A NEW SUBCLASS OF STARLIKE HARMONIC FUNCTIONS DEFINED BY SUBORDINATION

Serkan Çakmak
Department of Mathematics, Bursa Uludag University, Turkey, serkan.cakmak64@gmail.com

Sibel Yalçın
Department of Mathematics, Bursa Uludag University, Turkey, syalcin@uludag.edu.tr

Şahsen Altınkaya
Department of Mathematics, Bursa Uludag University, Turkey, sahsene@uludag.edu.tr

Follow this and additional works at: https://qjps.researchcommons.org/home
Part of the Mathematics Commons

Recommended Citation
DOI: 10.29350/2411-3514.1211
Available at: https://qjps.researchcommons.org/home/vol25/iss1/6

This Article is brought to you for free and open access by Al-Qadisiyah Journal of Pure Science. It has been accepted for inclusion in Al-Qadisiyah Journal of Pure Science by an authorized editor of Al-Qadisiyah Journal of Pure Science. For more information, please contact bassam.alfarhani@qu.edu.iq.
A NEW SUBCLASS OF STARLIKE HARMONIC FUNCTIONS DEFINED BY SUBORDINATION

Serkan Çakmak *, Sibel Yalçın * and Şahsene Altınkaya *

*Department of Mathematics, Bursa Uludag University, Turkey, Emails: serkan.cakmak64@gmail.com, syalcin@uludag.edu.tr, sahsene@uludag.edu.tr

Received: 3/2/2020

ABSTRACT:
In this current work, by using a relation of subordination, we define a new subclass of starlike harmonic functions. We get coefficient bounds, distortion theorems, extreme points, convolution and convex combinations for this class of functions. Moreover, some relevant connections of the results presented here with diverse known results are briefly denoted.

KEYWORDS: Harmonic functions, starlike functions, subordination
1. INTRODUCTION

A continuous complex valued function \(f = u + iv \) defined in a simply connected complex domain \(D \subset \mathbb{C} \) is said to be harmonic in \(D \) if both \(u \) and \(v \) are real harmonic in \(D \). Consider the functions \(U \) and \(V \) analytic in \(D \) so that \(u = ReU \) and \(v = ImV \). Then the harmonic function \(f \) can be expressed by

\[
f(z) = h(z) + g(z) \quad (z \in D),
\]

where \(h = (U + V)/2 \) and \(g = (U - V)/2 \). We call \(h \) the analytic part and \(g \) co-analytic part of \(f \). If \(g \) is identically zero then \(f \) reduces to the analytic case. A necessary and sufficient condition for \(f \) to be locally univalent and sense-preserving in \(D \) is that \(|g'(z)| < |h'(z)| \) \((z \in D)\) (see Clunie and Sheil-Small [2]).

Let \(S_\mu \) denote the class of functions \(f = h + \overline{g} \) which are harmonic sense-preserving, and univalent in the open unit disk \(E = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} \) with \(f(0) = f(0) = 1 = 0 \).

Thus, any function \(f \in S_\mu \) can be written in the form

\[
f(z) = z + \sum_{k=2}^\infty a_k z^k + \sum_{k=2}^\infty b_k z^k \quad (|b_k| < 1). \tag{1}
\]

Also, let \(T S_\mu \) denote the subclass of \(S_\mu \) consisting of functions \(f = h + \overline{g} \) so that the functions \(h \) and \(g \) take the form

\[
h(z) = z - \sum_{k=2}^\infty a_k z^k \quad \text{and} \quad g(z) = \sum_{k=2}^\infty b_k z^k \quad (|b_k| < 1). \tag{2}
\]

Recently, Öztürk et al. [7], studied a family of complex valued harmonic starlike univalent functions related to uniformly convex analytic functions, denoted by \(S'_\alpha (\lambda, \alpha) \) \((0 \leq \lambda < 1, 0 \leq \alpha < 1)\) so that

\[
f = h + \overline{g} \in S'_\alpha (\lambda, \alpha) \quad \text{if} \quad \Re \left[\frac{zh'(z) - \overline{g'(z)}}{\lambda (zh'(z) - \overline{g'(z)}) + (1 - \lambda)(h(z) + g(z))} \right] > \alpha.
\]

When \(\lambda = \alpha = 0 \) and \(\lambda = 0 \), this class is denoted by \(S'_\alpha \) and \(S'_\alpha \), respectively. These classes have been studied by Silverman [9], Avcı and Zlotkiewicz [1], Öztürk and Yalçın [8], Jahangiri [6], Yalcın [10].

We say that an analytic function \(f \) is subordinate to an analytic function \(g \) and write \(f \preceq g \), if there exists a complex valued function \(w \) which maps \(E \) into itself with \(w(0) = 0 \), \(|w(z)| < 1 \) such that

\[
f(z) = g(w(z)) \quad (z \in E).
\]

Now, by using a relation of subordination, we define a new subclass of starlike harmonic functions.

