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1.Introduction 
 
The concept of a fuzzy integral with respect to fuzzy measure was introduced by Sugeno [4] , and the 
definition of a fuzzy ߪ-field on fuzzy set provided by [3],[7] , in 2019 Ibrahim and Hassan introduced some 
concepts such as ߪ-ߙ-field and ߪ-ߚ-field which represent the generalizations of ߪ-field [1], in this paper we 
will introduced the concept of fuzzy ߙ-field , fuzzy ߪ-ߙ-field ,fuzzy ߚ-field , fuzzy ߪ-ߚ-field ,fuzzy ߪ-field 
and the relation between them .  
 
2. FuzzySets 

This section deals with the concepts of fuzzy set, complement , and  operation on fuzzy sets. 
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Definition (૛.૚): [૞][ૡ].Let Ω be anon empty set, a fuzzy set 	ܣ	in Ω(or a fuzzy subset inΩ) is a function 
from Ω	into I, A ∈  for ܣ in a fuzzy set ݔ is interpreted as the degree of membership of element(ݔ)ܣ . ఆܫ
each	ݔ ∈  :in Ωcan be represented by the set of pairs ܣ  a fuzzy set ,ߗ

ܣ = {൫(ݔ)ܣ,ݔ൯:ݔ ∈ Ω} 
Note that every ordinary set is a fuzzy set, i.e. P(Ω	) ⊆  .ஐܫ

Definition (૛.૛) ∶ [૞][ૡ][6]. Let ܣ	and	ܤ be a fuzzy sets in Ω	. 

 which written as ,	(ܤ	equals	ܣor) are said to be equal	ܤ	and	ܣ		(࢏)
ܣ = (ݔ)ܣif	ܤ = ݔ for all (ݔ)ܤ ∈ Ω  . 
ܣ and we write	ܤ	isincludedinܣ		(࢏࢏) ⊆ (ݔ)ܣ  if ,ܤ ≤ ݔ for all (ݔ)ܤ ∈ Ω	. Hence ܣ = ܣ		iff	ܤ ⊆
ܤ	and	ܤ ⊆  .ܣ

ܣ	write	and		ܤ	of	subset	proper	is	ܣ			(࢏࢏࢏) ⊂ ܣ		if	only	and	if	ܤ ⊆  and	ܤ
ܣ ≠  .ܤ

ܣ		The union (࢜࢏) ∪   is defined by	ܤ and ܣ  of ܤ
ܣ) ∪ (ݔ)(ܤ = max{(ݔ)ܤ,(ݔ)ܣ} for	all	ݔ ∈ Ω. 

(࢜) The intersection		ܣ ∩   is defined by	ܤ and ܣ  of ܤ
ܣ) ∩ (ݔ)(ܤ = min{(ݔ)ܤ,(ݔ)ܣ} for	all	ݔ ∈ Ω. 

Similar to operations on ordinary sets, one can generalize the union and the intersection for an arbitrary 
family of fuzzy sets: if {ܣఒ: ߣ ∈  an arbitrary of index set, the union߉ is a family of fuzzy sets, where {߉
is  ⋃ ఒఒ∈ஃܣ is	the	fuzzy	set	having	membership	function	 sup{ܣఒ(ݔ): ߣ ∈   .i.e 	,	{߉

(	ራܣఒ
ఒ∈ஃ

(ݔ)( = sup{ܣఒ(ݔ): ߣ ∈ {߉ ݔ	݈݈ܽ	ݎ݋݂	 ∈ Ω 

and the intersection  ⋂ ఒఒ∈ஃܣ   is the fuzzy set having membership function   inf{ܣఒ(ݔ):ߣ ∈  .i.e 	,{߉

൭ሩܣఒ
ఒ∈ஃ

൱ (ݔ) = inf{ܣఒ(ݔ):ߣ ∈ {߉ ݔ	݈݈ܽ	ݎ݋݂	 ∈ Ω. 

 

Definition (૛.૜): [૞][૟]. Let ܣ	and	ܤ	be fuzzy sets inΩ . 

