Modified Hermite Operational Matrix Method for Nonlinear Lane-Emden Problem

Bushra Esaa Kashem

Applied Sciences Department, University of Technology, Baghdad, Iraq, bushra_eesa@yahoo.com

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation
DOI: 10.29350/qjps.2020.25.3.1128
Available at: https://qjps.researchcommons.org/home/vol25/iss3/6

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.
Modified Hermite Operational Matrix Method for Nonlinear Lane-Emden Problem

Authors Names
Bushra Esaa Kashem

Article History
Received on: 2/5/2020
Revised on: 8/6/2020
Accepted on: 24/6/2020

Keywords:
Collocation method
Nonlinear Lane-Emden equation
modified Hermite function
integration operational matrix
initial value problem.

ABSTRACT
Nonlinear Lane–Emden equations are significant in astrophysics and mathematical physics. The aim of this paper is introducing a new approximate method for finding solution to nonlinear Lane-Emden type equations appearing in astrophysics based on modified Hermite integration operational matrix. The suggested technique is based on taking the truncated modified Hermite series of the solution function in the nonlinear Lane-Emden equation and then changed into a matrix equation with the given conditions. Nonlinear system of algebraic equation using collection points is obtained. The present method is applied on some relevant physical problems as nonlinear Lane-Emden type equations.

MSC: 30C45, 30C50

1. Introduction:
Nonlinear Lane-Emden equations are initial value problems with singularity at the origin. They have the interest of many physics and mathematician because of their importance in many fields such as a mathematical physics and astrophysics [7, 8, 11, 19, 1]. Nonlinear Lane-Emden problem has been studied by many researchers and solved using different method. For example, in [10] nonlinear Lane-Emden solved by hybrid Bernstein wavelete method, while the authors [12], Chebyshev orthogonal function are used and [2] applied variation iteration method to approximate solution. Some other approximate solutions are used such as Tau method [16]. To more studies, related to Lane-Emden type equations we can see [17,13,18]. The collocation method has been a very important and useful technique to find the approximate solution of Lane-Emden equation method based on third degree B-Spline suggest in [14], In [15,9], collocation method was applied to solve system of Lane-Emden equation depending on Chebyshev polynomials. Moreover, orthogonal polynomial and wavelets establish a relation with fast approximate techniques and they are successfully used in many fields such as boundary value problem and optimal control problem [3-6].

Applied Sciences Department , University of Technology, Baghdad, Iraq, E-Mail: bushra.esa@yahoo.com
The essential important of this work is considering modified Hermite polynomials with integration operational matrix for solving nonlinear singular Lane-Emden equation.

The fulfillment of the suggested method reduces the original problem to a system of nonlinear equations, which can easily be solved with computer.

2. Modified Hermite Polynomials:

For \(a \geq 0 \), the definition of modified Hermite polynomial \(H_m^a(x) \) is

\[
\sum_{m=0}^{\infty} \frac{H_m^a}{m!} = a^{2x-t^2}, \quad |t| < \infty
\]

...(1)

by Maclurin series, extend the right hand of eq.(1) in \(x \) and modify coefficients,

\[
H_m^a(x) = \frac{m!}{2} \sum_{k=0}^{m/2} \frac{(-1)^k (2x)^{m-2k} \log a)^{m-k}}{(m-2k)!} \]

...(2)

for \(a=2 \), one can get:

\(H_0^2(x) = 1 \), \(H_1^2(x) = 2Gx \), \(H_2^2(x) = 4G^2x^2 - 2G \), \(H_3^2(x) = 8G^3x^3 - 12G^2x \)

\(H_4^2(x) = 16G^4x^4 - 48G^3x^2 + 12G^2 \), \(H_5^2(x) = 32G^5x^5 - 160G^4x^3 + 120G^3x + 12G^2 \)

where \(G=\log 2 \)

3. Properties of Modified Hermite Polynomial:

The following properties are familiar for modified Hermite polynomial.

The recurrence relation to modified Hermite polynomial

\[
H_{m+1}^2(x) = G(2x) H_m^2(x) - 2mH_{m-1}^2(x) \]

...(3)

with \(H_0^2(x) = 1 \), \(H_1^2(x) = 2Gx \), \(m=1,2,\ldots \)

The derivative of modified Hermite polynomial can be obtained from eq.(2)

\[
\frac{d}{dx} H_m^2(x) = 2m GH_m^2(x) \]

...(4)

by eq.(3) and (4), one can obtain

\[
\frac{d^2}{dx^2} H_m^2(x) = 2x G H_m^2(x) + 2mGH_m^2(x) \]

