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ABSTRACT: 

The purpose of this research applied a method that includes the combination of an iterative method (Temimi and Ansari method 
(TAM)) and a new transform called the Elzaki transform (ET )for some Korteweg-de Vries (Kdv) equations. The TAM was 
present as a basic tool for solving Kdv equations with Elzaki transformation in the associated nonlinear equations because the 
Elzaki transformation cannot deal with nonlinear terms. It has been proven that the use of this method can be more reliable, 
accurate and fast if it has been using analytical methods alone. 
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1. Introduction 

 Many phenomena in physics, chemistry, biology, and 

mathematical engineering are represented by partial 

differential equations. For example, the dispersion of 

the reaction chemicals, matters related to population 
growth, fluid flow and heat diffusion are characterized 

by partial differential (PD) equations. On the other 

hand, modeling of physical phenomena emerged as 

partial non-linear differential equations an important 

tool in a large category and is widely used in various 

fields of natural nonlinear sciences, while the 

behavior and characteristics of non-linear PD 

equations are determined by the exact solution which 

is difficult to find in most, many researchers are 

interested in studying and solving these equations 

because of their different applications. For example 

but not limited to, [1], [2] , [3], [4]. The KdV equation 
is a model for describing weak non-linear long waves 

in many branches of physics and engineering. Hence, 

many research works have been invested in studying 

KDV equations, such as the Adomian decomposition 

method [5], the Homotopy Perturbation method [6], 

Temimi and Ansari method [7]. There are many 

attempts to combine two methods of solution, iterative 

methods with transformations such as the Laplace 

transform and the Elzaki transform, among others, 

Laplace Adomian decomposition method [8], [9], 

Homotopy Perturbation Transform Method [10], [11], 
Aboodh decomposition method[12], Elzaki 

decomposition method [13], [14].   

Over the last few years, Temimi and Ansari Method 

(TAM), with it, an analytical solution to many non-

linear problems is found [15].                                                                                    

In this paper, we presented an approximate analytical 

tool that was developed in recent years to solve the 

equation specified in this research. The aim is to 

achieve a method more accuracy and getting high-

speed convergence. 

2. Elzaki Transformation  

 ET proposed by Tarig Elzaki [16], ET and some of its 

essential properties are used to solve differential 

equations.   

We need to mention the basic definitions of this 

transformation as follows, the Elzaki transformation of the 

function k(r, t) is 

ℰ[𝑘(𝑟, 𝑡)] = 𝑣 ∫ 𝑘(𝑟, 𝑡)𝑒−
𝑡

𝑣𝑑𝑡
∞

0
= Κ(𝑟, 𝑣), 𝑡 ≥ 0                (1) 

Using integration by part, then we obtain the ET of partial 

derivatives 

ℰ [
𝜕𝑘(𝑟,𝑡)

𝜕𝑡
] =

Κ(𝑟,𝑣)

𝑣
− 𝑣𝑘(𝑟, 0),   

ℰ [
𝜕𝑘(𝑟,𝑡)

𝜕𝑟
] =

𝑑

𝑑𝑥
[Κ(𝑟, 𝑣)]  

ℰ [
𝜕2𝑘(𝑟,𝑡)

𝜕𝑡2
] =

Κ(𝑟,𝑣)

𝑣2 − 𝑘(𝑟, 0) − 𝑣
𝜕𝑘(𝑟,0)

𝜕𝑡
 ,   

ℰ [
𝜕2𝑘(𝑟,𝑡)

𝜕𝑟2
] =

𝑑2

𝑑𝑟2 [Κ(𝑟, 𝑣)]  

ℰ [
𝜕𝑛𝑘(𝑟,𝑡)

𝜕𝑡𝑛
] =

ℰ[𝑘(𝑟,𝑡)]

𝑣𝑛 − ∑ 𝑣2−𝑛+𝑖 𝜕𝑖𝑘(𝑟,0)

𝜕𝑡𝑖
𝑛−1
𝑖=0   

ℰ [
𝜕𝑛𝑘(𝑟,𝑡)

