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1. Introduction 

      The main idea of the solution process for an optimal control problems is finding a control 
 which minimizes a given performance index while satisfying the required constraints. In (ݐ)∗ݑ
general, this is done by approximating state or control functions. The finite terms of scaling 
functions whose unknown coefficients values are sought giving an approximate optimal solution. 

      Optimal control is a wide field where a lot of researchers used different proceedings for 
solving its problems. Kafash B. et al. presented new efficient algorithms for solving OCPs and the 
controlled Duffing oscillator [7]. Lotfi A. Yousefi S. A. and Dehghan M. suggested a numerical 
direct method for solving a general class of fractional optimal control problems (FOCPs)[10]. 
Jaddu H.and Majdalawi A. proposed a computational algorithm for solving a class of nonlinear 
optimal control problems (NOCPs) [6]. Naseif J. and Imad N., used functional analysis technique 
for studying and deducing sufficient conditions for the controllability of nonlinear boundary 
value control systems in Banach spaces [12]. Ramezani M. gave a new numerical method for 
solving (OPC) based on state parameterization and new second kind Chebyshev wavelet [13]. 
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ABSTRACT 
 

   In this paper, the approximation methods are used to solve optimal control 
problem (OCP), two techniques for state parameterization and control 
parameterization have been considered with the aid of Scaling Polynomials 
(SBP) represent a new important technique for solving (OCP’s). The 
algorithms were illustrated by several numerical examples using Matlab 
program. The results were evaluated and graphed to show the accuracy of 
the methods. 
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Kafash B. and Delavarkhalafi A. introduced an efficient algorithm based on state 
parameterization solving (OPCs) and Van Der Pol oscillator [8]. 

      The general nonlinear optimal control (NOC) is stated as follows: 

ܬ		݊݅݉ = න ,(ݐ)ݔ,ݐ)	ܨ
௧೑

௧బ
…																																																																														ݐ݀((ݐ)ݑ (1) 

Subject to the system constraints: 

̇	ݔ                (ݐ) = ݂൫ݐ, ଴ݐ						,൯(ݐ)ݑ,(ݐ)ݔ ≤ ݐ ≤  ௙                                                                      … (2)ݐ

with conditions	ݔ(ݐ଴) =  ଴                                                                                                         … (3)ݔ

Where		(ݐ)ݔ(	ݐℎ݁	݁ݐܽݐݏ	ݎ݋ݐܿ݁ݒ)	is	݊ × 1, and u (t) (the input vector) is ݉ × 1. 

     The linear quadratic optimal control problem (LQOCP) is a particular form of the general 
nonlinear (NOC) is as follows: 

ܬ	 = න൫(ݐ)ݔ்ܳݔ + ݐ൯݀(ݐ)ݑ்ܴݑ

௧೑

௧బ

																																																																										… 		(4ܽ) 

Subject to the linear 
̇	ݔ	               (ݐ) = ݔܣ + (଴ݐ)ݔ and  ݑܤ =           ଴                                                                             … (4b)ݔ
where Q (n x n)and R (m x m) are positive definite matrices. A (n x n), and B (m x m) are constant 
matrices. 

      Boubaker polynomials were firstly used as a tool for solving heat equation, then these 
polynomials were utilized for solving optimal control problems (OCPs) with different 
proceedings. Kafash B. et al. used Boubaker polynomials with expansion scheme for solving OCPs 
[9]. Ahmed I., et al utilizing indirect method with Boubaker polynomial for solving an optimal 
control problem [1]. 

Goy T. evaluated several families of Toeplitz - Hessenberg determinants whose entries are 
Boubaker polynomials [4]. 

