[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 25](https://qjps.researchcommons.org/home/vol25) [Number 2](https://qjps.researchcommons.org/home/vol25/iss2) Article 6

4-7-2020

Some Results Related With Type Of Family Of Sets

Alaa M. Jasem Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq,, Nafm60@yahoo.com

Noori F. Al-Mayahi Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq,, sybzqoa@gmail.com

Follow this and additional works at: [https://qjps.researchcommons.org/home](https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Jasem, Alaa M. and Al-Mayahi, Noori F. (2020) "Some Results Related With Type Of Family Of Sets," Al-Qadisiyah Journal of Pure Science: Vol. 25: No. 2, Article 6. DOI: 10.29350/2411-3514.1195 Available at: [https://qjps.researchcommons.org/home/vol25/iss2/6](https://qjps.researchcommons.org/home/vol25/iss2/6?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

Some Results Related With Type Of Family Of Sets

1.Introduction

The concept of a fuzzy integral with respect to fuzzy measure was introduced by Sugeno [4] , and the definition of a fuzzy σ -field on fuzzy set provided by [3], [7], in 2019 Ibrahim and Hassan introduced some concepts such as α - σ -field and β - σ -field which represent the generalizations of σ -field [1], in this paper we will introduced the concept of fuzzy α -field , fuzzy α - σ -field , fuzzy β - σ -field ,fuzzy σ -field delection of fuzzy α -field , fuzzy σ -field , fuzzy σ -field , fuzzy σ -field , fuzzy σ -field , and the relation between them

2. FuzzySets

This section deals with the concepts of fuzzy set, complement , and operation on fuzzy sets.

^aDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, E-Mail: N afm60 @yahoo.com **^bDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, E-Mail:** sybzqoa@gmail.com

Definition $(2. 1): [5][8]$ **.Let** Ω **be anon empty set, a fuzzy set** Λ **in** Ω **(or a fuzzy subset in** Ω **) is a function** from Ω into I, $A \in I^{\Omega}$. $A(x)$ is interpreted as the degree of membership of element x in a fuzzy set A for each $x \in \Omega$, a fuzzy set A in Ω can be represented by the set of pairs:

$$
A = \{ (x, A(x)) : x \in \Omega \}
$$

Note that every ordinary set is a fuzzy set, i.e. $P(\Omega) \subseteq I^{\Omega}$.

Definition $(2.2) : [5][8][6]$. Let A and B be a fuzzy sets in Ω .

- (*i*) A and B are said to be equal (or A equals B), which written as
- $A = B$ if $A(x) = B(x)$ for all $x \in \Omega$.
- (ii) Aisincluded in B and we write $A \subseteq B$, if $A(x) \leq B(x)$ for all $x \in \Omega$. Hence $A = B$ iff $A \subseteq$ *B* and $B \subseteq A$.

(*iii*) A is proper subset of B and write $A \subseteq B$ if and only if $A \subseteq B$ and

$$
A\neq B.
$$

(iv) The union $A \cup B$ of A and B is defined by

 $(A \cup B)(x) = \max\{A(x), B(x)\}\$ for all $x \in \Omega$.

(v) The intersection $A \cap B$ of A and B is defined by

 $(A \cap B)(x) = min\{A(x), B(x)\}$ for all $x \in \Omega$.

Similar to operations on ordinary sets, one can generalize the union and the intersection for an arbitrary family of fuzzy sets: if $\{A_\lambda : \lambda \in \Lambda\}$ is a family of fuzzy sets, where Aan arbitrary of index set, the union is $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is the fuzzy set having membership function $\sup \{A_{\lambda}(x): \lambda \in \Lambda\}$, i.e.

$$
\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)(x) = \sup\{A_{\lambda}(x) : \lambda \in \Lambda\} \text{ for all } x \in \Omega
$$

and the intersection $\bigcap_{\lambda \in \Lambda} A_{\lambda}$ is the fuzzy set having membership function $\inf \{A_{\lambda}(x): \lambda \in \Lambda\}$, i.e.

$$
\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right)(x) = \inf\{A_{\lambda}(x) : \lambda \in \Lambda\} \text{ for all } x \in \Omega.
$$

Definition (2.3) **: [5][6].** Let A and B be fuzzy sets in Ω .

(*i*) The complement A^c , of A is defined by $A^c(x) = 1 - A(x)$ for all $x \in \Omega$.

(*ii*) The difference A/B between A and B is defined by $A/B = A \cap B^c$.

(*iii*) The symmetric difference, $A \triangle B$, between A and B is defined by $A \triangle B = {A \choose A}$ \mathcal{A}_B) ∪ (\mathcal{B}/\mathcal{A}).