𝜕𝑟𝑛
] =

𝑑𝑛

𝑑𝑟𝑛 [Κ(𝑟, 𝑣)]  

3. The basic idea of TAM  

 To presented the main idea of TAM, let us consider the 

general equation 

  𝐿(𝑤(𝑟, 𝑡)) + 𝑁(𝑤(𝑟, 𝑡)) + 𝑠(𝑟, 𝑡) = 0,                        (2)                                                                           

with boundary conditions     𝐵 (𝑤,
𝜕𝑤

𝜕𝑡
) = 0,    

where y is unknown function, L is the linear operator, N is 

the nonlinear operator and h is a known function. 
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Assuming that 𝑤0(𝑟, 𝑡) is a solution of equation (2) of 

the initial condition,  

 𝐿(𝑤0(𝑟, 𝑡)) + 𝑠(𝑟, 𝑡) = 0, with (𝑤0,
𝜕𝑤0

𝜕𝑡
) = 0 .            

(3)                                                                               

 To find the next iteration we resolve the following 

equation: 

 𝐿(𝑤1(𝑟, 𝑡)) + 𝑁(𝑤0(𝑟, 𝑡)) + 𝑠(𝑟, 𝑡) =

0, 𝐵 (𝑤1,
𝜕𝑤1

𝜕𝑡
) = 0.                                                                                      

(4)                                                                                        

Thus, an iterative procedure can be effective solution 

of the following problem,  

 𝐿(𝑤𝑛+1(𝑟, 𝑡)) + 𝑁(𝑤𝑛(𝑟, 𝑡)) + 𝑠(𝑟, 𝑡) =

0, 𝐵 (𝑤𝑛+1,
𝜕𝑤𝑛+1

𝜕𝑡
) = 0.                                                   

(5)                                                                                                                                                                              

Each of  𝑤𝑖 are solutions to equation (1) [15]. 

4. Algorithm of the Method ET   

 Consider the following nonlinear partial differential 

equation 

𝜕𝑚𝑘(𝑟,𝑡)

𝜕𝑡𝑚 = 𝑁(𝑘(𝑟, 𝑡)) + 𝑠(𝑟, 𝑡), 𝑚 = 1,2,3, …                 

(6)                                                                       

with initial condition  
𝜕𝑚−1𝑘(𝑟,𝑡)

𝜕𝑡𝑚−1
|

𝑡=0
= 𝑓𝑚−1(𝑟),  

In the beginning we find the first iteration by the 

TAM  

𝐿(𝑘0(𝑟, 𝑡)) = 𝑠(𝑟, 𝑡)                                                        

(7)                                                                                                        

Where 𝐿 =
𝜕𝑚

𝜕𝑡𝑚  

It's clear that the integral operator 𝐿𝑡
−1 exist and it's 

regarded as definite integral 

𝐿𝑡..𝑡
−1 = ∫ … ∫ (. )𝑑𝑡 … 𝑑𝑡

𝑡

0

𝑡

0
  

And this means: 

𝑘0(𝑟, 𝑡) = 𝐿𝑡…𝑡
−1(𝑠(𝑟, 𝑡))                                               

(8)                                                                                                

Then we use the ET which defined in equation (1) on 

both aspects of equation (4) with respect equation (6)   

ℰ[
𝜕𝑚𝑘1(𝑟,𝑡)

𝜕𝑡𝑚 ] = ℰ[𝑁(𝑘0(𝑟, 𝑡))] + ℰ[𝑠(𝑟, 𝑡)]            (9)                                            

ℰ[𝑘1(𝑟,𝑡)]

𝑣𝑛 − ∑ 𝑣2−𝑛+𝑖 𝜕𝑖𝑘0(𝑟,0)

𝜕𝑡𝑖
𝑛−1
𝑖=0 = ℰ[𝑁(𝑘0(𝑟, 𝑡))] +

ℰ[𝑠(𝑟, 𝑡)]                                                                 (10)      