      Scaling Boubaker polynomials (SBP) and their properties provide powerful mathematical 
technique for solving some problems in pure and applied mathematics. Scaling functions are 
widely used in the last decades for dealing with different applied fields in science and 
engineering. They represent a dilation equation which is a functional of the form 

(ݐ)݂         = ∑ ݐ௞݂(2ܥ − ே(ܭ
௞ୀ଴                                                                            … (5) 

 with a non – zero solution. Colella D. and   Heil Ch. gave a characterization of all dilation 
equations with continuous and compactly supported solutions [2].  Gradimir V. and Joksimovic 
D. added some new properties of Boubaker polynomials and applications for achieving an 
approximate analytical solution of Love's integral equation [5].  Yousfi S. A. presented a 
numerical solution for the generalized Emden – Fowler equations using Legendre Scaling 
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function [14] .Elaydi  H., Jaddu H. and Wadi M. used a wavelet approach where the basis 
orthogonal function were Legendre scaling functions for solving nonlinear optimal control 
problems[3]. Malmir I. presented an arbitrary scaling parameter for operational matrices of 
Legendre wavelets [11]. 

      In this paper, two techniques state parameterization and control parameterization have been 
considered with the aid of scaling Boubaker polynomials (SBP) which represent a new important 
technique for solving OCP’s, the results were evaluated and graphed . 

     This paper is arranged as follows, in section2, the Boubaker polynomials are introduced, in 
section3 the Scaling Boubaker polynomials are presented, then in section 4 and 5 the state 
Parameterization technique and control parameterization technique are explained, in section 6 
the convergence of two previous proceedings is studied, then some numerical examples were 
applied for the proposed method, in section7 comparing the results with exact solutions. Finally 
the conclusion. 

2. Boubaker polynomials 

       Boubaker polynomials Bo have been appeared by Boubaker et al, for solving different 
equations in many applications …etc. see [5].  

(ݐ)௠ܤ = ∑ (௠ିସ௦)
(௠ି௦)

ቔ೘మ ቕ
௦ୀ଴ ൫௠ି௦

௦ ൯(−1)௦ݐ௠ିଶ௦ ,            m = 0,1,2,…                          ... (6) 

The first terms of Boubaker polynomials are 

(ݐ)଴ܤ = (ݐ)ଵܤ								,1 = (ݐ)ଶܤ												,	ݐ = ଶݐ + 2, …	     

and the recurrence relation ܤ௠(ݐ) = −(ݐ)௠ିଵܤݐ ݉,								(ݐ)௠ିଶܤ > 2                         
 

3. Scaling Boubaker polynomials (SBP) 

      The Scaling Boubaker polynomials (SBP), can be defined as follows: 

(ݐ)௡௠ܤܵ = ቊ2
ೖ
మ	ܤ௠(2௞ାଵݐ − 2݊ − 1) 																ଶ௡ିଵ

ଶೖశభ
≤ ݐ ≤ ଶ௡

ଶೖశభ

݁ݏ݅ݓݎℎ݁ݐ݋																																																				0
                … (7) 

 The arguments of scaling (k, n, m, t), k is positive integer, n = 0, 1, 2, 3,..., 2k, m is degree of 
Boubaker polynomials and t is the time. 

Choosing k=1 and m=5. The first five terms Scaling Boubaker SBm (t) were found by using Eq.7 to 
be: 

଴ܤܵ = √2	 , 

ଵܤܵ = ݐ4)	2√ − 1), 

ଶܤܵ = ଶݐ16)	2√ − ݐ8 + 3), 
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ଷܤܵ = ଷݐ64	)	2√ − ଶݐ48 + ݐ16 − 2) , 

ସܤܵ = ସݐ256	)	2√ − ଷݐ256	 + ଶݐ96 − ݐ16 − 1). 

The direct methods can be applied by using the parameterization techniques for state variables 

or control variables or both of them.  

