On Differential Subordination Theorems of Analytic Multivalent Functions Defined by Generalized Integral Operator

Waggas Galib Atshan
Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq,
waggas.galib@qu.edu.iq

Ali Hussein Battor
Department of Mathematics, College of Education for Girls, University of Al-Kufa, Najaf, Iraq,
alih.battoor@uokufa.edu.iq

Abeer Farhan Abaas
Department of Mathematics, College of Education for Girls, University of Al-Kufa, Najaf, Iraq,
abeerfarhan688@gmail.com

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Mathematics Commons

Recommended Citation
DOI: 10.29350/2411-3514.1193
Available at: https://qjps.researchcommons.org/home/vol25/iss2/4
On Differential Subordination Theorems of Analytic Multivalent Functions Defined by Generalized Integral Operator

1. Introduction

Let \(A(p) \) denote the class of functions of the form:

\[
f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (a_k \geq 0, \ p \in N = \{1,2,3, \ldots \}),
\]

which are analytic and \(p-\)valent in the open unit disk \(U = \{z: z \in \mathbb{C}, |z| < 1\} \). If \(f \) and \(g \) are analytic functions in \(U \), we say that \(f \) is subordinate to \(g \) in \(U \), written \(f < g \) or \(f(z) < g(z) \), if there exists a Schwarz function \(w(z) \) analytic in \(U \), with \(w(0) = 0 \) and \(|w(z)| < 1 \) such that
\[f(z) = g(w(z)), (z \in U). \]

In particular, if the function \(g \) is univalent in \(U \), then \(f < g \) if

\[f(0) = g(0), \text{ and } f(U) \subset g(U) \text{ ([9,18])}. \]

For the function \(f \) given by (1.1) and \(g \in A(p) \) given by

\[g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k. \]

The Hadamard product (or convolution) of \(f \) and \(g \) is defined by

\[(f \ast g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g \ast f)(z). \]

The set of all functions \(f \) that are analytic and injective on \(\overline{U} / E(f) \), Denote by \(Q \) where

\[E(f) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \right\}, \]

and are such that \(\dot{f}(\zeta) \neq 0 \) for \(\zeta \in \partial U \setminus E(f) \) (see [19]).

Let \(\psi : \mathbb{C} \times U \to \mathbb{C} \), and \(h \) is univalent in \(U \) with \(q \in Q \). Miller and Mocanu [12] consider the problem of determining conditions on admissible functions \(\psi \) such that

\[\psi(p(z), z\dot{p}(z), z^2\ddot{p}(z); z) < h(z) \] (1.2)

implies \(p(z) < q(z) \), for all functions \(p(z) \in H[a, n] = \{ f \in H : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \} \), where \(H \) be the linear space of all analytic functions in \(U \), \(a \in \mathbb{C} \) and \(n \in \mathbb{Z}^+ \) that satisfy the differential subordination (1.2), moreover, they found conditions so that \(q \) is the smallest function with this property, called the best dominant of the subordination (1.2).

Let \(\phi : \mathbb{C} \times U \to \mathbb{C} \), and \(h \in H \) with \(q \in H[a,n] \). Recently Miller and Mocanu [13,14] studied the dual problem and determined conditions on \(\phi \) such that

\[h(z) < \phi(p(z), z\dot{p}(z), z^2\ddot{p}(z); z) \] (1.3)

implies \(q(z) < p(z) \), for all functions \(p \in Q \) that satisfy the above superordination. They also found conditions so that the function \(q \) is the largest function with this property, called the best subordinant of the superordination (1.3). See [1,2,3,4,5,6], the authors studied differential subordination results for multivalent functions for other classes.

