G$, $G \cap A = \emptyset$ then $A \subseteq G^c$, G^c is sf -closed hence $x \notin$ \overline{A}^{sf} .

Definition(3.17): Let X be a tp-s, $x \in X \& A \in X$. The point x is called sf-limit point of A if each sf -open set containing U, contains a point of A distinct from x. We shall call the set of all sf -limit point of A the sf-derivative set of A and denoted by A'^{sf} . Therefore $x \in A'^{sf}$ if for every sf-open set *U* in *X* such $x \in V$ implies that $\bigcap (A - \{x\}) \neq \emptyset$.

Proposition(3.18): Let X be a tp-s and $A \subseteq B \subseteq X$. Then:

- 1. $\overline{A}^{sf} = A \cup A^{sf}$.
- 2. A is an sf-closed set iff $A^{rsf} \subseteq A$.
- 3. $A^{ssf} \subseteq B^{ssf}$.

Proof: 1- By definition $A\subseteq\overline{A}^{sf}$ ……(1) . Let $x\in A'^{sf} \Rightarrow x\not\in A.$ Then $\forall\;$ sf-open set U contained x ,then $(U \cap A) - \{x\} \neq \emptyset$. Then ∀ sf-open set in U contained x ,then $U \cap A \neq \emptyset$ by Lemma(3.16)]. Then $x\in \overline{A}^{sf} \Longrightarrow A'^{sf} \subseteq \overline{A}^{sf}$ (2).From (1) and (2) $\;$ A \cup A′sf $\subseteq \overline{A}^{sf}$.

Let $x \in \overline{A}^{sf}$. Since $A \subseteq \overline{A}^{sf}$ by definition and $\because x \in \overline{A}^{sf}$ Then either $x \in A$ or $x \not\in A$. If $x \in A$ $A \implies x \in A \cup A'^{sf}$ and if $x \notin A$. Since $x \in \overline{A}^{sf} \implies \forall$ sf-open set U contained x ,then U ∩ $A \neq \emptyset$ Since $x \notin A$ then $(U \cap A) - \{x\} \neq \emptyset$. Then $x \in A'^{sf} \Rightarrow x \in A \cup A'^{sf}$ then $\overline{A}^{sf} \subseteq A \cup A'^{sf}$ then $\overline{A}^{sf} = A \cup A^{\prime sf}.$

2- (\Rightarrow) Let $A'^{sf} \subseteq A$. $\overline{A}^{sf} = A \cup A'^{sf} \subseteq A$, Since $A \subseteq \overline{A}^{sf}$ then $A = \overline{A}^{sf}$, then A is an sf-closed set .

(\Leftarrow) Let *A* be *sf*-closed set . Thus *A* = \overline{A}^{sf} from [proposition (3.18)(1)]. *A* = *A* ∪ *A^{tsf*} then $A^{\prime sf}$ \subseteq A .

3- Let $A \subseteq B$ and let $x \in A^{sf}$, $\forall U$ is sf-open set contained x then $(U \cap A) - \{x\} \neq \emptyset$. Since $A \subseteq B \Rightarrow (U \cap B) - \{x\} \neq \emptyset$. Then $x \in B'^{sf}$ then $A'^{sf} \subseteq B'^{sf}$.

Remark(3.19): Assume that X is a tp-s & $A \subseteq X$, then \overline{A}^{sf} is smallest sf-closed set containing \mathcal{A} .

proof : Suppose that B is sf -closed set contend such that $A\subseteq B$ since $\overline{A}^{sf}=A\cup A'^{sf}.$ And $\overline{A}^{sf}\subseteq$ \overline{B}^{sf} , $A \subseteq B$, then $\overline{A}^{sf} = A \cup A'^{sf} \subseteq A \cup A'^{sf} \subseteq B$, then $\overline{A}^{sf} \subseteq B$ therefore \overline{A}^{sf} is smallest sf-closed set contained A.

Proposition(3.20): Let X be a tp-s & A, B are subset of X with B sf-open set. If $x \in B$ and B \cap $A = \emptyset$ then $x \notin \overline{A}^{sf}$.

proof : Suppose $x \in \overline{A}^{sf}$, then either $x \in A$ or $x \in A'^{sf}$. If $x \in A$, then $B \cap A \neq \emptyset$ which contradicts the assumption and if $x \in A'^{sf}$ and $x \notin A$, then then $(B \cap A) - \{x\} \neq \emptyset$ for every sfopen G in X containing x and hence $G \cap A \neq \emptyset$ which is a contradiction since B is sf -open set containing x and $B \cap A = \emptyset$ and hence $x \notin \overline{A}^{sf}.$

Definition(3.21): Assume that X is a tp-s& $B \subseteq X$. An sf-neighborhood of B is any subset of X which contains an sf -open set containing B. The sf -neighborhood of a subset $\{x\}$ is also called sf -neighborhood of the point x .