𝑘1(𝑟, 𝑡) = ℰ−1 [𝑣𝑛 ∑ 𝑣2−𝑛+𝑖 𝜕𝑖𝑘0(𝑟,0)

𝜕𝑡𝑖
𝑛−1
𝑖=0 ] +

ℰ−1[𝑣𝑛ℰ[𝑁(𝑘0(𝑟, 𝑡))]] + ℰ−1[𝑣𝑛ℰ[𝑠(𝑟, 𝑡)]]        (11)                                                                                    

The iterative procedure can be an efficient solution to the 
next problem 

𝑘𝑛+1(𝑟, 𝑡) = ℰ−1 [𝑣𝑛 ∑ 𝑣2−𝑛+𝑖 𝜕𝑖𝑘𝑛(𝑟,0)

𝜕𝑡𝑖
𝑛−1
𝑖=0 ] +

ℰ−1[𝑣𝑛ℰ[𝑁(𝑘𝑛(𝑟, 𝑡))]] + ℰ−1[𝑣𝑛ℰ[𝑠(𝑟, 𝑡)]]              (12)                                                          

                                                                                                                                                                                                                                                                                                                                                                                  

5.   Numerical Results 
 The effectiveness of the method is verified by finding the 
solutions of KDV equations in this section. 
 Example 1. Consider the following homogeneous KDV 
equation 

𝑘𝑡 = −6𝑘𝑘𝑟 − 𝑘𝑟𝑟𝑟 , with initial condition 𝑘(𝑟, 0) = 𝑟, 
                                                                                        (13)                                                                            
The initial problem is 

𝐿(𝑘0(𝑟, 𝑡)) = 0,                                                                                                          
Then, we get 

𝑘0(𝑟, 𝑡) = 𝑟,                                                                       (14)                                                                                                                        
And the first iteration will be: 

𝑘1𝑡
= −6𝑘0𝑘0𝑟

− 𝑘0𝑟𝑟𝑟
 ,                                                  (15)                                                                                                                 

Applying ET to both aspects 

ℰ[𝑘1𝑡
] = ℰ[−6𝑘0𝑘0𝑟

] − ℰ[𝑘0𝑟𝑟𝑟
]                                    (16)                                                                                       

 Depending on the ET laws, we get: 

  
Κ1(𝑟,𝑣)

𝑣
− 𝑣𝑘1(𝑟, 0) = ℰ[−6𝑘0𝑘0𝑟

] − ℰ[𝑘0𝑟𝑟𝑟
],              (17)                                                                               

 Then we use the initial condition with simplification, and take the 
inverse of ET we get: 

𝑘1 = ℰ−1[𝑣2𝑟] + ℰ−1[𝑣ℰ[−6𝑟]],                                     (18)                                                                                                                                    

 𝑘1 = (1 − 6𝑡)𝑟,                                                                (19)          
In the same way, we obtain  

 𝑘2 = (1 − 6𝑡 + 36𝑡2 − 72𝑡3)𝑟,                                      (20)                                                                                                            

𝑘3 = (1 − 6𝑡 + 36𝑡2 − 216𝑡3 + 864𝑡4 − ⋯ )𝑟,             (21)                  
The closed-form solution will be 

𝑘 =
𝑟

1+6𝑡
.                                                                             (22) 

                                                                                   
Example 2. Consider the following homogeneous fifth order KDV 
equation 

𝑘𝑡 = −𝑘𝑘𝑟 − 𝑘𝑘𝑟𝑟𝑟 + 𝑘𝑟𝑟𝑟𝑟𝑟 ,                                              (23)                                                                                              

With initial condition 𝑘(𝑟, 0) = 𝑒𝑟 ,                                     (24)                                                                                    
 The initial problem is 

𝐿(𝑘0(𝑟, 𝑡)) = 0,  
Then, we get 

𝑘0(𝑟, 𝑡) = 𝑒𝑟 ,                                                                       (25)                                                                                                                      
And the first iteration will be: 