We define the integral operator \(\mathcal{A}_p^g(\Psi, \Phi, T)f(z) \), \(f(z) \in A(p) \) as follows:

\[\mathcal{A}_p^0(\Psi, \Phi, T)f(z) = f(z) \]

\[\mathcal{A}_p^1(\Psi, \Phi, T)f(z) = \mathcal{A}_p(\Psi, \Phi, T)f(z) = \left(\frac{p + \Phi}{\Psi + T} \right) z^{p-(\frac{p+\Phi}{\Psi+T})} \int_{0}^{z} t^{(\frac{p+\Phi}{\Psi+T})-(p+1)} f(t) \, dt \]
\[
\mathcal{A}_p^q(\Psi, \Phi, T)f(z) = \left(\frac{p + \Phi}{\Psi + T} \right) z^{p-\frac{(p+\Phi)}{\Psi+T}} \int_0^z t^{\frac{(p+\Phi)}{\Psi+T} - (p+1)} a_p^1(\Psi, \Phi, T)f(t) dt
\]

and, in general
\[
\mathcal{A}_p^q(\Psi, \Phi, T)f(z) = \left(\frac{p + \Phi}{\Psi + T} \right) z^{p-\frac{(p+\Phi)}{\Psi+T}} \int_0^z t^{\frac{(p+\Phi)}{\Psi+T} - (p+1)} a_p^{q-1}(\Psi, \Phi, T)f(t) dt
\]

\[
(f(z) \in A(p); q \in N_0; z \in U).
\]

We see that for \(f(z) \in A(p) \), we have that
\[
\mathcal{A}_p^q(\Psi, \Phi, T)f(z) = z^p + \sum_{k=p+1}^{\infty} \left(\frac{p + \Phi}{p + \Phi + (\Psi + T)(k - p)} \right)^q a_{k}z^k,
\]

\[
0 < \Psi < 1, \Phi, T \geq 0; p \in N, q \in N_0.
\]

From (1.5), it easy to verify that
\[
(\Psi + T)z \left(\mathcal{A}_p^{q+2}f(z) \right)' = (\Phi + p) \left(\mathcal{A}_p^{q+1}f(z) \right) - \left(\Phi + p(1 - (\Psi + T)) \right) \left(\mathcal{A}_p^{q+2}f(z) \right).
\]

We note that:

1- \(\mathcal{A}_p^q(\Psi, 0, 0)f(z) = l_{\alpha}^{-q}f(z) \) (see [17])

2- \(\mathcal{A}_1^q(1, 1, 0)f(z) = l^qf(z) \) (see [11]).

3- \(\mathcal{A}_p^q(1, 1, 0)f(z) = l_1^qf(z) \) (see [19]).

4- \(\mathcal{A}_1^q(1, 1, 0)f(z) = D^qf(z) \) (see [16]).

5- \(\mathcal{A}_1^q(1, 1, 0)f(z) = l^qf(z) \) (see [10]).

6- \(\mathcal{A}_1^q(1, 0, 0)f(z) = l^qf(z) \) (see [18]).

Also we note that:

1- \(\mathcal{A}_p^q(1, 0, 0)f(z) = j^q_p f(z) \)

\[
= \left\{ f(z): j^q_p f(z) = z^p + \sum_{k=n+p}^{\infty} \left(\frac{p}{k} \right)^q a_{k}z^k, q \in N_0, z \in U \right\}.
\]

2- \(\mathcal{A}_p^q(1, l, 0)f(z) = j^q_p (l)f(z) = \)

\[
= \left\{ f(z): j^q_p (l)f(z) = z^p + \sum_{k=n+p}^{\infty} \left(\frac{p + l}{k + l} \right)^q a_{k}z^k, q \in N_0, l > 0, z \in U \right\}
\]
3. \(A_p^q(\lambda, 0, 0)f(z) = J_{p,\lambda}^q f(z) \)

\[
= \left\{ f(z) : J_{p,\lambda}^q f(z) = z^p + \sum_{k=n+p}^{\infty} \left(\frac{p}{k + \lambda(k-p)} \right)^q a_k z^k, q \in N_0, \lambda \geq 0, z \in U \right\}.
\]

4. \(A_p^q(\lambda, \alpha \delta, 0)f(z) = I_p^q(\lambda, \alpha, \delta) f(z) \) [1]

\[
= \left\{ f(z) : I_{p,\lambda}^q f(z) = z^p + \sum_{k=n+p}^{\infty} \left(\frac{p + \alpha \delta}{p + \alpha \delta + \lambda(k-p)} \right)^q a_k z^k, q \in N_0, \lambda \geq 0, \alpha, \delta > 0, z \in U \right\}.
\]

In this paper, we shall determine some properties on the admissible functions defined with operator \(A_p^q(\Psi, \Phi, T) \).