(ݔ)௖ܣ is defined by ܣ	 , of	௖ܣ	The complement(࢏) = 1 − ݔ	for all (ݔ)ܣ ∈ Ω . 
ܣ The difference(࢏࢏) ⁄ܤ between ܣ and ܤ	is defined by	ܤ/ܣ = ܣ ∩ ௖ܤ . 
ܣ ,The symmetric difference(࢏࢏࢏) △ ܣ    is defined by	ܤ and ܣ between	,	ܤ △ ܤ = ܣ) ൗܤ ) ∪ ܤ) ൗܣ )  . 

3. Type of some family of sets and relation between them  

In this section we will introduce and study new concepts such as fuzzy ߚ-field ,fuzzy ߚ − -ߙ field ,fuzzy-ߪ	
field and fuzzy ߪ-ߙ-field , and we give basic properties ,and examples of these concepts. 

 

Definition (3.1) :[2].A non empty family ℱ of a fuzzy sets of a set Ω is called fuzzy field on Ω if  

1. ∅	,Ω ∈ 	ℱ 
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2. If A∈ ℱ		ݐℎ݁݊	ܣ௖ 	 ∈ ℱ 
3. If ܣଵ,ܣଶ, … . . ௡ܣ, 	 ∈ ℱ then ⋃ ௜ܣ ∈ ℱ௡

௜ୀଵ  
If (3) is replaced by the closure under countable union we get on the following definition  
 
Definition (3.2) :[3] [7].A non empty family ℱ of a fuzzy sets of a set Ω is called fuzzy ߪ- field on aset Ω if  
1. ∅ ,Ω∈ 	ℱ 
2. If A∈ℱ  then ܣ௖∈ℱ 
3. If ܣ௡ 		 ∈ ℱ		݊ = 1,2,3, … ⋃	ℎ݁݊ݐ		. ௡ܣ 	 ∈ ℱஶ

௡ୀଵ  
A fuzzy measurable space is a pair (Ω,ℱ),where Ω is a nonempty set and ℱ is a fuzzy ߪ-field on Ω. a fuzzy 

set A in Ω is called fuzzy measurable (fuzzy measurable with respect to the fuzzy ߪ-field ) if  
A∈ ℱ, i.e. any member of ℱ is called a fuzzy measurable set . 
 

 

Example (3.3) :The family ℱ of all fuzzy sets of a set Ω is a fuzzy field on Ω. 

Proof:Let ℱ = ܣ:ܣ} ∈  {Ωܫ

1. It is clear that Ø , Ω	 ∈ ℱ. 
2. Let A∈ ℱ  ,hence A∈ ≥Ω,  then  0ܫ (ݔ)ܣ ≤ (ݔ)௖ܣ ,  1 = 1 −  (ݔ)ܣ
Hence   0≤ 1− (ݔ)ܣ ≤ 1 ⟹ 		0 ≤ (ݔ)௖ܣ ≤ 1 

Therefore ܣ௖ ∈ ௖ܣ Ω , henceܫ ∈ ℱ. 

3. Let ܣଵ,ܣଶ,….,ܣ௡ ∈ ℱ , then ܣଵ,ܣଶ, … ௡ܣ, ∈  Ωܫ
0≤ (ݔ)௜ܣ ≤ 1					∀	݅ = 1,2, … , ݊ 
∪௜ୀଵ௡ (ݔ)௜ܣ = max{ܣ௜(ݔ):		݅ = 1,2, … ,݊} ⟹  0	≤ max	{ܣ௜(ݔ): ݅ = 1,2, … , ݊} ≤ 1 
Hence ∪௜ୀଵ௡ ௜ܣ ∈ ℱ, therefore ℱ	is a fuzzy field 
 
Example (3.4) :[2]. 1.The family ℱ of all fuzzy sets on a set Ω is a fuzzy ߪ-field on Ω. 
2.The family ℱ ={Ø , Ω} is a fuzzy ߪ-field on Ω 
∎in the following theorem ,we can show the relationships between a fuzzy field and a fuzzy ߪ-field . 

