[Al-Qadisiyah Journal of Pure Science](https://qjps.researchcommons.org/home)

[Volume 25](https://qjps.researchcommons.org/home/vol25) [Number 2](https://qjps.researchcommons.org/home/vol25/iss2) Article 8

4-7-2020

On s-g-cocompact open set and Continuity

Raad Aziz Hussain Al-Abdulla Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, raad.hussain@gmail.com

Salam Satar Jabar Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, abvpauq17@gmail.com

Follow this and additional works at: [https://qjps.researchcommons.org/home](https://qjps.researchcommons.org/home?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Al-Abdulla, Raad Aziz Hussain and Jabar, Salam Satar (2020) "On s-g-cocompact open set and Continuity," Al-Qadisiyah Journal of Pure Science: Vol. 25: No. 2, Article 8. DOI: 10.29350/2411-3514.1197 Available at: [https://qjps.researchcommons.org/home/vol25/iss2/8](https://qjps.researchcommons.org/home/vol25/iss2/8?utm_source=qjps.researchcommons.org%2Fhome%2Fvol25%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact [bassam.alfarhani@qu.edu.iq.](mailto:bassam.alfarhani@qu.edu.iq)

Al-Qadisiyah Journal of Pure Science Vol.(25) Issue (2) (2020) pp. Math. 67–77

On ে**-g-cocompact open set and Continuity**

1. Introduction

In 1983, by dropping the finite intersection condition of topological spaces, Mashhour et al.[3] came up with an idea of supra topological spaces and it deals with groups called supra open sets. They introduced the notions of (irresolute) S*-continuous maps and investigated some of their properties. Ravi et al. [2] introduced the idea of supra g-closed sets and obtained other properties of supra g-closed sets. [1] Al-shami introduced some studies on supra topology and the definition of supra open sets and their properties and presented some types of supra compact space . in [4],[5],[6] B. Meera Devi, D.K. Nathan R. Selvarathi. O. R. SAYED,] B.Meera Devi, respectively, introduced new class of functions in supra topological spaces, namely supra δg^2 continuous functions. In [7] S. Al Ghour and S. Samarah introduced coc-open sets in topological spaces.

2. Preliminaries

Definition(2.1) [3] If X belongs to μ and μ is closed under arbitrary union, a subcollection μ of 2^X is considered a supra topology on X. That μ elements is referred to as a supra open sets (ϵ -open) of (X,μ) and its complement is referred to as supra closed sets (s-closed) .The supra closure of A (denoted by \overline{A}^5) is the intersection of all supra closed sets containing A and the supra interior of A (denoted by A^{os}) is the union of all supra open sets contained in A. The supra relative topology µy on Y is defined as $\mu y = \{ Y \cap G : G \in \mu \}$. A pair $(Y, \mu y)$ is called supra subspace of (X, μ) .

Definition(2.2) [2]Let (X, μ) be a supra topological space. A subset A of X is called supra g-closed (s -g-closed) if $\overline{A}^s \subseteq U$ whenever $A \subseteq U$ and U is supra open in (X, μ) . And A is called supra g-open (s-g-open), if A^c is supra gclosed .

Remark(2.3) [2] Every 5-closed set implies 5-g-closed set, 5-g-closed set need not imply 5-closed sets, 5-open set mplies $s-g$ -open and $s-g$ -open must not imply s -open set.

Theorem(2.4) [2] A subset of supra topological space in (X, μ) is ϵ -g-open set if and only if $B \subseteq A^{\circ \epsilon}$ whenever B is \leq -closed and $B \subseteq A$.

Definition (2.5) **[1] A supra topological spaces** (X, μ) **is called supra compact (** ϵ **-compact for short) provided that** every supra open cover of X has a finite subcover .

Definition (2.6) [1]. A collection $\{Gi : i \in I\}$ of supra open sets in a supra topological spaces (X,μ) is called supra open cover of a subset E of X provided that $E \subseteq \bigcup \{ Gi : i \in I\}.$

3. On supra generalized co-compact-open set and supra generalized co-compact -continuous functions

In this section, we introduce the definition of $s-g-coc-open$ set, $s-g-coc-closed$ set, $s-g-coc-continuous$, $s-g-coc$ coc'-continuous , remarks and propositions about this concept .

Definition (3.1) A subset A of a space (X, μ) is called supra ganeralized cocompact open set ($s-g-coc-open$ set) if for every $x \in A$ there exists $\leq -g$ -open set $U \subseteq X$ and \leq -compact subset K such that $x \in U - K \subseteq A$, the complement of ϵ -g-coc-open set is called ϵ -g-coc-closed set. The family of all ϵ -g-coc-open subsets of a space (X, μ) will be denoted by μ^{gk} .

Example(3.4) Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, X, \{a, b\}, \{a, c\}\}\$. Then $\mu^{gk} = p(X)$

Proposition (3.5)

i- Every ϵ -open set is ϵ -g-coc-open set. $iii-Every$ $s-g$ -open set is $s-g$ -coc-open set. proof

i. Let A \leq -open set Then A \leq -g-open and let K \leq -compact (\emptyset). Then for all $x \in A$ we have $x \in U - K \subseteq A$

ii. Let A \leq -g-open and K \leq -compact (\emptyset). Then for all $x \in A$ we have $x \in U - K \subseteq A$

but the convers of i and ii are not true for the following example :-

Example (**3.6**)

Let $X = N$. $\mu = {\emptyset, X, X - {1}}$ is supra topological space. It is clear that ${1}$ ϵ -g-coc-open set but not ϵ -open and not s-g-open set.