2. Preliminaries:

In order to prove our results, we shall make use of the following known results.

Lemma (2.1)[9]: Let \(q \) be univalent in \(U, \zeta \in \mathbb{C}^* \) and suppose that

\[
Re \left\{ 1 + \frac{z \hat{q}(z)}{q(z)} \right\} > \max\left\{ 0, -Re \left(\frac{1}{\zeta} \right) \right\}. \tag{2.1}
\]

If \(p(z) \) is analytic in \(U \), with \(p(0) = q(0) \) and

\[
p(z) + \zeta \hat{p}(z) < q(z) + \zeta \hat{q}(z), \tag{2.2}
\]

then \(p(z) < q(z) \), and \(q(z) \) is the best dominant.

Lemma (2.2)[17]: Let the function \(q(z) \) be univalent in the unit disk, and let \(\theta, \varphi \) be analytic in domain \(D \) containing \(q(U) \) with \(\varphi(w) \neq 0 \) when \(w \in q(U) \). Set

\[
Q(z) = z \hat{q}(z) \varphi(q(z)) \text{ and } h(z) = \theta(q(z)) + Q(z).
\]

1. \(Q \) is starlike univalent in \(U \).

2. \(Re \left\{ \frac{zh(z)}{Q(z)} \right\} > 0 \) for \(z \in U \).

If \(p \) is analytic with \(p(0) = q(0) \), \(p(U) \subseteq D \) and

\[
\theta(p(z)) + z \hat{p}(z) \varphi(p(z)) < \theta(q(z)) + z \hat{q}(z) \varphi(q(z)), \tag{2.3}
\]

then \(p < q \), and \(q(z) \) is the best dominant.

Lemma (2.3)[7]: Let \(q(z) \) be convex in \(U, q(0) = a \) and \(\zeta \in \mathbb{C}, Re(\zeta) > 0 \).

If \(p \in H[a, 1] \) and \(p(z) + \gamma z \hat{q}(z) \) is univalent in \(U \), then

\[
q(z) + \zeta \hat{q}(z) < p(z) + \zeta \hat{p}(z), \tag{2.4}
\]
implies $q(z) < p(z)$, and $q(z)$ is the best subordinant.

Lemma (2.4)[8]: Let $q(z)$ be convex univalent in the unit disk U and let θ, φ be analytic in a domain D containing $q(U)$. Suppose that

1- $\text{Re} \left(\frac{\dot{q}(q(z))}{q'(q(z))} \right) > 0$, for $z \in U$.

2- $z\dot{q}(z)\varphi(q(z))$ is starlike univalent in U.

If $p(z) \in H[q(0), 1] \cap Q$, with $p(U) \subseteq D$, and $\theta(p(z)) + z\dot{p}(z)\varphi(p(z))$ is univalent in U, and

$$\theta(q(z)) + z\dot{q}(z)\varphi(q(z)) < \theta(p(z)) + z\dot{p}(z)\varphi(p(z)),$$

then $q(z) < p(z)$, and $q(z)$ is the best subordinant.

3- Main results:

Unless otherwise mentioned, we shall assume in the reminder of this paper that $\Psi > 0, \Phi, T \geq 0; p \in N, q \in N_0 = N \cup \{0\}; z \in U$ and the powers are understood as principle values.

Theorem (3.1): Let $q(z)$ be univalent in U with $q(0) = 0, \gamma > 0$ and suppose that

$$\text{Re} \left\{ 1 + \frac{z\dot{q}(z)}{q(z)} \right\} > \max \left\{ 0, -\text{Re} \left(\frac{\alpha(\Phi + p)}{T + \Psi} \right) \right\}. \quad (3.1)$$

If $f \in A(p)$ satisfies the subordination

$$\left(\frac{\mathcal{A}_p^q f(z)}{z^p} \right)^\sigma + \left(\frac{\mathcal{A}_p^{q+2} f(z)}{z^p} \right)^\sigma \left(\frac{\mathcal{A}_p^{q+1} f(z)}{\mathcal{A}_p^{q+2} f(z)} - 1 \right) < q(z) + \frac{T + \Psi}{\alpha(\Phi + p)} z\dot{q}(z), \quad (3.2)$$

then

$$\left(\frac{\mathcal{A}_p^{q+2} f(z)}{z^p} \right)^\sigma < q(z)$$

and $q(z)$ is the best dominant.