𝑘1𝑡
= −𝑘0𝑘0𝑟

− 𝑘0𝑘0𝑟𝑟𝑟
+ 𝑘0𝑟𝑟𝑟𝑟𝑟

,                                   (26)                                                                                

Applying ET to both aspects 

ℰ[𝑘1𝑡
] = ℰ[−𝑘0𝑘0𝑟

] − ℰ[𝑘0𝑘0𝑟𝑟𝑟
] + ℰ[𝑘0𝑟𝑟𝑟𝑟𝑟

],              (27)                                                               

 Depending on the ET laws, we get: 

  
Κ1(𝑟,𝑣)

𝑣
− 𝑣𝑘1(𝑟, 0) = ℰ[−𝑘0𝑘0𝑟

] − ℰ[𝑘0𝑘0𝑟𝑟𝑟
] + ℰ[𝑘0𝑟𝑟𝑟𝑟𝑟

],                                                                         

(28) 

dependent to the initial condition with simplification and take the 
inverse of ET we get: 

𝑘1 = ℰ−1[𝑣2𝑒𝑟] + ℰ−1[𝑣ℰ[𝑒𝑟]],                                     (29)                                                                                                                 

𝑘1 = (1 − 𝑡)𝑒𝑟,                                                                (30)                                                     

In the same way we obtain  

𝑘2 = (1 − 𝑡 +
𝑡2

2!
) 𝑒𝑟, 

𝑘2 = (1 − 𝑡 +
𝑡2

2!
) 𝑒𝑟,                                                                (31)                                               

𝑘3 = (1 − 𝑡 +
𝑡2

2!
−

𝑡3

3!
) 𝑒𝑟,                                                        (32)                                                

The closed form solution will be 

𝑘(𝑟, 𝑡) = 𝑒𝑟−𝑡.                                                                          (33) 

Example 3. Consider the following homogeneous fifth order 
KDV equation 

𝑘𝑡 = −𝑘𝑟 − 𝑘2𝑘𝑟𝑟 − 𝑘𝑟𝑘𝑟𝑟 + 20𝑘2𝑘𝑟𝑟𝑟 − 𝑘𝑟𝑟𝑟𝑟𝑟 ,                  (34)                                                  

With initial condition 𝑘(𝑟, 0) =
1

𝑟
,                                             (35)                                                  

 The initial problem is 
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𝐿(𝑘0(𝑟, 𝑡)) = 0,  

Then, we get 

𝑘0(𝑟, 𝑡) =
1

𝑟
,                                                                               

(36)                                                   

And the first iteration will be: 

𝑘1𝑡
= −𝑘0𝑟

− 𝑘0
2𝑘0𝑟𝑟

− 𝑘0𝑟
𝑘0𝑟𝑟

+ 20𝑘0
2𝑘0𝑟𝑟𝑟

− 𝑘0𝑟𝑟𝑟𝑟𝑟
,  

(37)                                                

Applying ET to both aspects 

ℰ[𝑘1𝑡
] = ℰ[−𝑘0𝑟

] − ℰ[𝑘0
2𝑘0𝑟𝑟

] − ℰ [𝑘0𝑟
𝑘0𝑟𝑟

] +

ℰ[20𝑘0
2𝑘0𝑟𝑟𝑟

] − ℰ[𝑘0𝑟𝑟𝑟𝑟𝑟
],                                                    

(38) 

Then we have: 

 𝑘1 =
1

𝑟
(1 +

𝑡

𝑟
),                                                                         

(39)                                                  

𝑘2 =
1

𝑟
(1 +

𝑡

𝑟
+

𝑡2

𝑟2
−

2𝑡3

3𝑟6
−

3𝑡4

2𝑟7
−

360𝑡3

𝑟7
−

120𝑡4

𝑟8
),                       

(40)                                                 