 

4. The State Parameterization Technique 

The state parameterization is based on approximating state variables by using Scaling Boubaker 

polynomials (SBP) with unknown coefficients as follows, 

(ݐ)ݔ      = ∑ ܽ௜௠
௜ୀ଴ ଴ݐ         aTSB (t) =(ݐ)௜ܤܵ ≤ ݐ ≤  ௙                                         … (8)ݐ

where ai are unknown coefficients of state and SB are the Scaling Boubaker polynomials  

-Expanding x (t) using SBP into five order (m= 5) in Eq.7 we get, 

 x(t) = a0SB0  +a1SB1+ a2SB2+ a3SB3+ a4SB4 , where ai the state coefficients must be found 

with initial  condition ݔ(ݐ଴) = ∑ ܽ௜ସ
௜ୀ଴ (଴ݐ)௜ܤܵ =  ଴                                                            … (9)ݔ

-Finding    ݔ	̇ (ݐ) = ∑ ܽ௜ସ
௜ୀ଴ ప̇ܤܵ 	(ݐ) ଴ݐ    ≤ ݐ ≤  ௙ݐ

where the differential of Scaling Boubaker polynomials (ܵܤప̇ ) is given as follows 

(ݐ)଴ܤ̇ܵ = 0 

(ݐ)ଵܤ̇ܵ = 4√2	 

(ݐ)ଶܤ̇ܵ = ݐ32)	2√ − 8) 

(ݐ)ଷܤ̇ܵ = ଶݐ192	)	2√ − ݐ96 + 16) 

(ݐ)ସܤ̇ܵ = ଷݐ1024	)	2√ − ଶݐ768	 + ݐ192 − 16). 

Substituting in state equation (4b) defined by 

(ݐ)ݑ           = ,ݐ)ܤܵ ,(ݐ)ݔ  (10) …                                                                           ((ݐ)ݔ̇

We get u (t) which is the control variable  

-Deducing the optimal control u(t) with the unknown coefficients of ai we can evaluate J using 

Eq.1 as in follows 
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ܬ ≅ න ܤ்ܵܽܳܤ்ܵܽ) + ݐ݀(ܤ்ܴܵܽܤ்ܵܽ

௧೑

௧బ

					 , ଴ݐ ≤ ݐ ≤ ௙ݐ  

    The performance index can written as follows 

ܬ =
1
2ܽ

 ܽܪ்

Where H  is Hessian matrix  with the unknown parameters ்ܽ = [	ܽ଴	ܽଵ		ܽଶ			ܽଷ		ܽସ		]் 	 
with initial condition using Eq.9 we get the system of equations. 
-Solving the system to find coefficients of state. 
-Deducing the control, then evaluating the performance function J by Eq.4. 
 

5. The Control Parameterization Technique 

     In this section, the following steps were used to evaluate the control and state by using control 

parameterization,  

- Approximating control variable, as follows 

(ݐ)ݑ        = ∑ ௜ܾ
ସ
௜ୀ଴ ଴ݐ  , ௜ܤܵ ≤ ݐ ≤                                                       ௙ݐ

where bi are the unknown coefficients of control and SB are Scaling Boubaker polynomials of 
order 5 and  

- By integrating the state equation system with initial condition we get   
∫ ݐ݀(ݐ)ݑ =௧೑
௧బ

∫ ,(ݐ)ݔ,ݐ)ܤܵ ௧೑ݐ݀((ݐ)ݔ̇
௧బ

                                                            … (11) 
- Obtaining  the solution at the points (tn,tn+1), the fundamental theorem of calculus can be 

used, and then Eq.(11) is integrated over [tn,tn+1]  
- We get the linear algebraic equations which can be solved by Gauss elimination method. 
- The coefficients of control bi can be found. 
- The state variables can be deduced from the control coefficients by solving state equation. 
- Now, substituting u(t) and x(t) to evaluate the performance function J  by using Eq.4. 

 

6. The Convergence Test: 

6.1. The State Technique: 

(ݐ)௠ݔ = ∑ ܽ௜ஶ
௜ୀ଴ ଴ݐ       (ݐ)௜ܤܵ ≤ ݐ ≤  ௙ݐ

       The truncated series would be 

(ݐ)௠ݔ = ෍ܽ௜

௠

௜ୀ଴

 (ݐ)௜ܤܵ
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       There using the convergence test for the state parameterization technique.  