Remark (3.7) :- Every ϵ -g-closed is ϵ -g-coc-closed but the converse is not true as in the example (3.6). It is clear that $\{1\}^c$ s-g-coc-closed set but $\{1\}^c$ not s-g-closed set.

Proposition (3.8) **:-** The union of ϵ -g-coc-open is ϵ -g-coc-open set

Proof

let {A_∝ : ∝∈∧ } ϵ -g-coc-open sets . let $x \in A_{\kappa}$. Then for some $\kappa \in A$. Then there exists U_∝ ϵ -g-open set and K_κ 5-compact such that $x \in U_{\kappa}$ - $K_{\kappa} \subseteq A_{\kappa} \subseteq U$ A_{κ} then $x \in U_{\kappa}$ - $K_{\kappa} \subseteq U$ A_{κ} , then U A_{κ} 5-g-coc-open set.

Theorem (3.9) :- μ^{gk} forms supra topology on X.

Proof.

By the definition one has directly that $\emptyset \in \mu^{gk}$. To see that $X \in \mu^{gk}$, let $x \in X$, take $U = X$ and $K = \emptyset$. Then $x \in U - K$ \subseteq X.

Let $\{U\alpha : \alpha \in \Delta\}$ be a collection of ϵ -g-coc-open subsets of (X, μ) and $x \in \cup \alpha \in \Delta$ U α . Then there exists $\alpha 0 \in \Delta$ such that $x \in U\alpha\circ$. Since $U\alpha\circ$ is ϵ -g-coc-open, then there exists an ϵ -g-open set V and ϵ -compact subset K, such that $x \in V - K \subseteq U\alpha$ °. Therefore, we have $x \in V - K \subseteq U\alpha$ ° $\subseteq U\alpha \in \Delta$ U α . Hence, $U\alpha \in \Delta$ U α is α -g-coc-open.

The following diagram shows the relation between types of ϵ -coc-open sets

Definition (3.10) Let X be a space and $A \subseteq X$. The intersection of all s-g-coc-closed sets of X containing A is called the s-g-coc-closure of A defined by .

 $\overline{A}^{s-g-coc} = \cap \{B: B s - g\}$ coc– closed in X and A \subseteq B}

Proposition (3.11) Let X be a space and $A \subseteq X$, then $x \in \overline{A}^{s-g-coc}$ if and only if for each s -g-coc-open in X contained point x we have $U \cap A \neq \emptyset$.

$Proof:$

Asume that $x \in \overline{A}^{s-g-coc}$ and let U ϵ -g-coc-open in X, such that $x \in U$, and suppose $U \cap A = \emptyset$, then $A \subseteq U^c$ since U is ϵ -g-coc-open set in X, $x \in U$, then U^c is ϵ -g-coc-closed set in X, $x \notin U^c$, and $\overline{A}^{\epsilon-g-{\rm coc}}$ is smallest ϵ -g-coc-

closed set contain A, then $\overline{A}^{s-g-coc} \subseteq U^c$, since $U \cap U^c = \emptyset$ x $\in U$ then $x \notin U^c$, then $x \notin \overline{A}^{s-g-coc}$, and this contradiction ,thus \forall 5-g-open U containing x we have $\Box \cap A \neq \emptyset$.

Conversely; Let U is ϵ -g- coc-open set in X, such that $x \in U$ an $U \cap A \neq \emptyset$. To prove $x \in \overline{A}^{s-g-coc}$, let $x \notin$ $\overline{A}^{s-g-coc}$, then $x \in (\overline{A}^{s-g-coc})^c$, since $\overline{A}^{s-g-coc}$ is $s-g-coc-closed$, then $(\overline{A}^{s-g-coc})^c$ is $s-g-coc-open$ set in X ,and $\overline{A}^{s-g-coc} \cap (\overline{A}^{s-g-coc})^c = \emptyset$, which is contradiction since A \cap U $\neq \emptyset$, \forall U is s-g-coc-open set in X, such that $x \in U$.