Proof: If we consider the analytic function

$$\left(\frac{\mathcal{A}_p^{q+2} f(z)}{z^p} \right)^\sigma, \sigma > 0, z \in U. \quad (3.3)$$

Differentiating (3.3) logarithmically with respect to z and using the identity (1.6) in the resulting equation, we have
\[
\frac{z \dot{p}(z)}{p(z)} = \frac{\sigma(\Phi + p)}{\Psi + T} \left(\frac{\mathcal{A}_{p}^{q+1} f(z)}{\mathcal{A}_{p}^{q+2} f(z)} - 1 \right),
\]

(3.4)

that is

\[
\frac{\Psi + T}{\sigma(\Phi + p)} z \dot{p}(z) = \left(\frac{\mathcal{A}_{p}^{q+2} f(z)}{z^p} \right)^{\sigma} \left(\frac{\mathcal{A}_{p}^{q+1} f(z)}{\mathcal{A}_{p}^{q} f(z)} - 1 \right).
\]

Thus, the subordination (3.2) is equivalent to

\[
p(z) + \frac{\Psi + T}{\sigma(\Phi + p)} z \dot{p}(z) \prec q(z) + \frac{\Psi + T}{\sigma(\Phi + p)} z \dot{q}(z).
\]

(3.5)

Applying Lemma (2.1), with \(\zeta = \frac{\Psi + T}{\sigma(\Phi + p)} \), the proof of Theorem (3.1) is complete.

Taking the convex function \(q(z) = \frac{1 + Az}{1 + Bz} \), in the Theorem (3.1), we have the following corollary.

Corollary (3.1): Let \(A, B \in \mathbb{C}, A \neq B, |B| < 1, \ \Re(\zeta) > 0 \) and \(\sigma > 0 \). If \(f(z) \in A(p) \) satisfies the subordination

\[
\left(\frac{\mathcal{A}_{p}^{q+2} f(z)}{z^p} \right)^{\sigma} + \left(\frac{\mathcal{A}_{p}^{q+2} f(z)}{z^p} \right)^{\sigma} \left(\frac{\mathcal{A}_{p}^{q+1} f(z)}{\mathcal{A}_{p}^{q+2} f(z)} - 1 \right) < \frac{1 + Az}{1 + Bz} + \frac{\Psi + T}{\sigma(\Phi + p)} \frac{(A - B)z}{(1 + Bz)^2},
\]

then

\[
\left(\frac{\mathcal{A}_{p}^{q+2} f(z)}{z^p} \right)^{\sigma} < \frac{1 + Az}{1 + Bz}
\]

and \(\frac{1 + Az}{1 + Bz} \) is the best dominant.

Taking \(q = 0 \) in Theorem (3.1), we obtain the following result:

Corollary (3.2): Let \(q(z) \) be univalent in \(U \), with \(q(0) = 1, \sigma > 0 \), and suppose that (3.1) holds. If \(f(z) \in A(p) \) satisfies the subordination

\[
\left(\frac{\mathcal{A}_{p}^{q+2} f(z)}{z^p} \right)^{\sigma} + \left(\frac{\mathcal{A}_{p}^{q+2} f(z)}{z^p} \right)^{\sigma} \left(\frac{\mathcal{A}_{p}^{q+1} f(z)}{\mathcal{A}_{p}^{q+2} f(z)} - 1 \right) < q(z) + \frac{\Psi + T}{\sigma(\Psi + p)} z \dot{q}(z),
\]

then

\[
\left(\frac{\mathcal{A}_{p}^{q+2} f(z)}{z^p} \right)^{\sigma} < q(z).
\]

and \(q(z) \) is the best dominant.
Taking $\Phi = \Psi = 1$ in the Theorem (3.1), we have the following result.