𝑘3 = (1 +
𝑡

𝑟
+

𝑡2

𝑟2
+

𝑡3

𝑟4
−

13𝑡4

6𝑥8
−

26𝑡5

5𝑥9
−

5𝑡4

3𝑥11
−

480𝑡6

𝑥11
−

12𝑡7

7𝑥11
−

1152𝑡5

𝑥10
−

5𝑡6

𝑥10
−

1740𝑡4

𝑥9
−

7236000𝑡4

𝑥13
−

23912𝑡5

𝑥13
−

116𝑡6

9𝑥13
−

8600𝑡4

𝑥12
−

106𝑡5

15𝑥12
−

1200𝑡7

7𝑥12
+

1400400𝑡8

𝑥17
+

4320𝑡9

𝑥17
+

19137600𝑡7

7𝑥16
+

16𝑡9

𝑥16
+

3624000𝑡6

𝑥15
+

20360𝑡7

𝑥15
+

485𝑡8

12𝑥15
−

1065600𝑡5

𝑥14
+

7140𝑡6

𝑥14
+

44𝑡7

21𝑥14

3748032000𝑡7

7𝑥20
−

2815800𝑡8

𝑥20
−

572410𝑡9

27𝑥20
−

247𝑡10

4𝑥20
+

43920000𝑡7

7𝑥19
+

153280𝑡8

3𝑥19
+

11599𝑡9

162𝑥19
+

471200𝑡7

21𝑥18
+

1439𝑡8

18𝑥18
+

296000𝑡9

𝑥18
+

1112𝑡7

63𝑥17
+ −

1762559632𝑡11

33𝑥24
−

49082111776𝑡10

135𝑥23
−

15508800𝑡11

11𝑥23
−

828480000𝑡9

𝑥22
−

6756960𝑡10

𝑥22
−

130140𝑡11

11𝑥22
−

844992000𝑡8

𝑥21
−

28950400𝑡9

3𝑥21
−

37148𝑡10

𝑥21
−

351𝑡11

11𝑥21

67184640000𝑡10

𝑥27
+

14587776000𝑡11

11𝑥27
+

6517600𝑡12

𝑥27
+

111780𝑡13

13𝑥27
+

671846400𝑡10

𝑥26
+

84672000𝑡11

11𝑥26
+

23800𝑡12

𝑥26
+

243𝑡13

13𝑥26
+

2280960𝑡10

𝑥25
+

533440𝑡11

33𝑥25
+

25𝑡12

𝑥25
+

9728𝑡10

3𝑥24

34214400000𝑡13

13𝑥30
+

23328000000𝑡12

𝑥29
+

1321920000𝑡13

13𝑥29
+

755827200000𝑡11

11𝑥28
+

673488000𝑡12

𝑥28
+

18565200𝑡13

13𝑥28
)

1

𝑟
,   

                                                                                                  
(41) 

 We can find another iteration but the third iteration is too 
long, so, we stop then the closed form solution will be 

𝑘(𝑟, 𝑡) =
1

𝑥−𝑡
 .                                                                           

(42)                                                      

  
Figure 1. Comparison of the approximate solution 

𝑘0 , 𝑘1 , 𝑘2 , 𝑘3  with the exact solution(example 1) 
 
 

 
 

Figure 2. Comparison of the approximate solution 

𝑘0 , 𝑘1 , 𝑘2 , 𝑘3 with the exact solution (example 2) 

 

 
Figure 3. Comparison of the approximate solution 

𝑘0 , 𝑘1 , 𝑘2 , 𝑘3 with the exact solution (example 3) 
 
In the Figures 1, 2, 3 we compared some of the iterations with the 
exact solution so that we find that as we progress with the iterations, 
we will approach the exact solution. 
 

6. Conclusion  

In this research, a new method has been applied, which is to combine 
the TAM with the Elzaki transformation to KdV equations, and we 
have concluded that the method used is an effective method for 
finding the solution. Moreover, the problems examined show that the 
method used is a very powerful integrated transformation method for 
solving the KdV equations. Using this method makes us know how 
powerful this method is because all the problems discussed lead to 

accurate solutions with a small number of iterations. 
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