Definition(3.22): Assume that A is a subset of a tp-s X . For each $x \in X$, then x is said to be sfboundary point of A if each sf-neighborhood U_x of x, we have $U_x \cap A \neq \emptyset$ and $U_x \cap A^c \neq \emptyset$. The set of all sf -boundary point of A is denoted by $b_{sf}(A)$.

Proposition(3.23): Assume that X is a *tp*-*s* and $A, B \subseteq X$, then

- 1. *A* is an *sf*-closed set $\Leftrightarrow A = \overline{A}^{sf}$.
- 2. $\overline{A}^{sf} \subseteq \overline{A}$.

$$
3. \ \overline{A}^{sf} = \overline{A}^{sf}.
$$

4. If
$$
A \subseteq B
$$
 then $\overline{A}^{sf} \subseteq \overline{B}^{sf}$.

proof :1- (\Rightarrow) Let A is an sf-closed set. Since $A \subseteq \overline{A}^{sf}$. Then $\overline{A}^{sf} \subseteq A$ (since \overline{A}^{sf} is the smallest *sf* -closed set containing *A*), then $A = \overline{A}^{sf}$.

(\Leftarrow) Let $\overline{A}^{sf} = A$. Then \overline{A}^{sf} is an sf -closed set. as $A = \overline{A}^{sf} \Rightarrow A$ is a sf -closed set.

2- Let $x \in \overline{A}^{sf}$ and A is a sf-closed set, then $A = \overline{A}^{sf} \Rightarrow x \in A \subseteq \overline{A}$. Then $x \in \overline{A}$. Therefor $\overline{A}^{sf} \subseteq \overline{A}$.

3- Since \overline{A}^{sf} is sf-closed set, then $\overline{A}^{sf} = \overline{\overline{A}^{sf}}^{sf}$ by (2) .

4- Let $A \subseteq B$ and $B \subseteq \overline{B}^{sf}$, then $A \subseteq \overline{B}^{sf} \Rightarrow \overline{B}^{sf}$ is a sf-closed set containing A. Since \overline{A}^{sf} is smallest sf -closed set containing A. Then $\overline{A}^{sf} \subseteq \overline{B}^{sf}$.

Definition(3.24): Assume that X is tp-s and $A \subseteq X$. The union of all sf-open sets of X contained in A is named sf-Interior of A, shortened by $A^{\circ s}$ or $sf\text{-}ln_{\tau}(A)$, that means $sf\text{-}ln_{\tau}(A) = \bigcup \{B:B \text{ is }$ sf -open in X and $B \subseteq A$.

<u>Proposition(3.25): Assume that X is tp -s & $A \subseteq X$. Then $\overline{A}^{sf} = \left(A^{c\texttt{``sf}}\right)^c$.</u>

Proof: Since $A \subseteq \overline{A}^{sf} \Rightarrow \overline{A}$ sf^c $\subseteq A^c \Rightarrow \overline{A}$ $_{Sf}c^{\circ }sf$ $\subseteq A^{c^{\circ}sf} \Rightarrow \overline{A}^{sf^c}$ $\subseteq A^{c^{\circ}Sf} \Rightarrow A^{c^{\circ}Sf^c} \subseteq \overline{A}^{Sf} \dots \dots (1).$ Since $A^{c^{o}Sf} \subseteq A^c \Rightarrow A \subseteq A^{c^{o}Sf^c} \Rightarrow \overline{A}^{Sf} \subseteq \overline{A^{c^{o}Sf^c}}^{Sf}$ $= A^{c^{o} s f^{c}}$ (2). From (1) and (2) we get $\overline{A}^{sf} = (A^{c^{o}sf})^{c}.$

Proposition(3.26): Assume that X is tp-s & $A \subseteq X$. Then $x \in A^{\circ s}f$ iff there is an sf-open set U containing x so that $x \in U \subseteq A$.