Proposition (3.12)

- Let X be a space and $A \subseteq B \subseteq X$ then
- 1. $\overline{A}^{s-g-coc}$ is s-g-coc-closed set
- 2. A is s-g-coc-closed if and only if $A = \overline{A}^{s-g-coc}$
- 3. $\overline{A}^{s-g-coc} = \overline{A}^{s-g-coc}^{s-g-coc}$
- 4. If $A \subseteq B$ then $\overline{A}^{s-g-coc} \subseteq \overline{B}^{s-g-coc}$ 5. $\overline{A}^{s-g-coc} \subseteq \overline{A}^{s}$

Proof :-

- 1. By Proposition (3.8) .
- 2. Let A be s-g-coc-closed in X. Since $A \subseteq \overline{A}^{s-g-coc}$ and $\overline{A}^{s-g-coc}$ smallest s-g-coc-closed set containing A, then $\overline{A}^{s-g-coc} \subseteq A$ then $A = \overline{A}^{s-g-coc}$
- conversely :- Let $A = \overline{A}^{s-g-coc}$. Since $\overline{A}^{s-g-coc}$ is $s-g\text{-}coc\text{-closed}$ then A is $s-g\text{-}coc\text{-closed}$.
- 3. From (1) and (2)

4. Let A⊆B. Since B⊆ $\overline{B}^{s-g-coc}$ thenA⊆ $\overline{B}^{s-g-coc}$ Since $\overline{B}^{s-g-coc}$ smallest s-g-coc-closed set containing A then $\overline{A}^{s-g-coc} \subseteq \overline{B}^{s-g-coc}$ (since $\overline{A}^{s-g-coc}$ smallest s-g-coc-closed set containing A).

5. Let $x \in \overline{A}^{s-g-coc}$ then for all s-g-coc-open set U , such that $x \in U$ we have U∩A≠Ø. Then for all s-open set U , such that $x \in U$, we have A $\bigcap U \neq \emptyset$ by proposition (3.11). Then $x \in \overline{A}^s$.

Definition (3.13) Let X be a space and $A \subseteq X$. The union of all $s-g\text{-}coc\text{-}open$ sets of X containing in A is called s g-coc-Interior of A denoted by $A^{\circ} = g - \cos \circ$ or $g - \cos \circ$ -In (A)

$$
A^{\circ s-g\text{-}coc} = U \{B: B \ s-g\text{-}coc\text{-}open in X and B \subseteq A\}
$$

Proposition (3.14) Let X be a space and $A \subseteq X$, then $x \in A^{\circ s-g\text{-}coc}$ if and only if there exists $s-g\text{-}coc\text{-}open$ set V containing x such that $x \in V \subseteq A$.

Proof :

Let $x \in A^{\circ s - g - coc}$ then $x \in U \cup V$ such that V $s-g-coc-open$ set and $x \in V \subseteq A$.

Conversely; Let there exists V ϵ -g-coc-open set , such that $x \in V \subseteq A$ then $x \in U \cup V$, $V \subseteq A$ and V ϵ -g-coc-open set , then $x \in A^{\circ s - g - coc}$.

Proposition (3.15)

Let X be a space and $A \subseteq B \subseteq X$, then.

- 1. $A^{\circ s-g-coc}$ is $s-g-coc-open set$.
- 2. A is $s-g\text{-}coc\text{-}open$ if and only if $A = A^{\circ s-g\text{-}coc}$.
- 3. $A^{\circ s} \subseteq A^{\circ s g \text{coc}}$.
- 4. $A^{\circ s-g-coc} = (A^{\circ s-g-coc})^{\circ s-g-coc}.$
- 5. if $A \subseteq B$ then $A^{\circ s-g-coc} \subseteq B^{\circ s-g-coc}$. **Proof :-**
- **1.** By Proposition (3.8) .

2. let A is ϵ -g-coc-open ,since A^{os-g-coc} largest ϵ -g-coc-open containing A ,thenA^{os-g-coc} \subseteq A and since $A \subseteq A^{\circ s-g-coc}$, then $A = A^{\circ s-g-coc}$.

Conversely; Let $A = A^{\circ s-g-coc}$, since $A^{\circ s-g-coc}$ is $s-g-coc-open$, then A is $s-g-coc-open$.

- 3. Let $x \in A^{\circ}$ then there exists U s-open set such that $x \in U \subseteq A$ then U s-g-coc-open set then U s-g-coc-open set such that $x \in U \subseteq A$ thus $x \in A^{\circ s - g - coc}$
- **4.** from (1) and (2).
- **5.** Let $x \in A^{\circ} = g^{-\circ} \circ c$ then there exists $V = g^{-\circ} \circ c$ -open set such that $x \in V \subseteq A$ by proposition(3.19), since $A \subseteq B$ then $x \in V \subseteq B$. Then $x \in B^{\circ s-g-coc}$ by proposition(3.14),. Thus $A^{\circ s-g-coc} \subseteq B^{\circ s-g-coc}$.

Definition (3.16)[3] Let $f: X \to Y$ be a function of space X into space Y.Then f is called supra-irresolute (scontinuous) function if $f^{-1}(A)$ is s-open set in X for every s-open set A in Y

Definition (3.17) Let $f: X \to Y$ be a function of a space X into a space Y. f is called ϵ -g-coc-continuous function if $f^{-1}(A)$ is s-g-coc-open set in X for every s-open set in Y .