቎න −(ݐ)ݔ) ݐଶ݀((ݐ)௠ݔ

௧೑

௧బ

቏

ଵ
ଶ

<  ߝ

since x (t) is unknown, it can be replaced the presumably better approximation xn+m(t), where m 0 

቎න −(ݐ)௡ା௠ݔ) ݐଶ݀((ݐ)௠ݔ

௧೑

௧బ

቏

ଵ
ଶ

<  ߝ

Using the Scaling Boubaker polynomials for approximating the state variables, then 

቎න (	෍ ܽ௜ܵܤ௜(ݐ)
௡ା௠

௜ୀ଴

−෍ܽ௜

௠

௜ୀ଴

ݐଶ݀((ݐ)௜ܤܵ

௧೑

௧బ

቏

ଵ
ଶ

<  ߝ

		= ቎න (	 ෍ ܽ௜ܵܤ௜(ݐ)
௡ା௠

௜ୀ௠ାଵ

)ଶ݀ݐ

௧೑

௧బ

቏

ଵ
ଶ

<  ߝ

= ቎න ( ෍ ܽ௜ܵܤ௜(ݐ))( ෍ ܽ௜ܵܤ௜(ݐ))
௡ା௠

௜ୀ௠ାଵ

௡ା௠

௜ୀ௠ାଵ

ݐ݀

௧೑

௧బ

቏

ଵ
ଶ

<  ߝ	

= ෍ ෍ ܽ௜ ௝ܽ න ௜ܤܵ

௧೑

௧బ

ݐ݀		(ݐ)௝ܤܵ
௟ା௠

௝ୀ௠ାଵ

௡ା௠

௜ୀ௠ାଵ

<  ߝ	

when the sum of the squares of  the remaining coefficients becomes negligible, a satisfactory 

approximation to the solution is achieved. 

6.2. The Control Technique: 

       In the proposed method, the control vector is approximated as, 

(ݐ)௠ݑ = ∑ ௜ܾ
ஶ
௜ୀ଴ ଴ݐ       (ݐ)௜ܤܵ ≤ ݐ ≤  ௙ݐ

       The truncated series would be 

(ݐ)௠ݑ = ෍ ௜ܾ

௠

௜ୀ଴

 (ݐ)௜ܤܵ
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       There using the same convergence method as in the previous section (state convergence), we 
get 

= ෍ ෍ ௜ܾ ௝ܾ න ௜ܤܵ

௧೑

௧బ

ݐ݀		(ݐ)௝ܤܵ
௟ା௠

௝ୀ௠ାଵ

௡ା௠

௜ୀ௠ାଵ

<  ߝ	

when the squares of  the remaining coefficients become negligible, a satisfactory approximation 

to the solution will be reached. 

7. Numerical Examples 

Example 1: 

 Min ݆ = 0.5∫ ଶଵݔ2)
଴ +  ݐ݀(ଶݑ

with ̇ݔ = ݔ0.5 +   .x(0) = 1      	,ݑ

where exact solution for  this example is   (ݐ)ݔ = ଶ௘య೟		ା௘య

௘
య೟
మ (ଶା௘య	)

  ,    and  (ݐ)ݑ = ଶ(௘య೟		ି௘య)

௘
య೟
మ (ଶା௘య	)

 

and the optimal value of  J = 0.8641644977. 
 

a. Solving by using state parameterization 

     By using the state technique illustrated in section 4, we found the following coefficients  

a0=0.460412396461131,  a1=-0.127823658910297,  a2=0.037726555649684,  

 a3=-0.003032245966087,a4=0.000373433066107. 

Then the state and control would be: 

x (t) = 1 - (919/749) t +( 937/844  ) t2- (807/1970)t3 + (353/2611)t4. 

and u(t) = - (1031/597) +(2678/945)t - (983/551)t2+ (2336/3133)t3- (353/5222) t4. 

and   Jappro. = 0.86416456896. With Abs (Error (J)) =7.119486900020178e-08. 
 

b. Solving by using control parameterization 

Applying the same example1 by using the control technique illustrated in section 5, we found the 

following coefficients bi s as follows: 

b0= -0.680251932678915, b1= 0.358325053630541, b2= -0.055675910199709, 

b3= 0.008291627207229, b4= -0.000396395227143. 

we can write approximate solution of state and control as follows: 

x(t) =( 2834/61) +(6601/307) t - (2773/61)  	݁
೟
మ +(4435/652) t2+ (2262/4451) t3+ (816/2843) t4. 

u(t) = -(2089/1209)+(779/273) t-(4937/2631) t2 + (312/349) t3-(408/2843) t4. 

and   Jappro. = 0.864160768327565.  With Abs (Error (J)) =3.729433434962459e-06 
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Table1 state results using state Para. And control Para. for example1 
 

t 
xappr(t) using  

St. Par. 