Proof: Assume that $x \in A^{\circ s}f \iff x \in \bigcup \{U: U \subseteq A \text{ such that } U \text{ is } sf - open \text{ in } X\} \iff U \text{ is } sf - open \text{ in } G$ *open* in X so that $x \in U \subseteq A$.

Proposition(3.27): Assume that X tp -s $\& A \subseteq B \subseteq X$, then:

- 1. $A^{\circ s f}$ is an sf-open set.
- 2. A is an sf-open set iff $A = A^{\circ s}$.
- 3. $A^{\circ s f} = A^{\circ s f}^{\circ s f}$.
- 4. If $A \subseteq B$ then $A^{\circ s} f \subseteq B^{\circ s} f$.

Proof: 1- $A^{\circ s f} = \bigcup \{B : B \text{ is } sf\text{-open} \text{ and } B \subseteq A\}$, by [proposition(3. 7)]. Then $A^{\circ s f}$ is an $sf\text{-open}$ set.

2- (\Rightarrow) Let A be an sf-open set from definition $A^{\circ s f} \subseteq A$, $A^{\circ s f} = \cup \{U : U \subseteq A$, U is an sf *open set in X*}. Since A is sf-open set in X. Then $A\subseteq A^{\circ_S f} \Rightarrow A=\ A^{\circ_S f}.$

 (\Leftarrow) Let $A = A^{\circ s f}$, since $A^{\circ s f}$ is the union sf -open sets and since $A^{\circ s f} = A \Rightarrow A$ is a sf -open set.

3- Let $A^{\circ s f} = \cup \{B : B$ is an sf -open set in X and $B \subseteq A\}$. $A^{\circ s f^{\circ s f}} = \cup \{B : B$ is an sf-open set in X and $B \subseteq A$ By (2) $A = A^{\circ s f}$. Then $A^{\circ s f} = A^{\circ s f}^{\circ s f}$.

4- Let $A \subseteq B$ & $x \in A^{\circ s}f$. Then $\exists s f$ -open U in X such that $x \in U \subseteq A$. Since $A \subseteq B$. Then $\exists s f$ -open U in X such that $x \in U \subseteq A \subseteq B$. $x \in U \subseteq B \Rightarrow x \in B^{\circ_S f}$. Then $A^{\circ_S f} \subseteq B^{\circ_S f}$.

Proposition(3.28): Assume that X is a tp-s & $A \subset X$. Then:

1.
$$
b_{sf}(A) = \overline{A}^{sf} \cap \overline{A}^{sf}
$$
.
\n2. $A^{sf} = A - b_{sf}(A)$.
\n3. $\overline{A}^{sf} = A \cup b_{sf}(A)$.

Proof: Clear

Proposition(3.29): Assume that X is a tp-s & $A \subseteq X$. Then:

$$
1 - \overline{A}^{sf} = A^{\circ sf} \cup b_{sf}(A).
$$

2- A is an sf-open set \Leftrightarrow $b_{sf}(A) \subseteq A^c$.

$$
3\cdot (A)^{^{\circ}sf} = \left(\overline{A^{c}}^{sf}\right)^{c}.
$$

Proof: Clear

References

[1] A . S .Mashour , M. E. Abd EL-Mausef and S.N Eldeeb,"On Pre continuous and Week precontinuous mapping" Proc .Mathand Phys Egypt (1982).

[2] Das P, Not on some application on semi open sets Progress of math Allahabad University , India (1973).

[3] Maheshwari S.N &Tapiu .Feebly open sets . Ann University . Timisaras (1978).

[4] M. Khan, T. Nofiand M. Hussin "On $s * g$ -closed set and $s *$ -Normal Spaces"(2009).

[5] Nehmat Khder Ahmed on some application of special sub sets of topological spaces "M.sc thesis, University of Salahaddin , College of science (1990).

[6] N.M .Al Tabatbai "On New Types of Weekly open sets ", M . Sctesis University of Baghdad(2004).

[7] N . Levine Semi open set and semi Continuity in topological spaces . Amer .Math .Monthly (1963).

[8] O. Njasted "On some classes of nearly open sets" pacific J.math 15 (1965).

[9] Raad Aziz Hussain Al-Abdulla and Nedaa Hasan Hajee "On Dimension Theory By Using Feebly open sets " University of Al-Qadissiya , college. of Mathematics and . computer science , (2011).

[10]Sharma J. N. and J. P. Chanhan " Topology General and Algebraic" University of Meerut, India (2016).