Corollary (3.3): Let $q(z)$ be univalent in U, with $q(0) = 1$, $\beta \in \mathbb{C}^*$, $\sigma > 0$, and suppose that (3.1) holds. If $f(z) \in A(p)$ satisfies the subordination
\[
\left(\frac{A_p^q f(z)}{z^p}\right)^\sigma + \left(\frac{A_p^{q+2} f(z)}{z^p}\right)^\sigma \left(\frac{A_p^{q+1} f(z)}{\sigma A_p^{q+2} f(z)} - 1\right) < q(z) + \frac{1 + T}{\sigma(1 + p)} z\dot{q}(z),
\]
then
\[
\left(\frac{A_p^{q+2} f(z)}{z^p}\right)^\sigma < q(z).
\]
and $q(z)$ is the best dominant.

Theorem (3.2): Let $q(z)$ be univalent in U, with $q(0) = 1$ and $q(z) \neq 0$ for all $z \in U$, let $\lambda, \sigma \in \mathbb{C}^*$, $f \in A(p)$ and suppose that f and q satisfy the next conditions:
\[
\frac{A_p^q f(z)}{z^p} \neq 0, \tag{3.6}
\]
and
\[
\Re \left\{1 + \frac{z\dot{q}(z)}{\dot{q}(z)} - \frac{z\dot{q}(z)}{q(z)}\right\} > 0, \quad (z \in U). \tag{3.7}
\]
If
\[
\frac{A_p^{q+1} f(z)}{A_p^{q+2} f(z)} < 1 + \frac{(\Psi + T)zq(z)}{\sigma(\Phi + p)q(z)}, \tag{3.8}
\]
then
\[
\left(\frac{A_p^{q+2} f(z)}{z^p}\right)^\sigma < q(z)
\]
and $q(z)$ is the best dominant of (3.6).

Proof: Let
\[
p(z) = \left(\frac{\sigma A_p^{q+2} f(z)}{z^p}\right)^\sigma, \quad z \in U. \tag{3.9}
\]
According to (3.4) the function $p(z)$ is analytic in U, and differentiating (3.9) logarithmically with respect to z, we obtain
\[
\frac{z\dot{p}(z)}{p(z)} = \frac{\sigma(\Phi + p)}{\Psi + T} \left(\frac{\mathcal{A}_p^{q+1} f(z)}{\mathcal{A}_p^{q+2} f(z)} - 1 \right).
\] (3.10)

In order to prove our result we will use Lemma (2.2). In this lemma consider

\[\theta(w) = 1 \text{ and } \varphi(w) = \frac{\Psi + T}{\sigma(\Phi + p)}w, \]

then \(\theta \) is analytic in \(\mathbb{C} \) and \(\varphi(w) \neq 0 \) is analytic in \(\mathbb{C}^* \). Also if we let

\[Q(z) = z\dot{q}(z)\varphi(q(z)) = \frac{(\Psi + T)z\dot{q}(z)}{\sigma(\Phi + p)q(z)}, \]

and

\[h(z) = \theta(q(z)) + Q(z) = 1 + \frac{(\Psi + T)z\dot{q}(z)}{\sigma(\Phi + p)q(z)}, \]

from (3.7), we see that \(Q(z) \) is a starlike function in \(U \). We also have

\[\text{Re} \left(\frac{z\dot{h}(z)}{Q(z)} \right) = \text{Re} \left(1 + \frac{z\dot{q}(z)}{q(z)} \right) > 0, \quad (z \in U) \]

and then, by using Lemma (2.2), we deduce that the subordination (3.6) implies

\[p(z) < q(z) \]

and the function \(q(z) \) is the best dominant of (3.8).

Taking \(q(z) = \frac{1 + Az}{1 + Bz} \) \((-1 \leq B < A \leq 1)\) in Theorem (3.2), it is easy to check that the assumption (3.5) holds, hence we obtain the next result.