3. Type of some family of sets and relation between them

In this section we will introduce and study new concepts such as fuzzy β -field ,fuzzy $\beta - \sigma$ -field ,fuzzy α field and fuzzy α - σ -field, and we give basic properties , and examples of these concepts.

Definition (3.1) :[2].A non empty family *F* of a fuzzy sets of a set Ω is called fuzzy field on Ω if

$$
1. \ \emptyset \ , \Omega \in \ \mathcal{F}
$$

- 2. If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
- 3. If $A_1, A_2, \ldots, A_n \in \mathcal{F}$ then $\bigcup_{i=1}^n A_i \in \mathcal{F}$

If (3) is replaced by the closure under countable union we get on the following definition

Definition (3.2) :[3] [7].A non empty family *F* of a fuzzy sets of a set Ω is called fuzzy σ - field on aset Ω if 1. Ø. $\Omega \in \mathcal{F}$

- 2. If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
- 3. If $A_n \in \mathcal{F}$ $n = 1, 2, 3, \dots$ then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- A fuzzy measurable space is a pair (Ω, \mathcal{F}) , where Ω is a nonempty set and $\mathcal F$ is a fuzzy σ -field on Ω . a fuzzy set A in Ω is called fuzzy measurable (fuzzy measurable with respect to the fuzzy σ -field) if

A∈ \mathcal{F} , i.e. any member of $\mathcal F$ is called a fuzzy measurable set.

Example (3.3) :The family $\mathcal F$ of all fuzzy sets of a set Ω is a fuzzy field on Ω .

Proof:Let $\mathcal{F} = \{A : A \in I^{\Omega}\}\$

1. It is clear that \emptyset , $\Omega \in \mathcal{F}$. 2. Let $A \in \mathcal{F}$, hence $A \in I^{\Omega}$, then $0 \leq A(x) \leq 1$, $A^{c}(x) = 1 - A(x)$ Hence $0 \le 1 - A(x) \le 1 \implies 0 \le A^c(x) \le 1$

Therefore $A^c \in I^{\Omega}$, hence $A^c \in \mathcal{F}$.

3. Let $A_1, A_2, ..., A_n \in \mathcal{F}$, then $A_1, A_2, ..., A_n \in I^{\Omega}$ $0 \le A_i(x) \le 1 \quad \forall i = 1,2,...,n$ $\bigcup_{i=1}^{n} A_i(x) = \max\{A_i(x): i = 1, 2, ..., n\} \implies 0 \le \max\{A_i(x): i = 1, 2, ..., n\} \le 1$ Hence $\bigcup_{i=1}^{n} A_i \in \mathcal{F}$, therefore $\mathcal F$ is a fuzzy field

Example (3.4) :[2]. 1.The family *F* of all fuzzy sets on a set Ω is a fuzzy σ -field on Ω . 2. The family $\mathcal{F} = {\emptyset, \Omega}$ is a fuzzy σ -field on Ω

 \blacksquare in the following theorem ,we can show the relationships between a fuzzy field and a fuzzy σ -field .

Theorem (3.5):[2].Any fuzzy σ -field is a fuzzy field

Proof:Suppose $\mathcal F$ is a fuzzy σ -field, hence

1. \emptyset , $\Omega \in \mathcal{F}$.

- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
- 3. Let $A_1, A_2, \dots, A_n \in \mathcal{F}$, we put $A_k = \emptyset \forall k > n$

Since *F* is fuzzy σ -field, it is clear $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$,

But $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{n} A_i$, when $A_k = \emptyset \ \forall \ k > n$

∴ $\cup_{i=1}^{n} A_i \in \mathcal{F}$, Thuse \mathcal{F} is fuzzy field

 \blacksquare in the next theorem ,we will demonstrate that the intersection of fuzzy σ -fields is a fuzzy σ -field

Theorem (3.6):[2].Let $\{\mathcal{F}_i\}_{i\in I}$ be a family of fuzzy σ -field ,then $\cap_{i\in I} \mathcal{F}_i$ is a fuzzy σ -field

Remark (3.7): [2]. The union of fuzzy σ -field does not to be fuzzy σ -field as in the following example : **Example (3.8):[2].** Let A, B, C, D are fuzzy sets and $\Omega = [0,1]$ such that

$$
A(x) = \begin{cases} 2x & 0 \le x \le \frac{1}{2} \\ 0 & \frac{1}{2} < x \le 1 \end{cases} \qquad B(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{4} \\ 2x & \frac{1}{4} < x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases}
$$

$$
C(x) = \begin{cases} 1 - 2x & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases} \qquad D(x) = \begin{cases} 1 & 0 \le x \le \frac{1}{4} \\ 1 - 2x & \frac{1}{4} < x \le \frac{1}{2} \\ 0 & \frac{1}{2} < x \le 1 \end{cases}
$$

.

Let $\mathcal{F}_1 = \{\emptyset, A(x), C(x), \Omega\}$, $\mathcal{F}_2 = \{\emptyset, B(x), D(x), \Omega\}$ are two fuzzy σ -fields, but $\mathcal{F}_1 \cup \mathcal{F}_2$ is not $fuzzy \sigma$ -field.

Definition (3.9):Let Ω be a nonempty set and let *F* be a family of fuzzy sets on a set Ω, then *F* is called fuzzy α -field if the following conditions satisfied :

$$
1, \Omega \in \mathcal{F}.
$$

2.if $A_1, A_2, \dots, A_n \in \mathcal{F}$, then $\bigcup_{i=1}^n A_i \in \mathcal{F}$.

Example (3.10):Let Ω =[0,1] and A be a fuzzy set on Ω , define as follows

$$
A(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases}
$$
 and let $\mathcal{F} = \{A, \Omega\}$, then \mathcal{F} is fuzzy α -field

Theorem (3.11):Every fuzzy field is fuzzy α -field

Proof :Let $\mathcal F$ be fuzzy field (by definition of $\mathcal F$) we get

1. $\Omega \in \mathcal{F}$

2. If $A_{1,}A_{2,} \ldots$, $A_{n} \in \mathcal{F}$, then $\cup_{i=1}^{n} A_{i} \in \mathcal{F}$

Hence $\mathcal F$ is a fuzzy α -field on a set Ω .

 \blacksquare in general the covers of theorem (3.11) is not true and example (3.10) indicate that,

 $\mathcal{F} = \{A, \Omega\}$ iis fuzzy α -field, but not fuzzy field because AE \mathcal{F} , but

$$
A^{c}(x) = \begin{cases} 1 & 0 \leq x \leq \frac{1}{2} \\ 0 & \frac{1}{2} < x \leq 1 \end{cases} \notin \mathcal{F}
$$

Theorem (3.12): every fuzzy σ -field is fuzzy α -field

proof :Direct

- \blacksquare in general the convers theorem (3.12) is not true and example (3.10) indicate that
- **Definition (3.13):**LetΩ be a nonempty set and let *F* be a family of fuzzy sets on Ω , *F* is called fuzzy α - σ field if the following condition satisfied :
- 1. \emptyset , $\Omega \in \mathcal{F}$.
- 2. If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.
- **Definition (3.14):**Let Ω be a nonempty set and $\mathcal F$ be a fuzzy α - σ -field of a set Ω , then a pair $(\Omega, \mathcal F)$ is called α -fuzzy measurable space and the member of $\mathcal F$ are called fuzzy α -measurable sets

Example (3.15):Let Ω =[0,1] and A, fuzzy set define on Ω as follows

$$
A(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases}
$$
 and let $\mathcal{F} = \{ \emptyset, A, \Omega \}$, then \mathcal{F} is fuzzy α - σ -field.

Proposition (3.16): Every fuzzy α - σ -field is a fuzzy α -field

Proof :Let $\mathcal F$ be a fuzzy α - σ -field on a set Ω , (by definition of $\mathcal F$) we get

1. \emptyset , $\Omega \in \mathcal{F}$.

2. Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$, and put $A_k = \emptyset$ for all $k > n$

Since *F* is fuzzy α - σ -field, then $\cup_{i=1}^{\infty} A_i \in \mathcal{F}$, but $A_i = \emptyset \ \forall i > n$ then $\cup_{i=1}^{\infty} A_i = \cup_{i=1}^n A_i$, hence $\cup_{i=1}^n A_i \in$ $\mathcal F$

Hence $\mathcal F$ is a fuzzy α -field

 \blacksquare in general the convers of proposition (3.16) is not true and example (3.10) indicate that $\mathcal F$ is fuzzy α -field but not fuzzy α - σ -field ,because $\emptyset \notin \mathcal{F}$.

Theorem (3.17):Every fuzzy σ -field is fuzzy α - σ -field.