Theorem (3.5) :[2].Any fuzzy ߪ-field is a fuzzy field  

Proof:Suppose ℱ is a fuzzy ߪ-field , hence  

1. Ø, Ω ∈ ℱ. 
2. If A	∈ ℱ , then ܣ௖ ∈ ℱ. 
3. Let ܣଵ,ܣଶ, … ௡ܣ, ∈ ℱ	,we put ܣ௞ = ∅∀	݇ > ݊ 
Since ℱ is fuzzy ߪ-field , it is clear  ∪௜ୀଵஶ ௜ܣ ∈ ℱ , 

	ݐݑܤ	 ∪௜ୀଵஶ ௜ܣ =∪௜ୀଵ௡ ௜ܣ ௞ܣ	ℎ݁݊ݓ,	 = ∅		∀	݇ > ݊ 
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∴	∪௜ୀଵ௡ ௜ܣ ∈ ℱ   , Thuse ℱ is fuzzy field  

∎in the next theorem ,we will demonstrate that the intersection of fuzzy ߪ-fields is a fuzzy ߪ-field  

 

Theorem (3.6):[2].Let {ℱ௜}௜∈ூbe a family of fuzzy ߪ-field ,then	∩௜∈ூ ℱ௜is a fuzzy ߪ-field  

Remark (3.7):[2].The union of fuzzy ߪ-field does not to be fuzzy ߪ-field as in the following example : 

Example (3.8):[2].Let ܦ,ܥ,ܤ,ܣ are fuzzy sets and ߗ = [0,1]such that  

(ݔ)ܣ = ൞
0										ݔ2 ≤ ݔ ≤

1
2

0												
1
2 < ݔ ≤ 1

(ݔ)ܤ =

⎩
⎪
⎨

⎪
⎧0															0 ≤ ݔ ≤

1
4

													ݔ2
1
4 < ݔ ≤

1
2

1															
1
2 < ݔ ≤ 1

 

(ݔ)ܥ = ൞
1 − 0						ݔ2 ≤ ݔ ≤

1
2

1															
1
2 < ݔ ≤ 1

(ݔ)ܦ						 =

⎩
⎪
⎨

⎪
⎧1																							0 ≤ ݔ ≤

1
4

1− 												ݔ2
1
4 < ݔ ≤

1
2

0																						
1
2 < ݔ ≤ 1

	. 

Let  ℱଵ = ℱଶ , {ߗ,(ݔ)ܥ,(ݔ)ܣ,∅} = ߪ are two fuzzy {ߗ,(ݔ)ܦ,(ݔ)ܤ,∅} −fields, but ℱଵ ∪ ℱଶis not 
fuzzyߪ −field. 

Definition (3.9):Let Ω be a nonempty set and let ℱ be a family of fuzzy sets on a set Ω ,thenℱ is called fuzzy 
 : field if the following conditions satisfied-ߙ

 1. Ω ∈ ℱ. 

2.ifܣଵ,ܣଶ, … . ௡ܣ, ∈ ℱ, then ∪௜ୀଵ௡ ௜ܣ ∈ ℱ. 

Example (3.10):Let Ω=[0,1] and A be a fuzzy set on Ω, define as follows  

A(x)=ቐ
0						0 ≤ ݔ ≤ ଵ

ଶ

1						 ଵ
ଶ

< ݔ ≤ 1
     and let ℱ = {A , Ω} , then ℱ is fuzzy ߙ-field 

 

Theorem (3.11):Every fuzzy field is fuzzy ߙ-field  

Proof :Let ℱ be fuzzy field (by definition of ℱ) we get  

1. Ω ∈ ℱ 
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2. If ܣଵ,ܣଶ, … . ௡ܣ, ∈ ℱ , then ∪௜ୀଵ௡ ௜ܣ ∈ ℱ 

Hence ℱ is a fuzzy ߙ-field on a set Ω. 

∎in general the covers of theorem (3.11) is not true and example (3.10) indicate that , 

ℱ = ∋field , but not fuzzy field because A-ߙ iis fuzzy {Ω,	ܣ} ℱ ,but  

(ݔ)௖ܣ = ൞
1						0 ≤ ݔ ≤

1
2

0						
1
2 < ݔ ≤ 1

∉ ℱ 

Theorem (3.12):every fuzzy ߪ-field is fuzzy ߙ-field   

proof :Direct  

∎in general the convers  theorem (3.12) is not true and example (3.10) indicate that  

Definition (3.13):LetΩ be a nonempty set and let ℱ be a family of fuzzy sets on Ω , ℱ is called fuzzy ߪ-ߙ-
field if the following condition satisfied : 

1. Ø, Ω ∈ ℱ. 
2. If ܣଵ,ܣଶ, … .∈ ℱ, then ∪௜ୀଵஶ ௜ܣ ∈ ℱ. 
Definition (3.14):Let Ω be a nonempty set and ℱ be a fuzzy ߪ-ߙ-field of a set Ω, then a pair (Ω, ℱ) is called 
  measurable sets-ߙfuzzy measurable space and the member of ℱ are called fuzzy-ߙ

Example (3.15):Let Ω=[0,1]  and A, fuzzy set define on Ω as follows  

A(x)=ቐ
0						0 ≤ ݔ ≤ ଵ

ଶ

1						 ଵ
ଶ

< ݔ ≤ 1
    and let ℱ ={Ø, A ,Ω} , then ℱ is fuzzy ߪ-ߙ-field . 

Proposition  (3.16):Every fuzzy ߪ-ߙ-field is a fuzzy ߙ-field  

Proof :Let ℱ be a fuzzy ߪ-ߙ-field on a set Ω, (by definition of ℱ) we get  

1. Ø, Ω∈ ℱ. 
2. Let ܣଵ,ܣଶ, … . ௡ܣ, ∈ ℱ ,and put ܣ௞ = ∅   for all k> ݊ 
Since ℱ is fuzzy ߪ-ߙ-field , then ∪௜ୀଵஶ ௜ܣ ∈ ℱ, but ܣ௜ = ∅		∀	݅ > ݊ then ∪௜ୀଵஶ ௜ܣ =∪௜ୀଵ௡ ௜  ,hence ∪௜ୀଵ௡ܣ ௜ܣ ∈
ℱ 

Hence ℱ is a fuzzy ߙ-field  

∎in general the convers of proposition (3.16) is not true and example (3.10) indicate that ,ℱ is fuzzy ߙ-field 
but not fuzzy ߪ-ߙ-field ,because  Ø	∉ ℱ. 
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Theorem (3.17):Every fuzzy ߪ-field is fuzzy ߪ-ߙ-field . 

Proof :Let ℱ be a fuzzy ߪ-field (by definition of ℱ ) we get  

Ω∈ ℱ ,and	∅ = Ω௖ ∈ ℱ ,hence  

1. Ø, Ω ∈ ℱ 
2. Let ܣଵ,ܣଶ, … .∈ ℱ, then ∪௜ୀଵஶ ௜ܣ 	 ∈ ℱ 
Hence ℱ is fuzzy ߪ-ߙ-field  

∎in general the converse of theorem (3.17) is not true and example (3.15) indicate that ℱ  is fuzzy ߪ-ߙ-field 
,but not fuzzy ߪ-field , because A∈ ℱ ,but ܣ௖ ∉ ℱ 

Theorem (3.18):Let {ℱ௜}௜∈ூ 	ܾ݁ family of fuzzy ߪ-ߙ-field on a set Ω ,then∩௜∈ூ ℱ௜ is a fuzzy ߪ-ߙ-field on Ω. 

Proof :1.Since ℱ௜ ∋field on Ω ,for all i-ߪ-ߙ	ݕݖݖݑ݂	ܽ	ݏ݅	 ∋then Ø,Ω, ܫ ℱ௜ 

For all i∈ ∩௜∈ூ	∈	henceØ, Ω, ܫ ℱ௜ 

2.Let ܣଵ,ܣଶ … . . ,∈∩௜∈ூ ℱ௜ 	,then ܣଵ,ܣଶ, … .∈ ℱ௜ for all i∈  ܫ
Since ℱ௜is fuzzy ߪ-ߙ-field for all i∈ then∪௜ୀଵஶ, ܫ ௜ܣ ∈ ℱ௜ for all i∈ hence ∪௜ୀଵஶ ܫ ௜ܣ ∈∩௜∈ூ ℱ௜ 

Therefore ∩௜∈ூ ℱ௜   field-ߪ-ߙ a fuzzy	ݏ݅	

∎the next example indicate that the union of two fuzzy ߪ-ߙ-field on Ω is not necessary a fuzzy ߪ-ߙ-field on 
Ω 

Example (3.19):Let Ω=[0,1]  and let A and B are two fuzzy sets on Ω define as follows  

A(x)=ቐ
0						0 ≤ ݔ ≤ ଵ

ଶ

1						 ଵ
ଶ

< ݔ ≤ 1
   ,       B(x)=ቐ

0						ݔ ≤ ݔ ≤ ଵ
ଶ

1						 ଵ
ଶ

< ݔ ≤ 1
 

And let ℱଵ = ℱଶ			݀݊ܽ		{Ω,ܣ,	∅} = field on a set Ω ,But ℱଵ-ߪ-ߙ  are fuzzy	ℱଶ	ܽ݊݀	then ℱଵ , {Ω,	ܤ,∅} ∪ ℱଶ =
 field on Ω-ߪ-ߙ is not fuzzy {Ω,ܤ,ܣ,∅}

Since (A∪ (ݔ)(ܤ = max		{(ݔ)ܤ,(ݔ)ܣ} 

If   x=ଵ
ଶ
→ (A∪ ଵ)(ܤ

ଶ
) = max		{ܣ ቀଵ

ଶ
ቁ ܤ, ቀଵ

ଶ
ቁ} = max		{0, ଵ

ଶ
} 

=ଵ
ଶ
			 ∉ 	ℱଵ ∪ ℱଶ. 

 

Definition (3.20) :Let ℱ be a nonempty family of fuzzy set on a set Ω ,thenℱ is called fuzzy ߚ-field if the 
following condition satisfied : 
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1. Ø∈ ℱ . 
2. If ܣଵ,ܣଶ, … ௡ܣ, 	 ∈ ℱ, 	ℎ݁݊ݐ ∩௜ୀଵ௡ ௜ܣ 	 ∈ ℱ. 
Example (3.21): Let Ω=[0,1] and A be fuzzy set on Ω ,define as follows  

A(x)=ቐ
0						0 ≤ ݔ ≤ ଵ

ଶ

1						 ଵ
ଶ

< ݔ ≤ 1
      and ℱ =   field-ߚ then ℱ is fuzzy {ܣ,∅}

Theorem (3.22): Every fuzzy field is fuzzy ߚ-field  

Proof: Let ℱ be fuzzy field (by definition of fuzzy field ) we get  

1. U∈ ℱ	, ܽ݊݀	∅ = ܷ௖ ∈ ℱ	ݐℎ݁݁ݎ݋݂݁ݎ	∅ ∈ ℱ. 
2. Let ܣଵ,ܣଶ	, … ௡ܣ, ∈ 	ℱ	,then ∪௜ୀଵஶ ௜ܣ ∈ ℱ , by demorgan laws we have ∩௜ୀଵஶ ௜ܣ = (∪௜ୀଵஶ  ௜௖)௖ ,butܣ
,ଶܣ,ଵܣ … ௡ܣ, 	 ∈ ℱ 

Then  ܣଵ௖ ଶ௖ܣ, , … 	௡௖ܣ, ∈ ℱ,and∪௜ୀଵஶ ௜௖ܣ ∈ ℱ ,hence (∪௜ୀଵஶ ௜௖)௖ܣ ∈ ℱ therefore ∩௜ୀଵஶ ௜ܣ ∈ ℱ 