Corollary (3.4): Let \(\sigma \in \mathbb{C}^* \). Let \(f(z) \in A(p) \) and suppose that

\[\frac{\mathcal{A}_p^{q+2} f(z)}{z^p} \neq 0, \quad (z \in U). \]

If

\[\frac{\mathcal{A}_p^{q+1} f(z)}{\mathcal{A}_p^{q+2} f(z)} < 1 + \frac{(\Psi + T)z(A - B)}{\sigma(\Phi + p)(1 + Az)(1 + Bz)}, \]

then

\[\left(\frac{\mathcal{A}_p^{q+2} f(z)}{z^p} \right)^{\sigma} < \frac{1 + Az}{1 + Bz} \]

and \(q(z) = \frac{1 + Az}{1 + Bz} \) is the best dominant.
Taking \(q(z) = \frac{1+z}{1-z} \) in Theorem (3.2), it is easy to check that the assumption (3.5) holds, hence we obtain the next result.

Corollary (3.5): Let \(\sigma \in \mathbb{C}^* \), \(f(z) \in A(p) \) and suppose that

\[
\frac{\mathcal{A}_p^{q+2} f(z)}{z^p} \neq 0, \quad (z \in U).
\]

If

\[
\frac{\mathcal{A}_p^{q+1} f(z)}{\mathcal{A}_p^{q+2} f(z)} < 1 + \frac{2(\Psi + T)z}{\sigma(\Phi + p)(1 - z)(1 + z)},
\]

then

\[
\left(\frac{\mathcal{A}_p^{q+2} f(z)}{z^p} \right)^\sigma < \frac{1 + z}{1 - z}
\]

and \(q(z) = \frac{1+z}{1-z} \) is the best dominant.

Theorem (3.3): Let \(q(z) \) be univalent in \(U \), with \(q(0) = 1 \), let \(\sigma \in \mathbb{C}^* \), and let \(\psi, \nu, \eta \in \mathbb{C} \) with \(\nu + \eta \neq 0 \). Let \(f \in A(p) \) and suppose that \(f \) and \(q \) satisfy the next conditions:

\[
\frac{\nu \mathcal{A}_p^{q+1} f(z) + \eta \mathcal{A}_p^{q+2} f(z)}{(\nu + \eta)z^p} \neq 0, \quad (z \in U) \tag{3.11}
\]

and

\[
Re \left\{ 1 + \frac{z \dot{q}(z)}{q(z)} \right\} > \max\{0, -Re(\psi)\}, \quad (z \in U). \tag{3.12}
\]

If

\[
K(z) = Y \left[\frac{\nu \mathcal{A}_p^{q+1} f(z) + \eta \mathcal{A}_p^{q+2} f(z)}{(\nu + \eta)z^p} \right]^\sigma + \sigma \left[\frac{\nu z (\mathcal{A}_p^{q+1} f(z)) + \eta z (\mathcal{A}_p^{q+2} f(z))}{\nu \mathcal{A}_p^{q+1} f(z) + \eta \mathcal{A}_p^{q+2} f(z)} - p \right] \tag{3.13}
\]

and

\[
K(z) < Y q(z) + \frac{z \dot{q}(z)}{q(z)}, \tag{3.14}
\]

then

\[
\left[\frac{\nu \mathcal{A}_p^{q+1} f(z) + \eta \mathcal{A}_p^{q+2} f(z)}{(\nu + \eta)z^p} \right]^\sigma < q(z)
\]
and \(q(z) \) is the best dominant of (3.11).

Proof: Let

\[
p(z) = \left[\frac{\nu A_p^{q+1} f(z) + \eta A_p^{q+2} f(z)}{(\nu + \eta)z^p} \right]^\sigma, \quad z \in U.
\] (3.15)

According to (3.8) the function \(p(z) \) is analytic in \(U \), and differentiating (3.15) logarithmically with respect to \(z \), we obtain

\[
\frac{zp'(z)}{p(z)} = \sigma \left[\frac{\nu z(A_p^{q+1} f(z)) + \eta z(A_p^{q+2} f(z))}{\nu A_p^{q+1} f(z) + \eta A_p^{q+2} f(z)} - p \right],
\] (3.16)

and hence

\[
zp'(z) = \sigma \left[\frac{\nu A_p^{q+1} f(z) + \eta A_p^{q+2} f(z)}{(\nu + \eta)z^p} \right]^\sigma \left[\frac{\nu z(A_p^{q+1} f(z)) + \eta z(A_p^{q+2} f(z))}{\nu A_p^{q+1} f(z) + \eta A_p^{q+2} f(z)} - p \right].
\]