Abs. Error using  

St. Par. 

xappr(t) using  

Co. Par. 

Abs. Error using 

Co. Par. 

0 0.99999999999 0.00000000001 1.00000000000 0 
0.1 0.88800888825 0.00003182008 0.88798763065 0.00001056248 
0.2 0.79595296674 0.00001814327 0.79596996999 0.00000114002 
0.3 0.72186107669 0.00004703036 0.72190263669 0.00000547036 
0.4 0.66408653265 0.00003198221 0.66411596847 0.00000254638 
0.5 0.62130712247 0.00000749470 0.62129891629    0.00000071147 
0.6 0.59252510732 0.00003889426 0.59248211274 0.00000410030 
0.7 0.57706722166 0.00003846926 0.57702007236 0.00000868002 
0.8 0.57458467326 0.00000587293 0.57457247932 0.00000632100 
0.9 0.58505314321 0.00002798628 0.58508451573 0.00000338623 
1.0 0.60877278590 0.00000030019 0.60876618135 0.00000630435 

                

Table2 control results using state Par. And control Par. for example1 

t 
uappr(t) using  

St. Par. 

Abs. Error using 

St. Par. 

uappr(t) using  

Co. Par. 

Abs. Error using 

Co. Par. 

0 -1.72696878100 0.00136021453 -1.72787421730 0.00045477823 
0.1 -1.46068395138 0.00036649078 -1.46041120036 0.00009373976 
0.2 -1.22570067102 0.00047594913 -1.22531465614 0.00008993425 
0.3 -1.01778862747 0.00003736009 -1.01773732514 0.00001394223 
0.4 -0.83287974492 0.00034044005 -0.83317637280 0.00004381216 
0.5 -0.66706818424 0.00040355034 -0.66747338954 0.00000165494 
0.6 -0.51661034293 0.00015923538 -0.51681439071 0.00004481239 
0.7 -0.37792485516 0.00020830002 -0.37772981667 0.00001326153 
0.8 -0.24759259173 0.00041449041 -0.24709453271 0.00008356860 
0.9 -0.12235666013 0.00014506970 -0.12212782910 0.00008376132 
1.0 0.00087759552 0.00087759552 -0.00039342107 0.00039342107 

 
Remark: Since the results for the state and control parameterizations are approximately the 

same, Fig.1 would be sufficient for illustrating the exactness the method. 
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Fig.1 comparison for x and u with exact solution for example1 

 

Example 2: 

 Min ݆ = ∫ (ହ
଼
ଶଵݔ

଴ + ଵ
ଶ
ݑݔ + ଵ

ଶ
 ݐ݀(ଶݑ

with ̇ݔ = ݔ0.5 +   .x(0) = 1      	,ݑ

where exact solution for  this example is   (ݐ)ݔ = ୡ୭ୱ୦	(ଵି௧)
ୡ୭ୱ୦	(ଵ)

  ,    and  (ݐ)ݑ = ି(୲ୟ୬୦(ଵି௧)ା଴.ହ)(ୡ୭ୱ୦(ଵି௧))
ୡ୭ୱ୦	(ଵ)

 
and the optimal value of  Jexact = 0.38797077977882. 
 

a. Solving by using state parameterization 
The same procedure of state technique in the above example are used to solve this problem we 

get  

a0=0.556333395838366, a1=-0.093241205628115, a2=0.018556405972549; 

a3=-0.000974119658567, a4=0.000085277514714. 