...(5)

and by measure function \(w(x) = 2^{-x^2} \) can be estimate the orthogonal for polynomial \(H_m^2(x) \)

\[
\int_{-\infty}^{\infty} \frac{H_m^2(x)H_n^2(x)}{2^{-x^2}} \ dx = \begin{cases} 2^m m! \frac{G^2 \pi}{G} \frac{1}{2} & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}
\]

4. Integration Operational Matrix for Modified Hermite Polynomials:

The explicated to integration of vector \(H_m^a(x) \) is

\[
\int_0^x H_m^a(x) \ dx = A_H H_m^a(x) \]

...(6)

\(A_H \) is \((m+1) \times (m+1) \) integration operational matrix for modified Hermite polynomial.
\(H_m^2(x) \) of order \(m \) can be expressed as follows

\[
\int_0^x H_m^2(x) \, dx = \frac{1}{2G(m+1)} \left(H_m^2(x) - H_{m+1}^2(0) H_0^2 \right)
\]

...(7)

with \(H_{m+1}^2(0) = \begin{cases} (-1)^{m+1} & \text{m odd} \\ 0 & \text{m even} \end{cases} \)

\(A_H \) matrix can be formed as:

\[
A_H = \begin{bmatrix}
0 & \frac{1}{2G} & \ldots & 0 & 0 & 0 \\
-2G & 0 & \frac{1}{4G} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
(-1)^{m+1} \frac{(m+1)!}{(m+1)/2} & \vdots & \vdots & \vdots & \frac{1}{2G(m+1)} & \ldots \\
\end{bmatrix}
\]

...(8)

for even \(m \) the last row will be

\[
\begin{bmatrix}
0 & \frac{1}{2G} & 0 & \ldots & \frac{1}{2G(m+1)} \\
\end{bmatrix}
\]

...(9)

5. Methodology of Solution by Integration Operational Matrix:

In this section, the integration operational matrix is used with collocation method to solve nonlinear Lane-Emden equation.

Assume the nonlinear Lane-Emden equation

\[
\ddot{z} + \frac{c}{x} \dot{z} + f(x, z) = g(x)
\]

...(10)

\(z(0) = \gamma \) and \(\dot{z}(0) = \beta \)

...(11)

where \(f(x, z) \) is a nonlinear function.

By extending \(z \) in modified Hermite polynomials, one can get

\[
\ddot{z}(x) = C^T H^2(x)
\]

...(12)

where \(c = [c_0 \ c_1 \ \ldots \ c_m]^T \)

\(H^2(x) = [H_0^2 \ H_1^2 \ \ldots \ H_m^2]^T \)

Integrate eq.(12) twice from 0 to \(x \) with respect \(x \) and conditions given in eq.(11), we obtain

\[
\dot{z}(x) = C^T A_H H^2(x) + \beta
\]

...(13)

\[
z(x) = C^T A_H^2 H^2(x) + \beta + \gamma
\]

...(14)

eq.(14) declares the expression of the solution in eq.(10).

By substituting eq.(12),(13),and(14) into eq.(10) and using discretization collocation points, a nonlinear system equations is obtained with unknown coefficients \(c_0, c_1, \ldots, c_m \). That will be solved by newton iteration method using matlab.
6. Numerical Example:

In this section, we expound the activity of the proposed method with three nonlinear Lane-Emden equations.

Example 1:

Consider the nonlinear Lane-Emden equation

\[\ddot{y}(x) + \frac{2}{x} \dot{y}(x) + 4 \left(2e^y + e^{\frac{y}{x}} \right) = 0 \]

with conditions \(y(0) = \dot{y}(0) = 0 \)

exact solution \(y(x) = -2\ln(1 + x^2) \)

we assume \(\ddot{y} = \sum_{n=0}^{5} C_n H_n(x, a), \quad a = 2 \)

by applying the proposed method and integrate the eq.(15) twice with respect to \(x \) from 0 to \(x \) and Substituting the initial conditions, we obtain \(\ddot{y}, \dot{y}, y \), then by Substituting them in eq.(15) and using collocation points we get system with 6 unknown’s coefficients. After solving this system by newton iteration method and substituted the coefficients we find the approximate solution. Table 1 and fig. 1 clarify the comparison between the exact and approximate solution by hermite[12], modified Hermite with absolute error.

Example 2:

Consider the Lane-Emden equation

\[\ddot{y} + \frac{2}{x} \dot{y} + \sin(\dot{y}(x)) = 0, \quad x > 0 \]

\(y(0) = 1 \), \(\dot{y}(0) = 0 \)

Here we assume \(\ddot{y} = \sum_{n=0}^{9} C_n H_n(x, a), \quad a = 2 \)

By applying the same method and solving the nonlinear system by newton iteration we approximate solution for the equation. Table 2 and fig.2 clarify the comparison of solution and absolute error with Wazwaz[20] and Pranda[12].

Example 3:

The nonlinear Lane-Emden equation

\[\ddot{y} + \frac{1}{x} \dot{y} - y^3 + 3y^5 = 0 \]

Subject to the initial condition \(y(0) = 1 \), \(\dot{y}(0) = 0 \), and exact solution \(y = (1 + x^2)^{-\frac{1}{2}} \)

Here we assume \(\ddot{y} = \sum_{n=0}^{6} C_n H_n(x, a), \quad a = 2 \)

Table 3 and fig.3 reflects the comparison between the approximate solution with exact solution and absolute error.
7. Conclusion:

In this work nonlinear Lane-Emden problems have been solved by using modified Hermite integration operational matrix. The approached plan is tested by some examples and the results are satisfied in comparison with approximate with existing.

References:

Table 1

<table>
<thead>
<tr>
<th>x</th>
<th>Exact</th>
<th>Parand[12],N=30</th>
<th>Absolute error</th>
<th>Present Method,N=5</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>-0.000199</td>
<td>-0.000197</td>
<td>0.000002</td>
<td>0.000196</td>
<td>0.000003</td>
</tr>
<tr>
<td>0.1</td>
<td>0.019900</td>
<td>-0.019897</td>
<td>0.000003</td>
<td>0.019901</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.446287</td>
<td>-0.446284</td>
<td>0.000003</td>
<td>0.446286</td>
<td>0.000001</td>
</tr>
<tr>
<td>1</td>
<td>-1.386294</td>
<td>-1.386293</td>
<td>0.000001</td>
<td>-1.386292</td>
<td>0.000001</td>
</tr>
<tr>
<td>2</td>
<td>-3.218875</td>
<td>-3.218876</td>
<td>0.000001</td>
<td>-3.218876</td>
<td>0.000001</td>
</tr>
<tr>
<td>3</td>
<td>-4.605170</td>
<td>-4.605171</td>
<td>0.000001</td>
<td>-4.605171</td>
<td>0.000001</td>
</tr>
<tr>
<td>4</td>
<td>-5.666426</td>
<td>-5.666427</td>
<td>0.000001</td>
<td>-5.666426</td>
<td>0.000000</td>
</tr>
<tr>
<td>5</td>
<td>-6.516193</td>
<td>-6.516194</td>
<td>0.000001</td>
<td>-6.516192</td>
<td>0.000001</td>
</tr>
<tr>
<td>6</td>
<td>-7.221835</td>
<td>-7.221836</td>
<td>0.000001</td>
<td>-7.221835</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>x</th>
<th>Wazwaz[20]</th>
<th>Parand[12],N=15</th>
<th>Absolute error</th>
<th>Present Method,N=8</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000000</td>
<td>1.000000</td>
<td>0</td>
<td>1.000000</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.998598</td>
<td>0.998605</td>
<td>0.000007</td>
<td>0.998588</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.2</td>
<td>0.994396</td>
<td>0.994406</td>
<td>0.000001</td>
<td>0.994395</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.5</td>
<td>0.965178</td>
<td>0.965188</td>
<td>0.000001</td>
<td>0.965177</td>
<td>0.000001</td>
</tr>
<tr>
<td>1</td>
<td>0.863681</td>
<td>0.863688</td>
<td>0.000007</td>
<td>0.863673</td>
<td>0.000002</td>
</tr>
<tr>
<td>1.5</td>
<td>0.705042</td>
<td>0.705052</td>
<td>0.000001</td>
<td>0.705044</td>
<td>0.000002</td>
</tr>
<tr>
<td>2</td>
<td>0.506372</td>
<td>0.506469</td>
<td>0.000007</td>
<td>0.506383</td>
<td>0.000001</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>x</th>
<th>Present Method</th>
<th>Exact</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.995036</td>
<td>0.995037</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.2</td>
<td>0.980582</td>
<td>0.980581</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.3</td>
<td>0.957827</td>
<td>0.957826</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.4</td>
<td>0.928477</td>
<td>0.928477</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.5</td>
<td>0.894439</td>
<td>0.894427</td>
<td>0.000012</td>
</tr>
<tr>
<td>0.6</td>
<td>0.857493</td>
<td>0.857493</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.7</td>
<td>0.819231</td>
<td>0.819232</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.8</td>
<td>0.780868</td>
<td>0.780869</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.9</td>
<td>0.743293</td>
<td>0.743294</td>
<td>0.000001</td>
</tr>
<tr>
<td>1</td>
<td>0.707106</td>
<td>0.707107</td>
<td>0.000001</td>
</tr>
</tbody>
</table>
Fig. 1

Fig. 2
Fig 3