In order to prove our result, we will use Lemma (2.2). In this lemma consider

\[
\theta(w) = Yw \text{ and } \varphi(w) = \frac{1}{w},
\]

then \(\theta \) is analytic in \(C \) and \(\varphi(w) \neq 0 \) is analytic in \(C^* \). Also if we let

\[
Q(z) = zq(z)\varphi(q(z)) = \sigma \left[\frac{\nu z(A_p^{q+1} f(z)) + \eta z(A_p^{q+2} f(z))}{\nu A_p^{q+1} f(z) + \eta A_p^{q+2} f(z)} - p \right]
\]

and

\[
h(z) = \theta(q(z)) + Q(z)
\]

\[
\begin{align*}
&= Y \left[\frac{\nu A_p^{q+1} f(z) + \eta A_p^{q+2} f(z)}{(\nu + \eta)z^p} \right]^\sigma + \sigma \left[\frac{\nu z(A_p^{q+1} f(z)) + \eta z(A_p^{q+2} f(z))}{\nu A_p^{q+1} f(z) + \eta A_p^{q+2} f(z)} - p \right],
\end{align*}
\]

from (3.11), we see that \(Q(z) \) is a starlike function in \(U \). We also have

\[
Re \left(\frac{zh(z)}{Q(z)} \right) = Re \left(Y + 1 + \frac{zq(z)}{\varphi(z)} \right) > 0, \quad (z \in U)
\]

and then, by using Lemma (2.2), we deduce that the subordination (3.14) implies

\[
p(z) < q(z).
\]

Taking \(q(z) = \frac{1+A_z}{1+Bz} \) \((-1 \leq B < A \leq 1) \) in Theorem (3.3) and according to(3.4), the condition (3.12) becomes
\[
\max\{0, -\Re(Y)\} \leq \frac{1 - |B|}{1 + |B|}.
\]

Hence, for the special case \(\nu = 1 \) and \(\eta = 0 \), we obtain the following result.

Corollary (3.6): Let \(Y \in \mathcal{C} \) with
\[
\max\{0, -\Re(Y)\} \leq \frac{1 - |B|}{1 + |B|}.
\]

Let \(f(z) \in A(p) \) and suppose that
\[
\frac{A^{q+1}_p f(z)}{z^p} \neq 0, \quad (z \in U).
\]

If
\[
Y \left[\frac{\nu A^{q+1}_p f(z)}{z^p} \right] + \sigma \left[\left(\frac{z(A^{q+1}_p f(z))}{A^{q+1}_p f(z)} - p \right) \right] < Y \frac{1 + Az}{1 + Bz} + \frac{(A - B)z}{(1 + Az)(1 + Bz)},
\]
then
\[
\left(\frac{A^{q+1}_p f(z)}{z^p} \right)^Y < \frac{1 + Az}{1 + Bz}
\]
and \(q(z) = \frac{1 + Az}{1 + Bz} \) is the best dominant.

Taking \(p = \nu = q = 1, \eta = 0 \) and \(q(z) = \frac{1 + z}{1 - z} \) in Theorem (3.3), we obtain the next result.

Corollary (3.7): Let \(f(z) \in A(p) \) and suppose that
\[
\frac{A^2_pf(z)}{z^p} \neq 0, \quad (z \in U).
\]

and \(\sigma \in \mathcal{C}^* \). If
\[
Y \left[\frac{A^2f(z)}{z} \right] + \sigma \left[\left(\frac{z(A^2f(z))}{A^2f(z)} - 1 \right) \right] < Y \frac{1 + z}{1 - z} + \frac{2z}{(1 + z)(1 - z)},
\]
then
\[
\left(\frac{A^2f(z)}{z} \right)^Y < \frac{1 + z}{1 - z}
\]
and \(q(z) = \frac{1 + z}{1 - z} \) is the best dominant.
References:

