[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 25](https://qjps.researchcommons.org/home/vol25) [Number 2](https://qjps.researchcommons.org/home/vol25/iss2) [Article 2](https://qjps.researchcommons.org/home/vol25/iss2/2) Article 2 Article 2 Article 2 Article 2 Article 2 Article 2

4-7-2020

New Type Of Double Sequence of Fuzzy Numbers Defined on Double Orlicz Function

Leena A. Muslim Kadhim Department of Mathematics Faculty of Education for Girls University ofKufa, Najaf, Iraq, leenaabed1984@gmail.com

Ali Hussein Battor Department of Mathematics Faculty of Education for Girls University ofKufa, Najaf, Iraq, alih.battoor@uokufa.edu.iq

Follow this and additional works at: [https://qjps.researchcommons.org/home](https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Kadhim, Leena A. Muslim and Battor, Ali Hussein (2020) "New Type Of Double Sequence of Fuzzy Numbers Defined on Double Orlicz Function," Al-Qadisiyah Journal of Pure Science: Vol. 25: No. 2, Article 2.

DOI: 10.29350/2411-3514.1191 Available at: [https://qjps.researchcommons.org/home/vol25/iss2/2](https://qjps.researchcommons.org/home/vol25/iss2/2?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

New type of Double Sequence of Fuzzy Numbers Defined on Double Orlicz Function

1. Introduction

Zadeh [35] introduced the concepts of fuzzy sets and fuzzy set operations. Maltoka [20] discussed bounded and convergent sequences of fuzzy numbers and studied their some properties. After on it, sequences of fuzzy numbers have been discussed by Dutta [7,8,9], Diamond and Kloeden [15], Nanda [21], Esi [13] and many others.

A fuzzy real number X on R is a function $X : R \to I = [0,1]$ associating each $t \in R$, with its grade of membership $X(t)$. The class of all fuzzy real numbers is denoted by $R(I)$. For $0 < \alpha \leq 1$, the α – level set $X^{\alpha} = \{t \in R : X(t) \ge \alpha\}$, and the 0-level set $X^0 = \{t \in R : X(t) > 0\}$, is the clouser of strong 0-cut then it is compact.

Let D denote to the set of all closed bounded intervals $B = [b_1, b_2]$. Define the relation d on D by $d(B, W) = \max\left\{ |b_1 - w_1|, |b_2 - w_2| \right\}$. Clearly (D, d) is a complete metric space. (look Diamond and Kloeden [14], Nanda[21]).

^aDepartment of Mathematics Faculty of Education for Girls University of Kufa ,Najaf, Iraq, leenaabed1984@gmail.com ^bDepartment of Mathematics Faculty of Education for Girls University of Kufa, Najaf, Iraq, alih.battoor @ uokufa.edu.iq.

The studying of Orlicz sequence spaces have been put newly by various authors ($[10]$, $[11]$, [12], [25], [33], [34]).

Battor and Neamah [24] introduced a double sequence as follows: a double sequence (X, Y) = (X_{rs}, Y_{rs}) is a double infinite matrix of elements (X_{rs}, Y_{rs}) , where $X = X_{rs}$ is a double infinite matrix of elements X_{rs} and $Y = Y_{rs}$ is infinite a double matrix of elements Y_{rs} , which means (X_{rs}, Y_{rs}) is complex double sequences and they defined a double Orlicz function on double sequence space in the following:

 $M : [0, \infty) \times [0, \infty) \rightarrow [0, \infty) \times [0, \infty)$ such that $M(X, Y) = (M_1(X), M_2(Y))$ and $(X, Y) = (X_{rs}, Y_{rs})$ where $M_1: [0, \infty) \to [0, \infty)$, $M_2: [0, \infty) \to 0, \infty$, and M_1, M_2 are two Orlicz functions which be continuous, non-decreasing, even, convex and satisfy the next conditions:

 $(i) M_1(0) = 0, M_2(0) = 0 \Rightarrow M(0,0) = (M_1(0), M_2(0)) = (0,0)$ $(\text{ii}) M_1(X) > 0, M_2(Y) > 0 \Rightarrow M(X,Y) = (M_1(X), M_2(Y)) > (0,0), \text{ for all } X, Y > 0$ $(iii) M_1(X) \to \infty, M_2(Y) \to \infty$, as $X, Y \to \infty \Rightarrow M(X, Y) \to (\infty, \infty)$, as $(X, Y) \to (\infty, \infty)$. *Remark* 1.1 [24] If M is a double Orlicz function, then $M_1(\lambda X) \leq \lambda M_1(X)$, $M_2(\lambda Y) \leq \lambda M_2(Y)$,

for all $X \geq 0, Y \geq 0$ with $0 < \lambda < 1$, therefore (λX) , $M_2(\lambda Y)$) \leq $\lambda\left(M_1(X), M_2(Y)\right) = \lambda M(X, Y)$, for all $(X, Y) \geq (0, 0)$, thus $M(\lambda X, \lambda Y) \leq \lambda M(X, Y)$, for all $(X, Y) \geq$ $(0,0)$.

If replaced the convexity of M by $M(X + Y) \le M(X) + M(Y)$, then it is said a modulus function (look [22]). A double Orlicz function may be bounded or unbounded, e.g. $M_1(X) = X^p$, $M_2(Y) = Y^p$, $0 < p \le 1$ are unbounded, so consequently $M(X,Y) = (X^p, Y^p)$, $(0,0) < (p, p) \le (1,1)$ is unbounded and $M_1(X) = \frac{X}{X+Y}$ $\frac{X}{X+1}$, $M_2(Y) = \frac{Y}{Y+1}$ $\frac{Y}{Y+1}$ are bounded, so, $M(X,Y) = \left(\frac{X}{X+1}\right)^{Y}$ $\frac{X}{X+1}$, $\frac{Y}{Y+}$ $\frac{1}{Y+1}$ is bounded.

A fuzzy double sequence $(X, Y) = (X_{rs}, Y_{rs})$ is a double infinite matrix of elements (X_{rs}, Y_{rs}) for all $r, s \in N$, where $X = X_{rs}$ is a double infinite matrix of elements X_{rs} and $Y = Y_{rs}$ is infinite a double matrix of elements Y_{rs} , where X_{rs} , $Y_{rs} \in R(I)$, which means (X_{rs}, Y_{rs}) is a double sequences of fuzzy real numbers, where X_{rs} , $Y_{rs} \in R(I)$, for each $r, s \in N$.

 The earliest works on double sequences of real or complex terms is found in Bromwich [1]. Later on it further studied by Basarir and Solancan $[2]$, Moricz $[23]$, Tripathy and Dutta $[31]$, Tripathy and Sarma [32] and many others. The notion of regular convergence for double sequences of real or complex terms was introduced by Hardy [18]. Fast [16] was first introduced the concept of statistical convergence and it also independently by Buck [3] and Schoenberg [28]. Further it was studied by Salat [27], Fridy [17], Cannor [4,5] and many others.

The notion of Δ-statistically pre-Cauchy double sequence of fuzzy numbers was introduced by Dutta and Reddy [29] and they established a standard for arbitrary double sequence of fuzzy numbers to become ∆-statistically pre-Cauchy.

We concept this work to introduced the following notions:

A double sequences of fuzzy numbers (X_{kl}) , (Y_{kl}) are said to be Δ -statistically convergent to X_0 , Y_0 respectively if $\mathbf 1$ $\frac{1}{rs} |\{(p,q): d(\Delta X_{pq}, X) \geq \varepsilon, p \leq r, q \leq s\}| = 0$, and $\lim_{r,s\to\infty}\frac{1}{rs}$ $\frac{1}{rs} |\{(p,q): d(\Delta Y_{pq}, Y) \geq \varepsilon, \ p \leq r, q \leq s\}| = 0$, respectively,

therefore, (X_{kl}, Y_{kl}) is called Δ -statistically convergent to (X_0, Y_0)) if $\lim_{r,s\to\infty}\frac{1}{rs}\Big|\big\{(p,q): \big(d\big(\Delta X_{pq},X\big),d\big(\Delta Y_{pq},Y\big)\big)\geq \varepsilon, \ p\leq r,q\leq s\big\}\Big|=0,$

such that the vertical bars indicate to the number of elements in the set.

Definition₂1.2 A double sequence of fuzzy number (X_{kl}, Y_{kl}) is called Δ -statistically pre-Cauchy if for all $\varepsilon > 0$ there exist $v(\varepsilon)$ and $w(\varepsilon)$ where,

$$
\lim_{r,s\to\infty}\frac{1}{r^2s^2}\Big|\Big\{(|p,q): \Big(d\big(\Delta X_{pq},\Delta X_{vw}\big),d\big(\Delta Y_{pq},\Delta Y_{vw}\big)\Big)\geq \varepsilon, \ \ p\leq r,q\leq s\Big\}\Big|=0.
$$

In actually, the first order difference operator Δ may be represented as an infinite triangular matrix as following,

∆= ⎣ ⎢ ⎢ ⎡ 1 −1 0 0 1 −1 0 0 1 0 0 … 0 0 … −1 0 … … … … … … … … … … … … …l $\overline{}$ $\overline{}$ $\overline{}$

The fuzzy double sequence (X_{rs}, Y_{rs}) may be expressed as an infinite matrix of fuzzy numbers as following,

$$
(X_{rs}, Y_{rs}) = \begin{bmatrix} X_{11}, Y_{11} & X_{12}, Y_{12} & X_{13}, Y_{13} & \dots & X_{1n}, Y_{1n} & \dots \\ X_{21}, Y_{21} & X_{22}, Y_{22} & X_{23}, Y_{23} & \dots & X_{2n}, Y_{2n} & \dots \\ X_{31}, Y_{31} & X_{32}, Y_{32} & X_{33}, Y_{33} & \dots & X_{3n}, Y_{3n} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{bmatrix}
$$

Then, for any fuzzy double sequence by $(X, Y) = (X_{rs}, Y_{rs})$, we have

$$
\Delta(X_{rs}, Y_{rs}) = \begin{bmatrix}\n1 & -1 & 0 & 0 & 0 & \dots \\
0 & 1 & -1 & 0 & 0 & \dots \\
0 & 0 & 1 & -1 & 0 & \dots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & \dots & \dots & \dots & \
$$

$$
= \begin{bmatrix} X_{11} - X_{21}, Y_{11} - Y_{21} & X_{12} - X_{22}, Y_{12} - Y_{22} & \dots & X_{1n} - X_{2n}, Y_{1n} - Y_{2n} & \dots \\ X_{21} - X_{31}, Y_{21} - Y_{31} & X_{22} - X_{32}, Y_{22} - Y_{32} & \dots & X_{2n} - X_{3n}, Y_{2n} - Y_{3n} & \dots \\ X_{31} - X_{41}, Y_{31} - Y_{41} & X_{32} - X_{42}, Y_{32} - Y_{42} & \dots & X_{3n} - X_{4n}, Y_{3n} - Y_{4n} & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}.
$$

This way about construction on difference double sequences is useful according to discuss some properties on the spaces of such sequences.