Then the state and control would be as follows: 

x (t)= 1- (5912/7765)t+(1134/2279)t 2-(427/3587)t3+(259/8389)t4. 

u (t) = - (9739/7721)+ (2211/1607) t- (635/1048)t 2+ (528/2885)t3-(309/20017)t4. 

Jappro=0.380797080316190. Abs (Error (J)) = 2.338307991678335e-09. 
 

b. Solving by using control parameterization 

   Applying the same example2 by using control parameterization, the control with coefficients bi 
s would be as follows:  
b0=-0.631520147177317, b1=0.193446478784298, b2=-0.021052830981420, 

b3=0.001999520525119, b4=-0.000080517706408. 

x(t)=(827/90)+(2613/784)t-(737/90 )  	݁
೟
మ+ (629/413)t2+(458/9923)t3+(256/4391)t4; 
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u(t)=(796/577) t - (1585/2544) t2 + (83/395) t 3 - (128/4391) t4.- (11041/8752). 

jappro = 0.380793599989886. Abs(Error(j)) =3.477987995992304e-06 

Table3 state results using state Para. And control Para. for example2 
 

t 
xappr(t) using  

St. Par. 

Abs. Error using  

St. Par. 

xappr(t) using 

 Co. Par. 

Abs. Error using 

Co. Par. 

0 1.00000000000 0.00000000000 0.99999344085 0.00000655914 
0.1 0.92872340268 0.00000564606 0.92871261917 0.00000513744 
0.2 0.86672751521 0.00000291748 0.86672404295 0.00000638974 
0.3 0.81340923708 0.00000840118 0.81341084851 0.00000678975 
0.4 0.76823956480 0.00000623615 0.76823950787 0.00000629308 
0.5 0.73076359192 0.00000076608 0.73075692744 0.00000589840 
0.6 0.70060050899 0.00000693828 0.70058739805 0.00000617265 
0.7 0.67744360360 0.00000751209 0.67742938850 0.00000670300 
0.8 0.66106026033 0.00000163993 0.66105217482 0.00000644557 
0.9 0.65129196080 0.00000528534 0.65129229659 0.00000494956 
1.0 0.64805428366 0.00000001000 0.64804983167 0.00000444198 

 

Table4 control results using state Par. And control Par. for example2 

t 
uappr(t) using  

St. Par. 

Abs. Error 

using St. Par. 

uappr(t) using  

Co. Par. 

Abs. Error 

using Co. Par. 

0 -1.26136509985 0.00022905610 -1.26154021709 0.00005393885 
0.1 -1.12965721023 0.00005978084 -1.12960834946 0.00001092007 
0.2 -1.00899116564 0.00008507207 -1.00891722551 0.00001113194 
0.3 -0.89832444563 0.00001221659 -0.89831102836 0.00000120068 
0.4 -0.79665157827 0.00005739696 -0.79670390235 0.00000507287 
0.5 -0.70300414012 0.00007531251 -0.70307995313 0.00000050050 
0.6 -0.61645075626 0.00003582923 -0.61649324757 0.00000666206 
0.7 -0.53609710030 0.00003337697 -0.53606781381 0.00000409047 
0.8 -0.46108589434 0.00007992725 -0.46099764123 0.00000832585 
0.9 -0.39059690898 0.00003479547 -0.39054668049 0.00001543301 
1.0 -0.32384696335 0.00018017347 -0.32404884349 0.00002170666 

 



88                                                                   Eman. H. Ouda, Imad  N . Ahmed, Al-Qadisiyah  Journal of Pure  Science    , 25.2 (2020) pp. Math. 78–89                                                      
 

 

Fig.2 comparison for x and u with exact solution for example2 
 

8. Conclusion 

     Utilizing Scaling Boubaker functions as an aid in parameterization techniques in two forms 

(state, control) were proved to be a powerful tool for solving optimal control problems. Only few 

number of Scaling Boubaker polynomials were needed to reach a good accuracy. All the 

approximate results were compared with the exact solution showing good efficiency and 

capability of this method for solving these problems. 
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