Proof :Let $\mathcal F$ be a fuzzy σ -field (by definition of $\mathcal F$) we get

 $\Omega \in \mathcal{F}$, and $\emptyset = \Omega^c \in \mathcal{F}$, hence

1. \emptyset , $\Omega \in \mathcal{F}$

2. Let $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Hence $\mathcal F$ is fuzzy α - σ -field

 \blacksquare in general the converse of theorem (3.17) is not true and example (3.15) indicate that $\mathcal F$ is fuzzy α - σ -field ,but not fuzzy σ -field, because A $\in \mathcal{F}$, but $A^c \notin \mathcal{F}$

Theorem (3.18):Let $\{\mathcal{F}_i\}_{i\in I}$ *be* family of fuzzy α - σ -field on a set Ω ,then $\cap_{i\in I}\mathcal{F}_i$ is a fuzzy α - σ -field on Ω .

Proof :1.Since \mathcal{F}_i *is a fuzzy* α *-o-*field on Ω ,for all i∈ I ,then \emptyset, Ω E \mathcal{F}_i

For all i $\in I$, hence \emptyset , $\Omega \in \cap_{i \in I} \mathcal{F}_i$

2.Let $A_1, A_2, \ldots, \in \cap_{i \in I} \mathcal{F}_i$, then $A_1, A_2, \ldots \in \mathcal{F}_i$ for all $i \in I$

Since \mathcal{F}_i is fuzzy α - σ -field for all i $\in I$, then $\cup_{i=1}^{\infty} A_i \in \mathcal{F}_i$ for all i $\in I$ hence $\cup_{i=1}^{\infty} A_i \in \cap_{i\in I} \mathcal{F}_i$

Therefore $\bigcap_{i \in I} \mathcal{F}_i$ is a fuzzy α - σ -field

■the next example indicate that the union of two fuzzy α **-** σ **-field on** Ω **is not necessary a fuzzy** α **-** σ **-field on** Ω

Example (3.19):Let Ω =[0,1] and let A and B are two fuzzy sets on Ω define as follows

$$
A(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases}, \qquad B(x) = \begin{cases} x & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases}
$$

And let $\mathcal{F}_1 = \{\emptyset, A, \Omega\}$ and $\mathcal{F}_2 = \{\emptyset, B, \Omega\}$, then \mathcal{F}_1 and \mathcal{F}_2 are fuzzy α - σ -field on a set Ω , But $\mathcal{F}_1 \cup \mathcal{F}_2$ $\{\emptyset, A, B, \Omega\}$ is not fuzzy α - σ -field on Ω

Since $(A \cup B)(x) = \max\{A(x), B(x)\}\$

If
$$
x = \frac{1}{2} \rightarrow (A \cup B)(\frac{1}{2}) = \max \{A(\frac{1}{2}), B(\frac{1}{2})\} = \max \{0, \frac{1}{2}\}
$$

$$
= \frac{1}{2} \notin \mathcal{F}_1 \cup \mathcal{F}_2.
$$

Definition (3.20) :Let *F* be a nonempty family of fuzzy set on a set Ω , then *F* is called fuzzy β -field if the following condition satisfied :

1. $\emptyset \in \mathcal{F}$.

2. If $A_1, A_2, ..., A_n \in \mathcal{F}$, then $\bigcap_{i=1}^n A_i \in \mathcal{F}$.

Example (3.21): Let Ω =[0,1] and A be fuzzy set on Ω , define as follows

$$
A(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases} \text{ and } \mathcal{F} = \{\emptyset, A\} \text{ then } \mathcal{F} \text{ is fuzzy } \beta \text{-field}
$$

Theorem (3.22): Every fuzzy field is fuzzy β -field

Proof: Let F be fuzzy field (by definition of fuzzy field) we get

- 1. U $\in \mathcal{F}$, and $\emptyset = U^c \in \mathcal{F}$ therefore $\emptyset \in \mathcal{F}$.
- 2. Let $A_1, A_2, ..., A_n \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, by demorgan laws we have $\bigcap_{i=1}^{\infty} A_i = (\bigcup_{i=1}^{\infty} A_i^c)^c$, but $A_1, A_2, \ldots, A_n \in \mathcal{F}$

Then $A_1^c, A_2^c, \ldots, A_n^c \in \mathcal{F}$, and $\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{F}$, hence $(\bigcup_{i=1}^{\infty} A_i^c)^c \in \mathcal{F}$ therefore $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

Hence $\mathcal F$ is a fuzzy β -field on a set Ω

 \blacksquare in general the converse of theorem (3.22) is not true and example (3.21) indicate that $\mathcal F$ is a fuzzy β -field but not fuzzy field , because $A \in \mathcal{F}$ but $A^c \notin \mathcal{F}$

Remark (3.23):Every fuzzy σ -field is fuzzy β -field, but the converse is not true

Definition (3.24): Let *F* be anon empty family of fuzzy sets on a set Ω , then *F* is called fuzzy $\beta - \sigma$ –field if the following conditions satisfied :

1. \emptyset , $\Omega \in \mathcal{F}$

- 2. if A_1 , A_2 , $\in \mathcal{F}$ then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$
- **Definition (3.25):** Let Ω be anon empty set and *F* is fuzzy $\beta \sigma$ field on Ω then the pair (Ω, \mathcal{F}) is called β – fuzzy measurable space over $\mathcal F$ and the member of $\mathcal F$ are called β - fuzzy measurable set.

Example (3.26): Let
$$
\Omega
$$
=[0,1] and , $A(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} < x \le 1 \end{cases}$

and $\mathcal{F} = {\emptyset, A, \Omega}$ then $\mathcal F$ is a fuzzy $\beta - \sigma$ -field

proposition (3.27): Let $\{\mathcal{F}_i\}_{i\in I}$ be family of fuzzy $\beta - \sigma$ –field on Ω ,then $\bigcap_{i\in I}\mathcal{F}_i$ is a fuzzy $\beta - \sigma$ – field

Proof:1.since \mathcal{F}_i is fuzzy $\beta - \sigma$ -field $\forall i \in I$, then \emptyset , $\Omega \in \mathcal{F}_i$ $\forall i \in I$ hence \emptyset , $\Omega \in \bigcap_{i \in I} \mathcal{F}_i$

2.let A_1 , A_2 , … ... $\in \bigcap_{i\in I} \mathcal{F}_i$ then A_1 , A_2 , … ... $\in \mathcal{F}_i$ for all $i\in I$ since \mathcal{F}_i is a fuzzy $\beta - \sigma$ -field $\forall i \in I$ then $\bigcap_{k=1}^{\infty} A_k \in \mathcal{F}_i \ \forall i \in I$ which is implies that $\bigcap_{k=1}^{\infty} A_k \in \bigcap_{i \in \mathcal{F}} \mathcal{F}_i$

hence $\bigcap_{i \in I} \mathcal{F}_i$ is fuzzy $\beta - \sigma$ -field

Proposition (3.28):Every fuzzy σ -field is a fuzzy β - σ -field.

Proof :Direct

Remark :in general the convers of theorem (3.28) is not true and example (3.26) indicate that \mathcal{F} is fuzzy β $σ$ -field, but not fuzzy $σ$ -field because A∈ $\mathcal F$, but $A^c \notin \mathcal F$.

Theorem (3.29): Every fuzzy β - σ -field is fuzzy β -field

Proof : let $\mathcal F$ be fuzzy β - σ -field, then

1. \emptyset , $\Omega \in \mathcal{F}$ 2. Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$, and put $A_k = \Omega$ for all $k > n$ Then $\bigcap_{i=1}^n A_i = \bigcap_{i=1}^\infty A_i$, since $\mathcal F$ be fuzzy β - σ -field,

then $\bigcap_{i=1}^{\infty} A_n \in \mathcal{F}$, hence $\bigcap_{i=1}^{n} A_i \in \mathcal{F}$

therefore *F* is fuzzy β -field on Ω .

 \blacksquare in general the convers of theorem (3.29) is not true and example (3.21) indicate that $\mathcal F$ is fuzzy β -field ,but not fuzzy β-σ-field , because $\Omega \notin \mathcal{F}$.

References

- [1] Ibrahim, S. A,; Hassan, H. E., Generalization of σ -field and New Collections of Sets Noted by δ -field, AIP Conference proceedings , 2019, 2096, 020019, 020019_1-020019_6, doi.org∕10.1063∕1.5097816.
- [2]Karrar, S. H. ; ;On Fuzzy Measure With Respect To Fuzzy Sets ,2017.
- [3] Klement, E. P., "Fuzzy u-algebras and fuzzy measurable functions", Fuzzy Sets and Systems4 (1980) 83-93
- [4] Sugeno, .M "Theory of fuzzy Integrals and Its Applications", p h .D. Dissertation , Tokyo Institute of Technology, 1975
- [5] Zadeh, L. A., "Fuzzy sets, Information and Control", 8 (1965) 338-353.
- [6] Zadeh, L., A., "Fuzzy Sets", Information Sets, Edited by Yagar R. R., Ovchinnikos S., Tong R. M. and Ngnyenw T., John Wiley and Sons, Inc., 1987.
- [7] Zhong, Q., "Riesz's theorem and Lebesgue's theorem on the fuzzy measure space", busefal 29, (1987), 33-41.
- [8] Zimmerman, H. J., "fuzzy set theory and Its Application", Kluwer Academic Publishers, 2001.