Proposition (3.18) Every 5-continuous is 5-g-coc-continuous

Proof

Let $f: X \to Y$ be s-continuous function and A s-open set in Y. Thus $f^{-1}(A)$ is s-open set in X. Then $f^{-1}(A)$ is $\frac{1}{2}$ s-g-coc-open set in X. Then f is $\frac{1}{2}$ is $\frac{1}{2}$ coc-continuous

But the convers not true in general for example

Example (3.19)

Let $X = N \cdot \mu = {\emptyset, X, \{2\}}$ supra topology on X $Y = \{a, b, c\}$. $\mu = {\emptyset, Y, \{a\}}$ supra topology on Y and $f: X \longrightarrow Y$ defined by $f(x) = \begin{cases} a & \text{if } x \in \{1,3\} \\ b & \text{if } x \in \{1,2\} \end{cases}$ $\begin{cases} \n\frac{1}{2} & \text{if } x \in \{1.3\} \\
0 & \text{if } x \notin \{1.3\}\n\end{cases}$. Then f is $\frac{1}{2}$ -g-coc-continuous But not $\frac{1}{2}$ -continuous

Remark (3.20)

Let $f: X \longrightarrow Y$ be a function of a space X in to a space Y then

- i. The constant function is $s-g\text{-}coc\text{-}continuous$
- ii. If (X,μ) supra discrete topology then f ϵ -g-coc-continuous
- iii. If X finite set and μ any topology on X then f ϵ -g-coc-continuous

iv. If (Y,μ') indiscrete topology then f ϵ -g-coc-continuous

Proposition (3.21)

Let $f: X \longrightarrow Y$ be a function of a space X into a space Y then the following statements are equivalent :-

- 1. f ϵ -g-coc-continuous function.
- 2. $f^{-1}(A^{\circ s}) \subseteq (f^{-1}(A))^{s-s-g-coc}$ for every set A of Y.
- 3. $f^{-1}(A)$ s-g-coc-closed set in X for every s-closed set A in X.

\n- \n 4.
$$
f(\overline{A}^{s-g-coc}) \subseteq \overline{f(A)}^{s}
$$
 for every set *A* of *X*.\n
\n- \n 5. $\overline{f^{-1}(A)^{s-g-coc}} \subseteq f^{-1}(\overline{A}^{s})$ for every set *A* of *Y*.\n
\n- \n proof:\n
	\n- $1 \rightarrow 2$
	\n- $A \subseteq Y$, since $A^{\circ s}$ s -open set in *Y*. Then $f^{-1}(A^{\circ s})$ s -g-coc-open set in *X*. Thus $f^{-1}(A^{\circ s}) = (f^{-1}(A^{\circ s}))^{\circ s-g-coc} \subseteq (f^{-1}(A))^{\circ s-g-coc}$. Hence $f^{-1}(A^{\circ s}) \subseteq (f(A))^{\circ s-g-coc}$.\n
	\n- \n 2 \rightarrow 3\n Let $A \subseteq Y$ such that A s-closed set in *Y*. Then A^c s -open set then $A^c = (A^c)^{\circ s}$ then $f^{-1}((A^c)^{\circ s}) \subseteq (f^{-1}(A^c))^{\circ s-g-coc}$. Therefore $f^{-1}(A^c) \subseteq (f^{-1}(A^c))^{\circ s-g-coc}$ then $(f^{-1}(A))^c \subseteq (f^{-1}(A)^c)^{\circ s-g-coc}$.\n
	\n

Therefore $(f^{-1}(A))^c = (f^{-1}(A)^c)^{c} = g^{-c}$. Hence $(f^{-1}(A))^c$ s-g-coc-open set in X. Hence $f^{-1}(A)$ s-g-cocclosed set in X .

$3 \rightarrow 4$

Let $A \subseteq X$. Then $\overline{f(A)}^s$ s-g-coc-closed set in Y . Then by (3) we have $f^{-1}(\overline{f(A)}^s)$ is s-g-coc-closed set in X containing A ,thus $\bar{A}^{s-g-coc} \subseteq f^{-1}(\overline{f(A)}^s)$ (since $\bar{A}^{s-g-coc}$ intersection of all ϵ -g-coc-closed sets in X containing A). Hence $f(\overline{(A)}^{\epsilon-g-coc}) \subseteq \overline{f(A)}^{\epsilon}$

$4 \rightarrow 5$

Let $A \subseteq Y$. Then $f^{-1}(A) \subseteq X$. Then by (4) we have $f\left(\overline{(f^{-1}(A))^{s-g-coc}}\right) \subseteq$ $\overline{f(f^{-1}(A))}^s$ Hence $\overline{f^{-1}(A)}$ ^{s-g-coc} $\subseteq f^{-1}(\overline{A}^s)$.

$5 \rightarrow 1$

Let B s-open set in Y then B^c s-closed .Then $B^c = \overline{B^c}^s$. Hence $\overline{f^{-1}(B^c)}^{s-g-coc} \subseteq f^{-1}(\overline{B^c}^s)$. Then $\overline{f^{-1}(B^c)}$ ^{s-g-coc} $\subseteq f^{-1}(B^c)$. Then $f^{-1}(B^c) = (f^{-1}(B))^c$ s-g-coc-closed set in X. Therefore $f^{-1}(B)$ s-g-cocopen set in X. Thus f s -g-coc-continuous function.

Remark (3.22) From proposition (3.21) we have f s -g-coc-continuous if and only if, the inverse image of every ϵ -closed set in Y is ϵ -g-coc- closed set in X .

Definition (3.23) Let $f: X \to Y$ be a function of a space X into a space Y, then f is called $s-g$ -coc irresolute $(s - g - \cot - \cot \tan \theta)$ function if $f^{-1}(A)$ s-g-coc-open set in X for every s-g-coc-open set in Y.

Proposition (3.24) Every $s - g - co\acute{c}$ – *continuous* function is $s - g$ -coc-continuous function Proof:

Let $f: (X, \mu) \to (Y, \mu')$ be $\epsilon = g - \cot \theta - \cot \theta$ and B ϵ -open set in Y. Then B is ϵ -g-coc-open set. Since $f \le -g - co\acute{c}$ – coc-continuous then $f^{-1}(B)$ \le -g-coc-open. Hence $f \le$ -g-coc-continuous function. But the converse is not true in general for the following example.

Example(3.25): $f: X \to Y$ be function defined by $f(x) = \{$ 1 if $x \in \mathbb{N}$ e 2 *if* $x = x1$ 3 $if x \in No$ and $X=x_1 \cup N$ ($x_1 \in R$, N nature

number, $\mu = \{ \emptyset. X.A: A \subseteq N \}$. μ' supra indiscrete topology on $Y = \{1.2.3\}$, then the only s-open sets in Y are Y and \emptyset , then $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(Y) = X$. Since Y and \emptyset s-g-coc-open sets in Y then $f^{-1}(\emptyset)$. $f^{-1}(Y)$ s-g-coc-

open in X. Then f ϵ -g-coc-continuous function. But $\{2\}$ ϵ -g-coc-open in Y and $f^{-1}(\{2\}) = \{x1\}$ is not ϵ -g-cocopen set in X . x1 ∈ {x1}. There is no ϵ -g-open set U such that $x1 \in U$, and K ϵ -compact such that $x1 \in U$ – $K \subseteq \{x1\}$. Then f is not ϵ -g-coc´-continuous function.

Proposition (3.26) Let $f: X \to Y$ be \leq -g-coc'-continuous then $f^{-1}(A)$ \leq -g-coc-closed set in X for all A \leq -g-cocclosed set in Y

proof

Let A is ϵ -g-coc-closed set in Y. Then A^c ϵ -g-coc-open in Y. Since f ϵ -g-coc'-continuous. Then $f^{-1}(A^c)$ is ϵ -gcoc-open in X by definition(2.10). Since $f^{-1}(A^c) = (f^{-1}(A))^c$. Then $(f^{-1}(A))^c$ s-g-coc-open set in X Therefore. $f^{-1}(A)$ s-g-coc-closed set in X for all A s-g-coc-closed set in Y.

Remark (3.27)

i. $s - g - co\acute{c}$ -continuous is need not to be s-continuous function.

ii. $\frac{1}{2}$ = s-continuous is need not to be $\frac{1}{2} - \frac{1}{2}$ – $\frac{1}{2} - \frac{1}{2}$ continuous function.

But the converse is not true as the follow example

Examples (3.28)

i--

Let $f: X \to Y$. $X = \{1.2.3\}$. $\mu = \{\emptyset, X, \{3\}\}\$ supra topology on X and $Y = \{a, b\}$. $\mu' =$ $\{\emptyset, Y, \{a\}\}\$ supra topology on Y . $f(1) = f(3) = b$. $f(2) = a$. It is clear that f is \emptyset -g-cocf-continuous but not s-continuous.

ii- Let $f: X \longrightarrow Y$ be function defined by $f(x) = \{$ 1 if $x \in \mathbb{N}$ e 2 *if* $x = x1$ 3 if $x \in \mathbb{N}$ o and $X=x_1\cup N$ ($x_1 \in R$, N natural number), μ

 $=\{ \emptyset. X.A: A \subseteq N \}$. µ' supra indiscrete topology on $Y = \{1.2.3\}$, then the only s-open sets in Y are Y and Ø, then $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(Y) = X$. Since Y and \emptyset s-open sets in Y then $f^{-1}(\emptyset)$. $f^{-1}(Y)$ s-open in X. Then f scontinuous function. But $\{2\}$ s-g-coc-open in Y and $f^{-1}(\{2\}) = \{x1\}$ is not s-g-coc-open set in X. $x1 \in \{x1\}$. There is no \leq -g-open set U such that $x1 \in U$, and K \leq -compact such that $x1 \in U - K \subseteq \{x1\}$. Then f is not \leq g-coc´-continuous function .

Proposition (3.29)

Let $f: X \longrightarrow Y$ be a function of space X into space Y then the following statements are equivalent.

i. f is $s-g-coC$ -continuous.

ii. $f(\bar{A}^{s-g-coc}) \subseteq \overline{f(A)}^{s-g-coc}$ for every set $A \subseteq X$. iii. $\overline{f^{-1}(B)}^{s-g-coc} \subseteq f^{-1}(\overline{B}^{s-g-coc})$ for every set $B \subseteq Y$. **proof:**

 $i \rightarrow ii$

Let $A \subseteq X$ then $f(A) \subseteq Y$ and $\overline{f(A)}^{s-g-coc}$ s-g-coc-closed set in Y. Since f is $s-g-coc$ -continuous. Then $f^{-1}(\overline{f(A)}^{s-g-coc})$ s-g-coc-closed set in X by proposition(2.14). Since $f(A) \subseteq \overline{f(A)}^{s-g-coc}$ then $f^{-1}(f(A)) \subseteq$ $f^{-1}(\overline{f(A)}^{s-g-coc})$.Then $A \subseteq f^{-1}(\overline{f(A)}^{s-g-coc})$.Since $f^{-1}(\overline{f(A)}^{s-g-coc}$ - s g-coc-closed .Then $\overline{A}^{s-g-coc} \subseteq$ $f^{-1}(\overline{f(A)}^{s-g-coc})$ thus $f(\overline{A}^{s-g-coc}) \subseteq f(f^{-1}(\overline{f(A)}^{s-g-coc})) \subseteq \overline{f(A)}^{s-g-coc}$. Then $f(\overline{A}^{s-g-coc}) \subseteq \overline{f(A)}^{s-g-coc}$ $ii \rightarrow iii$

Let $(\bar{A}^{s-coc}) \subseteq \overline{f(A)}^{s-coc}$ $\forall A \subseteq X$. $B \subseteq Y$, then $f^{-1}(B) \subseteq X$, $f(\overline{f^{-1}(B)}^{s-coc}) \subseteq \overline{f(f^{-1}(B))}^{s-coc}$,then $f(\overline{f^{-1}(B)}^{s-g-coc}) \subseteq \overline{B}^{s-g-coc}$.Hence $\overline{f^{-1}(B)}^{s-g-coc} \subseteq f^{-1}(\overline{B}^{s-g-coc})$

 $iii \rightarrow i$

Let B be $\leq -g\text{-}coc\text{-}closed$ set in Y then $B = \overline{B}^{g-g\text{-}coc}$. Since $\overline{f^{-1}(B)}^{g-g\text{-}coc} \subseteq f^{-1}(\overline{B}^{g-g\text{-}coc})$. Then $\overline{f^{-1}(B)}^{s-g-coc} \subseteq f^{-1}(B)$. Since $f^{-1}(B) \subseteq \overline{f^{-1}(B)}^{s-g-coc}$. Therefore $\overline{f^{-1}(B)}^{s-g-coc} = f^{-1}(B)$. Therefore $f^{-1}(B)$ s-g-coc-closed in X. Hence is $s - g - co\acute{c} - continuous$.

Proposition (3.30) Let $f: X \to Y$ be a function of space X into space Y then f is $\epsilon = 9 - \cos \epsilon - \cot \theta$ function if and only if the inverse image of every $s-g$ -coc-closed in Y is $s-g$ -coc-closed set in X **proof:**

Let f be $s - g - co\acute{c}$ -continuous, let B be s -g-coc-closed set in Y. Then B^c s -g-coc-open in Y. Since f s g-coc-continuous, then $f^{-1}(B^c)$ s-g-coc-open in $X \cdot f^{-1}(B^c) = f^{-1}(B - Y) = f^{-1}(Y) - f^{-1}(B) = X$ $f^{-1}(B) = (f^{-1}(B))$ ^c. Then $(f^{-1}(B))$ ^c s-g-coc-open in X. Hence $f^{-1}(B)$ s-g-coc-closed in X Conversely:

Let *M* be \leq -g-coc-open in *Y*, then *M^c* is \leq -g-coc-closed in *Y*. Then $f^{-1}(M^c)$ \leq -g-coc-closed in *X*, since $f^{-1}(M^c) = f^{-1}(Y - M) = f^{-1}(Y) - f^{-1}(M) = X - f^{-1}(M) = (f^{-1}(M))^c$. Therefore, $f^{-1}(M^c) = (f^{-1}(M))^c$. Then $(f^{-1}(M))$ ^c s-g-coc-closed in X hence $f^{-1}(M)$ s-g-coc-open set in X then f is s - g-coc-continuous.

The following diagram shows the relation between types of ϵ -coc-continuous functions

4. ে**-g-Coc-compact space**

In this section, we introduce the concept of $s-g-Coc-compact$ space and give some important generalization on this concept.

Definition (4.1): Let X be a supra space. A family F of subset of X is called ϵ -g-coc-open cover of X if F covers X and F is sub family of μ^{gk} .

Definition (4.2): A space X is said to be ϵ –g-coc-compact if every ϵ –g-coc-open cover of X has finite sub cover.

Example (4.3):

.i. Every finite subset of a space X is an ϵ –g-coc-compact.

ii. The indiscrete space is $s-g\text{-}coc\text{-}compact\ space$.

Remark (4.4): It is clear that every ϵ -g-coc-compact space is ϵ -compact but the converse is not true in general as the following example shows

Example (4.5): Let $X = \mathbb{R}$ the set of real numbers with τ is indiscrete topology, the coc-open set is $\{A: A \subseteq X\}$. Then X is s-compact space but not s —g-coc-copmpact.It is clear that, a space (X, μ) is s –g-coc-compact iff the space (X, μ^{gk}) is s-compact.

Theorem (4.6):

Let $f : X \rightarrow Y$ be an onto ϵ -g-coc-continuous function. If X is ϵ -g-coc-compact then Y is ϵ -compact. Proof:

Let $\{V_\alpha : \alpha \in \Lambda\}$ be an s-open cover of Y then $\{f^{-1}(V_\alpha) : \alpha \in \Lambda\}$ is an s-g-coc-open cover of X, since X is s-gcoc-compact .Then X has finite sub cover say $\{f^{-1}(V_{\alpha i}): i = 1, 2, ..., n\}$ and $V_{\alpha i} \in \{V_{\alpha} : \alpha \in \Lambda\}$. Hence $\{V_{\alpha i}: i = 1, 2, ..., n\}$ 1.2. $\dots n$ is a finite sub cover of Y. Then Y is s-compact.

Theorem (4.7):

Let $f : X \rightarrow Y$ be an onto ϵ –g-coc'-continuous function. If X is ϵ -g-coc-compact then Y is ϵ -g-coc-compact. Proof:

Let $\{V_\alpha : \alpha \in \Lambda\}$ be an s-g-coc-open cover of Y then $\{f^{-1}(V_\alpha) : \alpha \in \Lambda\}$ is an s-g-coc-open cover of X, since X is $s-g\text{-coc-compact}$. Then X has finite sub cover say $\{f^{-1}(V_{\alpha i}): i = 1, 2, ..., n\}$ and $V_{\alpha i} \in \{V_{\alpha} : \alpha \in \Lambda\}$. Hence ${V_{\alpha i} : i = 1, 2, ..., n}$ is a finite sub cover of Y. Then Y is s-g-coc-compact.

Proposition (4.8):

For any space X the following statement are equivalent:

i. X is $s-g$ -coc-compact

ii. Every family of ϵ -g-coc-closed sets $\{F_\alpha : \alpha \in \Lambda\}$ of X such that $\bigcap_{\alpha \in \Lambda} F_\alpha = \phi$, then there exist a finite subset $\Lambda_o \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda} F_\alpha = \phi$.

Proof:

(i)→(ii) Assume that X is ϵ -g-coc-compact, let $\{F_\alpha : \alpha \in \Lambda\}$ be a family of ϵ -g-coc-closed subset of X such that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$. Then the family $\{X - F_{\alpha} : \alpha \in \Lambda\}$ is ϵ -g-coc-open cover of the ϵ -g-coc-compact (X, μ) there exist a finite subset Λ_o of Λ such that $X = \cup \{X - F_\alpha : \alpha \in \Lambda_o\}$ therefore $\phi = X - \cup \{X - F_\alpha : \alpha \in \Lambda_o\} = \bigcap \{X - (X - F_\alpha) : \alpha \in \Lambda_o\}$ F_{α}) : $\alpha \in \Lambda_o$ } = \cap { $X - F_{\alpha}$: $\alpha \in \Lambda_o$ }

(ii)→(i) Let $U = \{U_\alpha : \alpha \in \Lambda\}$ be an s-g-coc-open cover of the space (X, τ) . Then $X - \{U_\alpha : \alpha \in \Lambda\}$ is a family of $s-g$ -coc-closed subset of (X, μ) with $∩$ { $X - U_{\alpha} : \alpha \in \Lambda$ } = φ by assumption there exists a finite subset $Λ_{\alpha}$ of Λ such that $(X - U_{\alpha} : \alpha \in \Lambda_o) = \phi$ so $X = X - \Omega (X - U_{\alpha} : \alpha \in \Lambda_o) = \cup \{U_{\alpha} : \alpha \in \Lambda_o\}$. Hence X is s-g-coccompact.

Definition (4.9):

A subset B of a space X is said to be ϵ -g-coc-compact relative to X if for every cover of B by ϵ -g-coc-open sets of X has finite sub cover of B. The sub set B is $s-g\text{-}coc\text{-}compact$ iff it is $s-g\text{-}coc\text{-}compact$ as a sub space.

Proposition (4.10): If X is a space such that every ϵ -g-coc-open subset of X is ϵ -g-coc-compact relative to X, then every subset is $s-g\text{-}coc\text{-}compact$ relative to X . Proof:

Let B be an arbitrary subset of X and let $\{U_\alpha : \alpha \in \Lambda\}$ be a cover of B by ∞ -g-coc-open sets of X. Then the family $\{U_\alpha : \alpha \in \Lambda\}$ is a s-g-coc-open cover of the s-g-coc-open set \cup $\{U_\alpha : \alpha \in \Lambda\}$ Hence by hypothesis there is a finite subfamily $\{U_{\alpha i} : i = 1, 2, ..., n\}$ which covers $\cup \{U_{\alpha} : \alpha \in \Lambda\}$. This the subfamily is also a cover of the set *B*.