Hence ℱ is a fuzzy ߚ-field on a set Ω 

∎in general the converse of theorem (3.22) is not true and example (3.21) indicate that ,ℱ is a fuzzy ߚ-field 
but not fuzzy field ,because A∈ ℱ but ܣ௖ ∉ ℱ 

Remark (3.23):Every fuzzy ߪ-field is fuzzy ߚ- field , but the converse is not true  

Definition (3.24): Let ℱ be anon empty family of fuzzy sets on a set Ω , then ℱ is called fuzzy ߚ − ߪ −field if 
the following conditions satisfied : 

1.	∅	,Ω ∈ ℱ 

2. ifܣଵ	,ܣଶ	, … … 	 ∈ 	ℱ then ⋂ ௜ܣ 	 ∈ ℱஶ
௜ୀଵ  

Definition (3.25): Let Ω be anon empty set and ℱ	is fuzzy ߚ − ߪ − field on Ω then the pair (Ω,ℱ)is called 
ߚ −  . fuzzy measurable set -ߚ  and the member of ℱ are called	measurable space over ℱ ݕݖݖݑ݂

 

Example (3.26): Let Ω=[0,1] and   , A(x)=ቐ
0						0 ≤ ݔ ≤ ଵ

ଶ

1						 ଵ
ଶ

< ݔ ≤ 1
 

andℱ = ߚ is a fuzzy	then ℱ {Ω,	ܣ,	∅} − ߪ −field  

proposition  (3.27): Let {ℱ௜}௜∈ூbe family of fuzzy ߚ − ߪ −field on Ω ,then⋂ ℱ௜௜∈ூ  is a fuzzy ߚ − ߪ − ݂݈݅݁݀ 

Proof:1.sinceℱ௜ is fuzzy ߚ − ߪ −field   ∀݅ ∈ 	,Ω	then ∅ , ܫ ∈ ℱ௜ 	∀݅ ∈ 	,Ω	hence ∅ ܫ ∈ ⋂ ℱ௜௜∈ூ  
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2.letܣଵ	,ܣଶ	, … … ∈ ⋂ ℱ௜௜∈ூ   then ܣଵ	,ܣଶ	, … . .∈ ℱ௜  for all i∈ ߚ since ℱ௜ is a fuzzy ܫ − ߪ −field ∀݅ ∈  then ܫ
⋂ ௞ܣ ∈ ℱ௜ 	∀݅ ∈ ஶܫ
௞ୀଵ  which is implies that ⋂ ௞ஶܣ

௞ୀଵ ∈ ⋂ ℱ௜௜∈ℱ  

hence⋂ ℱ௜௜∈ூ  is fuzzy ߚ − ߪ −field 

Proposition (3.28):Every fuzzy ߪ-field is a fuzzy ߪ-ߚ-field . 

Proof :Direct  

Remark :in general the convers of theorem (3.28) is not true and example (3.26) indicate that , ℱ is fuzzy ߚ-
∋field because A-ߪ field , but not fuzzy-ߪ ℱ , but ܣ௖ ∉ ℱ . 

Theorem (3.29): Every fuzzy ߪ-ߚ-field is fuzzy ߚ-field  

Proof : letℱ be fuzzy ߪ-ߚ-field , then  

1. ∅	,Ω	 ∈ 	ℱ 
2. Let ܣଵ,ܣଶ, … . ௡ܣ, 	 ∈ ℱ ,and  put ܣ௞ = Ω	  for all k> ݊ 
Then ∩௜ୀଵ௡ ௜ܣ =∩௜ୀଵஶ   , field-ߪ-ߚ ௜ , since ℱ be fuzzyܣ

then ∩௜ୀଵஶ ௡ܣ ∈ 	ℱ , hence ∩௜ୀଵ௡ ௜ܣ ∈ ℱ 

thereforeℱ is fuzzy ߚ-field on Ω . 

∎in general the convers of theorem (3.29) is not true and example (3.21) indicate that ℱ is fuzzy ߚ-field ,but 
not fuzzy ߪ-ߚ-field ,because Ω ∉ ℱ. 
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