 Lindenstrauss and Tzafriri [19] took the idea of Orlicz function and defined the sequence space L_M of single sequences, later on Battor and Neamah [24] used that idea to construct a double sequence space:

$$
2L_M = \left\{ (X_{rs}, Y_{rs}) \in 2\omega \colon \Sigma_{r=1}^{\infty} \Sigma_{s=1}^{\infty} \left[\left(M_1 \left(\frac{|X_{rs}|}{\rho} \right) \right) \vee \left(M_2 \left(\frac{|Y_{rs}|}{\rho} \right) \right) \right] < \infty, \text{ for some } \rho > 0 \right\},\
$$

which is a Banach space under the norm:

$$
\|\left(X_{rs}, Y_{rs}\right)\|_{M} = \inf \left\{\rho > 0 : \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \left[\left(M_1\left(\frac{|X_{rs}|}{\rho}\right)\right) \vee \left(M_2\left(\frac{|Y_{rs}|}{\rho}\right)\right) \right] \le 1 \right\},\
$$

which is said a double Orlicz of a double sequence space such that 2ω is a family of all \mathbb{R}^2 or \mathbb{C}^2 double sequence, that is, (X_{rs}) and (Y_{rs}) are complex or real double sequence and conclusion that the double Orlicz of a double sequence space $2L_M$ be closely related to the space $2L_n$, which is, a double Orlicz double sequence space with $M(X,Y) = (M_1(X), M_2(Y)) = (X^p, Y^p)$, for $(1,1) \le$ $(p, p) < (\infty, \infty)$ such that $M_1(X) = X^p$, for $1 \le p < \infty$, and $M_2(Y) = Y^p$, for $1 \le p < \infty$.

Connor, Fridy and Kline in [6] and Dutta and Reddy in [37] showed the condition of bounded sequence to becomes statistically pre-Cauchy, so we can establish the follows criterion for arbitrary double sequence of fuzzy terms to be statistically pre-Cauchy for a double Orlicz $M = (M_1, M_2)$.

2. **Main results**

Theorem 2.1 Let $(X, Y) = (X_{pq}, Y_{pq})$ be a double sequence of fuzzy number and $M = (M_1, M_2)$ be a bounded double Orlicz function, then (X, Y) is Δ - statistically pre-Cauchy if and only if

$$
\text{lim}_{r,s\to\infty}\frac{1}{r^2s^2}\sum_{p,v\leq r}\sum_{q,w\leq s}\left[\left(M_1\left(\frac{d(\Delta X_{pq},\Delta X_{vw})}{\rho}\right)\right),\left(M_2\left(\frac{d(\Delta Y_{pq},\Delta Y_{vw})}{\rho}\right)\right)\right]=0,
$$

for some $\rho > 0$.

Proof : Suppose

$$
\text{lim}_{r,s\to\infty}\frac{1}{r^{2}s^{2}}\sum_{p,v\leq r}\sum_{q,w\leq s}\left[\left(M_{1}\left(\frac{d(\Delta X_{pq},\Delta X_{vw})}{\rho}\right)\right),\left(M_{2}\left(\frac{d(\Delta Y_{pq},\Delta Y_{vw})}{\rho}\right)\right)\right]=0,
$$

for some $\rho > 0$. For each $\varepsilon > 0$, $\rho > 0$ and $m, n \in \mathbb{N}$, we get

$$
\frac{1}{r^{2}s^{2}}\sum_{p,v\leq r}\sum_{q,w\leq s}\left[\left(M_{1}\left(\frac{d(\Delta x_{pq}\Delta x_{vw})}{\rho}\right)\right),\left(M_{2}\left(\frac{d(\Delta y_{pq}\Delta y_{vw})}{\rho}\right)\right)\right]=
$$
\n
$$
\frac{1}{r^{2}s^{2}}\sum_{p,v\leq r,d(\Delta x_{pq}\Delta x_{vw})<\varepsilon}\sum_{q,w\leq s}\left[\left(M_{1}\left(\frac{d(\Delta x_{pq}\Delta x_{vw})}{\rho}\right)\right),\left(M_{2}\left(\frac{d(\Delta y_{pq}\Delta y_{vw})}{\rho}\right)\right)\right]
$$
\nand $d(\Delta y_{pq}\Delta y_{vw})<\varepsilon$
\n
$$
+\frac{1}{r^{2}s^{2}}\sum_{p,v\leq r,d(\Delta x_{pq}\Delta x_{vw})\geq \varepsilon}\sum_{q,w\leq s}\left[\left(M_{1}\left(\frac{d(\Delta x_{pq}\Delta x_{vw})}{\rho}\right)\right),\left(M_{2}\left(\frac{d(\Delta y_{pq}\Delta y_{vw})}{\rho}\right)\right)\right]
$$
\nand $d(\Delta y_{pq}\Delta y_{vw})\geq \varepsilon$

$$
\geq \frac{1}{r^2s^2} \sum_{p, v \leq r, d(\Delta X_{pq} \Delta X_{vw}) \geq \varepsilon} \sum_{q, w \leq s} \left[\left(M_1 \left(\frac{d(\Delta X_{pq} \Delta X_{vw})}{\rho} \right) \right) \cdot \left(M_2 \left(\frac{d(\Delta Y_{pq} \Delta Y_{vw})}{\rho} \right) \right) \right]
$$
\n
$$
\geq M(\varepsilon) \left[\frac{1}{r^2s^2} \left[\left\{ (p, q) : \left(d(\Delta X_{pq}, \Delta X_{vw}), d(\Delta Y_{pq}, \Delta Y_{vw}) \right) \geq \varepsilon, \ p \leq r, q \leq s \right\} \right] \right]
$$
\n
$$
\geq 0, \text{ where } M = (M_1, M_2)
$$
\nNext, suppose that (X, Y) is Δ - statistically pre-Cauchy and that ε has been given.
\nLet $\varepsilon > 0$ such that $M_1(\delta) < \frac{\varepsilon}{2}$ and $M_2(\delta) < \frac{\varepsilon}{2}$ and consequently, $M(\delta) < \frac{\varepsilon}{2}$.
\nSince M is bounded, there exist an integer A such that $M_1(X) < \frac{A}{2}$ and $M_2(Y) < \frac{A}{2}$ for all $X, Y \geq 0$
\n0 and consequently, $M(X, Y) < \frac{A}{2}$ for all $X, Y \geq 0$. Note that, for all $n \in N$.
\n
$$
\frac{1}{r^2s^2} \sum_{p, v \leq r, Z(q, \Delta X_{pw}) \leq \delta} \left[M_1 \left(\frac{d(\Delta X_{pq} \Delta X_{vw})}{\rho} \right) \right) \cdot \left(M_2 \left(\frac{d(\Delta Y_{pq} \Delta X_{vw})}{\rho} \right) \right) \right] =
$$
\n
$$
\frac{1}{r^2s^2} \sum_{p, v \leq r, d(\Delta X_{pq} \Delta X_{pw}) \leq \delta} \sum_{q, w \leq s} \left[\left(M_1 \left(\frac{d(\Delta X_{pq} \Delta X_{vw})}{\rho} \right) \right) \cdot \left(M_2 \left
$$

$$
\lim_{r,s\to\infty}\frac{1}{r^2s^2}\sum_{p,v\leq r}\sum_{q,w\leq s}\left[\left(M_1\left(\frac{d(\Delta X_{pq},\Delta X_{vw})}{\rho}\right)\right),\left(M_2\left(\frac{d(\Delta Y_{pq},\Delta Y_{vw})}{\rho}\right)\right)\right]=0.\blacksquare
$$

Theorem 2.2 Let $(X, Y) = (X_{pq}, Y_{pq})$ be a double sequence of fuzzy number and let M be a bounded double Orlicz function, then (X, Y) is Δ -statistically convergent to (X_0, Y_0) if and only if

$$
\lim_{r,s} \frac{1}{rs} \sum_{p=1}^r \sum_{q=1}^s \left[\left(M_1 \left(\frac{d(\Delta X_{pq}, X_0)}{\rho} \right) \right) \left(M_2 \left(\frac{d(\Delta Y_{pq}, Y_0)}{\rho} \right) \right) \right] = 0.
$$

Proof : consider that

$$
\lim_{r,s} \frac{1}{rs} \sum_{p=1}^r \sum_{q=1}^s \left[\left(M_1 \left(\frac{d(\Delta X_{pq}, X_0)}{\rho} \right) \right) \left(M_2 \left(\frac{d(\Delta Y_{pq}, Y_0)}{\rho} \right) \right) \right] = 0,
$$

with a double Orlicz function $M = (M_1, M_2)$, then (X, Y) is Δ - statistically convergent to (X_0, Y_0) see[22].

Conversely, suppose that (X, Y) is Δ - statistically convergent to (X_0, Y_0) . In the same manner to theorem (2.1) and using that M be a double Orlicz function we can prove that

$$
\text{lim}_{r,s} \frac{1}{rs} \sum_{p=1}^r \sum_{q=1}^s \left[\left(M_1 \left(\frac{d(\Delta x_{pq}, x_0)}{\rho} \right) \right) \left(M_2 \left(\frac{d(\Delta x_{pq}, y_0)}{\rho} \right) \right) \right] = 0,
$$

Corollary 2.3 Let $(X, Y) = (X_{pq}, Y_{pq})$ be a double sequence of fuzzy number, then (X, Y) is Δ statistically pre-Cauchy, if and only if

$$
\lim_{r,s} \frac{1}{r^{2}s^{2}} \sum_{p=1}^{r} \sum_{q=1}^{s} \left[\left(d\left(\Delta X_{pq}, \Delta X_{vw}\right), d\left(\Delta Y_{pq}, \Delta Y_{vw}\right) \right) \right] = 0.
$$

Proof : Let $B_1 = \sup_{p,q} d(\Delta X_{pq}, \overline{0})$, $B_2 = \sup_{p,q} d(\Delta Y_{pq}, \overline{0})$ and define

$$
M(X,Y) = \left(\frac{(1+2B_1)X}{1+X}, \frac{(1+2B_2)Y}{1+Y}\right)
$$
 Then,

$$
\left[\left(M_1\left(\frac{d(\Delta X_{pq}, \Delta X_{rw})}{\rho}\right)\right), \left(M_2\left(\frac{d(\Delta Y_{pq}, \Delta Y_{rw})}{\rho}\right)\right)\right] \le \left((1+2B_1)d(\Delta X_{pq}, \Delta X_{rw}), (1+2B_2)d(\Delta Y_{pq}, \Delta Y_{rw})\right)
$$
 and

$$
\left[\left(M_1\left(\frac{d(\Delta X_{pq},\Delta X_{vw})}{\rho}\right)\right),\left(M_2\left(\frac{d(\Delta Y_{pq},\Delta Y_{vw})}{\rho}\right)\right)\right]=\left((1+2B_1)\frac{d(\Delta X_{pq},\Delta X_{vw})}{1+d(\Delta X_{pq},\Delta X_{vw})},\ (1+2B_2)\frac{d(\Delta Y_{pq},\Delta Y_{vw})}{1+d(\Delta Y_{pq},\Delta Y_{vw})}\right)
$$

$$
\geq \left(\frac{(1+2B_1)d(\Delta X_{pq},\Delta X_{vw})}{1+d(\Delta X_{pq},\Delta X_{vw})},\frac{(1+2B_2)d(\Delta Y_{pq},\Delta Y_{vw})}{1+d(\Delta Y_{pq},\Delta Y_{vw})}\right)
$$

$$
\geq \left(\frac{(1+2B_1)d(\Delta X_{pq},\Delta X_{vw})}{1+(1+2B_1)},\frac{(1+2B_2)d(\Delta Y_{pq},\Delta Y_{vw})}{1+(1+2B_2)}\right)
$$

$$
= \left(d(\Delta X_{pq},\Delta X_{vw}),d(\Delta Y_{pq},\Delta Y_{vw})\right).
$$

Thus, $\lim_{r,s} \frac{1}{r^2s}$ $\frac{1}{r^2s^2}\sum_{p=1}^r\;\sum_{q=1}^s\left[\left(d(X_{pq},X_{vw}),d(Y_{pq},Y_{vw})\right)\right]=0$, if and only if $\lim_{r,s} \frac{1}{r^2s}$ $\frac{1}{r^2 s^2} \sum_{p=1}^r \sum_{q=1}^s \left| \left(M_1 \left(\frac{d(\Delta X_{pq} X_{vw})}{\rho} \right) \right) \right|$ $\left(\frac{p_q X_{\nu w}}{\rho}\right)\right)$, $\left(M_2\left(\frac{d\left(\Delta Y_{pq},Y_{\nu w}\right)}{\rho}\right)\right)$ $\left\{ \mathcal{D}_{p=1} \sum_{q=1}^{s} \left| \left(M_1 \left(\frac{a(\Delta x_{pq}, x_{vw})}{\rho} \right) \right) \left(M_2 \left(\frac{a(\Delta x_{pq}, x_{vw})}{\rho} \right) \right) \right| = 0$, and direct application of

theorem (2.1) the proof completes. ■

Corollary 2.4 Let $(X, Y) = (X_{pq}, Y_{pq})$ be a double sequence of fuzzy number, then (X, Y) is Δ statistically convergent to (X_0, Y_0) , if and only if

$$
\lim_{r,s}\; \frac{1}{rs}\sum_{p=1}^r\sum_{q=1}^s\Big[\Big(d\big(\Delta X_{pq},X_0\big),d\big(\Delta Y_{pq},Y_0\big)\Big)\Big]=0.
$$

Proof: Let $B_1 = \sup_{p,q} d(\Delta X_{pq}, \overline{0})$, $B_2 = \sup_{p,q} d(\Delta Y_{pq}, \overline{0})$ and

define $M(X, Y) = \left(\frac{(1+B_1+X_0)X}{1+Y}\right)$ $\frac{B_1+X_0X}{1+X}$, $\frac{(1+B_2+Y_0)Y}{1+Y}$ $\frac{B_2 + I_0 I}{1+Y}$. Then in the same manner of the proof of corollary (2.3) we

can get the prove. ∎

Conflict of Interest: The authors advertise that they have no conflict of interest.

Acknowledgements:

We the authors thank the referees to the careful reading of the paper and the comments.

References:

- [1] Bromwich, T.J.I. 1965. An introduction the theory of infinite series. Macmillan and Co. New York.
- [2] Basarir, M., Solancan, O. 1999. On some double sequence spaces. J. Indian Acad. Math.21 (2) 193-200.
- [3] Buck, R.C. 1953. Generalized Asymptote Density.Amer J. of Math. (75) 335-346.
- [4] Connor, J.S. 1988, The Statistical and Strong P-Cesaro Convergence of Sequences Analysis. (8) 47-63.
- [5] Connor, J.S. 1989. On strong Matrix Summability with Respect to a Modulus and Statistical convergence. Canad. Math. Bull. (32) 194-198.
- [6] Connor, J.S., Fridy, J. & Kline, J. 1994, Statistically Pre-Cauchy Sequences. Analysis.(14) 311-317.
- [7] Dutta, H. 2010. On some Complete Metric Spaces of Strongly Summable Sequences of Fuzzy Numbers. Rend. Semin. Mat. Univ. Politec. Torino. (68) In Press.
- [8] Dutta, H. 2010. On Some New Type of Summable and Statistically Convergence Difference sequences of Fuzzy Numbers. J. Fuzzy Math. 18(4) In Press.
- [9] Dutta, H. 2009. On some Isometric Spaces of c_0^F , c^F and ℓ_∞^F . Acta Univ. Apulensis. (19) 107-112.
- [10] Dutta, H. 2009. On Köthe-Toeplitz and Null Duals of some Difference Sequence Spaces Defined by Orlicz Functions. Eur. J. Pure Appl. Math. 2(4) 554-563.
- [11] Esi, A., Et, M. 2000. Some New Sequence Spaces Defined by a Sequence of Orlicz Functions. Indian J. Pure Appl. Math. 31(8) 967-972.
- [12] Et, M. 2001. On Some New Orlicz Sequences Spaces. J. Analysis. (9) 21-28.
- [13] Esi, A. 2006. On Some New Paranormed Sequence Spaces of Fuzzy Numbers Defined by Orlicz Function and Statistical Convergence. Math. Mode. and Analysis. 1(4)379-388.
- [14] Diamond, P., Kloeden, P. 1990, Metric Spaces of Fuzzy Sets, Fuzzy Sets and Sys. (35) 241-249.
- [15] Diamond , P., Kloeden, P. 1994. Metric Spaces of Fuzzy Sets. Theory and Applica.,World Scientific Singapore.
- [16] Fast, H. 1951. Sur la convergence statistiue. Colloq. Math. (2) 241-244.
- [17] Fridy, J.A. 1985. On Statistical Convergence Analysis. (5) 301-313.
- [18] Hardy, G.H. 1917. On the Convergence of Certain Multiple Series. Proc. Camb. Phil. Soc. (19) 86-95.
- [19] Lindenstrauss, J. & Tzafriri, L. 1971. On Orlicz sequence spaces. Israel J. Math. (10) 379-390.
- [20] Matloka, M. 1986. Sequences of Fuzzy Numbers. BUSEFAL. (28) 28-37.
- [21] Nanda, S. 1989. On sequences of Fuzzy Numbers. Fuzzy Sets and Syste. (33) 123-126.
- [22] Maddox, I.J. 1986. Sequence Spaces Defined by Modulus. Math. Proc. Camb. Soc. (100) 161-166.
- [23] moricz, F. 1991. Extension of spaces c and c_0 from single to double sequences. acta math. hung. 57(1-2) 129-136.
- [24] Battor, A.H. & Neamah, M. A 2017. On statistically convergent double sequence spaces defined by Orlicz functions. Master thesis. University of Kufa. 28-32.
- [25] Parashar, S.D. & Choudhary, B. 1994. Sequence Spaces Defined by Orlicz Functions. Indian J. Pure Appl. Math. 25(4) 419-428.
- [26] Talo, Ö. & Basar, F. 2009. Determination of the Duals of Classical Sets of Sequences of Fuzzy Numbers and Related Matrix Transformations. Comp. and Math. with Appl. (58) 717-733.
- [27] Salat, T. 1980 On statistically Convergent Sequences of Real Numbers. Math. Soovaca. (30) 139-150.
- [28] Schoenberg, I.J. 1959. The Integrability of Certain Functions and Related Sumability Methods. Amer. Math. Monthly. (66) 361-375.
- [29] Dutta, H. & Reddy, B.S. 2010. On a new of Double Sequences of Fuzzy Numbers. The Pacific Jour. of Sci. and Tech. 11(2) 254-259.
- [30] Tripathy, B.C. 2003. Statistically Convergent Double Sequences. Tam. J. Math. 34(3) 231-237.
- [31] Tripathy, B. C. & Dutta, A. J. 2007. On Fuzzy real-valued double sequence spaces $2\ell_F^p$. Comp. Mode. 46 (9-10) 1294-1299.
- [32] Tripathy, B.C. & Sarma, B. 2008. Statistically convergent difference double sequence spaces. Acta Math. Sinica. 24(5) 737-742.
- [33] Khan, V.A. & Danish Lohani , Q.M. 2007. Statistically pre-Cauchy Sequences and Orlicz Functions. Southeast Asian Bull. Of Math. (31) 1107-1112.
- [34] Yan , Y. 2004. An Interpolation Inequality in Orlicz Spaces. Southeast Asian Bull. of Math. (28) 931-936.
- [35] Zadeh, L.A. 1965. Fuzzy sets. Inform. and control. (8) 338-353.