Theorem (4.11): Every ϵ –g-coc-closed subset of ϵ -g-coc-compact space is ϵ -g-coc-compact relative. Proof:

Let *A* be an ϵ -g-coc-closed subset of *X*. Let $\{U_\alpha : \alpha \in \Lambda\}$ be a cover of *A* by ϵ -g-coc-open subset of *X*. Now for each $x \in X - A$, there is a s-g-coc-open set V_x such that $V_x \cap A$ is a finite .Since X is s-g-coc-compact and the collection $\{U_\alpha : \alpha \in \Lambda\}$ \cup $\{V_x : x \in X - A\}$ is a s-g-coc-open cover of X, there exists a finite sub cover $\{U_{\alpha i} : i =$ 1.... $n\} \cup \{V_{xi}: i = 1,...,n\}$. Since $\bigcup_{i=1}^{n} (V_{xi} \cap A)$ is finite, so for each $x_j \in (V_{xi} \cap A)$, there is $U_{\alpha}(x_j) \in$ $\{U_\alpha : \alpha \in \Lambda\}$ such that $x_j \in U_{\alpha(x_j)}$ and $j = 1,...,n$. Hence $\{U_{\alpha i} : i = 1,...,n\} \cup \{U_{\alpha(x_j)} : j = 1,...,n\}$ is a finite sub cover of $\{U_\alpha : \alpha \in \Lambda\}$ and it covers A . Therefore , A is ζ -g-coc-compact relative to X.

Definition(4.12):

i. A space X is called CC if every ϵ -compact set in X is ϵ -closed.

ii. A space X is called CC' if every s -g-coc-compact set in X is s -g-coc-closed.

Theorem(4.13):

For any space(X, μ), then (X. μ^{gk}) is CC.

Proof.

Let $K \in C(X, \mu^{gk})$. As $\mu \subseteq \mu^{gk}$, then $C(X, \mu^{gk}) \subseteq C(X, \mu)$ and hence $K \in C(X, \mu)$. Thus, we have $X - K \in \mu^{gk}$, and hence K is s-closed in the space (X, μ^{gk}) .

Theorem(4.14) :

Let X be a space. Then the following statements are equivalent:

i. X is CC.

ii. $\mu = \mu^{gk}$.

Proof. i ⇒ii

Since $\mu \subseteq \mu^{gk}$, it is sufficient to see that $\mu^{gk} \subseteq \mu$, let k is s-compact then $X - K \in \mu^{gk}$, by i, $X - K \in \mu$, then $\mu^{gk} = \mu$

ii ⇒i Let K ∈ C(X, τ). Then X – K ∈ μ^{gk} , and by ii, X – K ∈ τ . Therefore, K is s-closed in X.

Remark(4.15): It is clear that every CC space is CC' space but the converse is not true in general as the following example shows:

Example(4.16): Let $X = \{1.2.3\}, \tau = \{X, \phi, \{1\}, \{2\}, \{1.2\}\}\$, the s-coc-open sets are discrete. $\{1\}$ is s-compact set but not $\mathfrak s$ -closed then X is not CC space.

Definition (4.17):

Let $f: X \to Y$ be a function of a space X into a space Y then f is called $s-g\text{-}coc\text{-}compact$ function if $f^{-1}(A)$ is s compact set in X for every ϵ -coc-compact set A in Y .

Remark (4.18): Every $s-g$ -coc-compact function is s -compact function.

Definition (4.19): Let $f: X \to Y$ be a function of a space X into a space Y then f is called $s - g - coc'$ -compact function if $f^{-1}(A)$ is ϵ -g-coc-compact set in X for every ϵ -g-coc-compact set A in Y.

Example (4.20): Every function from a finite space into any space is $s -g\text{-}coc'$ -compact function.

Remark (4.21): Every ϵ –g- \cos –compact function is ϵ –g- \cos -compact function.

Remark (2.22) :

Let $f: X \to Y$ be a function for which X is CC then the following statements are equivalent:

i. f is ϵ -continuous.

ii. f is s -g-coc-continuous.

Remark (2.23):

Let $f: X \to Y$ be a function for which X is CC then the following statements are equivalent:

i. f is ϵ -continuous.

ii. f is ϵ -g- \cos -continuous.

References

[1] T. M. Al-shami, Some results related to supra topological spaces, Journal of Advanced Studies in Topology, 7 (4) (2016) 283-294.

[2] O. Ravi, G. Ramkumar and M. Kamaraj, On supra g-closed sets, Inter-

national Journal of Advances in Pure and Applied Mathematics, 2 (2011),

no. 1, 52-66.

[3] A. S. Mashhour, A.A. Allam, F.S. Mahmoud and F.H. Khedr, On Supra topological spaces, Indian Jr. Pure and Appl. Math., 14 (1983), no. 4, 502-510.

[4] B. Meera Devi, D.K. Nathan R. Selvarathi, $\mu-\delta g$ -Continuous Functions in Supra Topological Spaces, Journal of Applied Science and Computations , 1076-5131 .

[5] O. R. SAYED , SUPRA PRE-OPEN SETS AND SUPRA PRE-CONTINUITY ON TOPOLOGICAL SPACES University of Bacau Faculty of Sciences Series Mathematics and Informatics Vol. 20 (2010), No. 2, 79 - 88,

[6] B.Meera Devi , New type of supra generalized closed set , Mathematical sciences international research journal : vol 3 sp1 Issue (2014) IssN 2349-1353.

[7] S. Al Ghour and S. Samarah " Cocompact Open Sets and Continuity", Abstract and Applied analysis, Volume 2012, Article ID 548612, 9 pages ,2012.