1.1 Definition. A function \(f \) given by (1) is said to be in the class \(S'_\alpha (\lambda, A, B) \) if the following condition is satisfied

\[
\frac{zh'(z) - \overline{g'(z)}}{\lambda (zh'(z) - \overline{g'(z)}) + (1 - \lambda)(h(z) + g(z))} < \frac{1 + Az}{1 + Bz}. \tag{3}
\]

where \(-1 \leq B \leq -A < 1 \) and \(0 \leq \lambda < 1 \).

Also, we let \(T S'_\alpha (\lambda, A, B) = S'_\alpha (\lambda, A, B) \cap T S_\mu \).
Here we state a result due to Silverman [9], which we will use throughout this paper.

2.2. Theorem. Let f be of the form (1). If

$$\sum_{n=1}^{\infty} n|a_n| + |b_n| \leq 2,$$ \hspace{1cm} (5)

then f is harmonic, sense preserving, univalent in E and $f \in S'_u$. The condition (5) is also necessary if $f \in S'_u \cap T_{S'_u}$.

Now we state and prove a sufficient coefficient bound for the class $S'_u(\lambda, A, B)$.

2.3. Theorem. Let f be of the form (1). If

$$-1 \leq B \leq -1 < A \leq 1 \leq \lambda < 1$$

and

$$\sum_{n=1}^{\infty} \Phi_n |a_n| + \Psi_n |b_n| \leq 2(A - B),$$ \hspace{1cm} (6)

where

$$\Phi_n = (A\lambda - B)n + (1 - \lambda)(n + 1)A$$

and

$$\Psi_n = (A\lambda - B)n + (1 - \lambda)(n + 1)A$$

then f is harmonic, sense preserving, univalent in E and $f \in S'_u(\lambda, A, B)$.

Proof. Since $n(A - B) \leq (A\lambda - B)n + (1 - \lambda)(n + 1)A$ and $n(A - B) \leq (A\lambda - B)n + (1 - \lambda)(n + 1)A$ for $0 \leq \lambda < 1$ and $-1 \leq B \leq -1 < A \leq 1$, it follows from Theorem 2.2 that $f \in S'_u$ and hence f is sense preserving and starlike univalent in E. Now, we only need to show that (3) holds then $f \in S'_u(\lambda, A, B)$.

By definition of subordination, $f \in S'_u(\lambda, A, B)$, if and only if there exists a complex valued function $w; w(0) = 0, |w(z)| < 1 \ (z \in E)$ such that

$$\frac{zG(z) - zG'(z)}{\lambda(zH(z) - zH'(z) + \lambda(z - g(z))} = \frac{1 + Aw(z)}{1 + Bw(z)}$$

or equivalently

$$\frac{(1 - \lambda)(zH(z) - zH'(z) + \lambda(z - g(z))}{(A\lambda - B)(zH(z) - zH'(z)) + (1 - \lambda)(h(z) + g(z)))} < 1.$$ \hspace{1cm} (9)

Substituting for $zH'(z)$ and $zG'(z)$ in (9), we obtain

$$\sum_{n=1}^{\infty} (1 - \lambda)(n - 1)\frac{|a_n|}{|b_n|} + \sum_{n=1}^{\infty} (1 - \lambda)(n + 1)\frac{|b_n|}{|a_n|} \leq 2(1 - A) - (1 - B)|z| - \sum_{n=1}^{\infty} [(A\lambda - B)n + (1 - \lambda)(n + 1)]|a_n||b_n||z|^{n-1}$$

Then

$$f(z) = \sum_{n=1}^{\infty} [(A\lambda - B)n + (1 - \lambda)(n + 1)]|a_n||z|^{n-1} + \sum_{n=1}^{\infty} [(A\lambda - B)n + (1 - \lambda)(n + 1)]|b_n||z|^{n-1}$$

and

$$f(z) = \sum_{n=1}^{\infty} [(A\lambda - B)n + (1 - \lambda)(n + 1)]|a_n||z|^{n-1} + \sum_{n=1}^{\infty} [(A\lambda - B)n + (1 - \lambda)(n + 1)]|b_n||z|^{n-1}$$

Next we show that the bound (6) is also necessary for $T_{S'_u}(\lambda, A, B)$. \hspace{1cm} 11.

2.4. Theorem. Let $f = h + \overline{g}$ with h and g of the form (2). Then $f \in S'_u(\lambda, A, B)$ if and only if the condition (6) holds.

Proof. In view of Theorem 2.3, we only need to show that $f \in T_{S'_u}(\lambda, A, B)$ if condition (6) does not hold. We note that a necessary and sufficient condition for $f = h + \overline{g}$ given by (2) to be in $T_{S'_u}(\lambda, A, B)$ is that the coefficient condition (6) to be satisfied. Equivalently, we must have

$$\sum_{n=1}^{\infty} [(A\lambda - B)n + (1 - \lambda)(n + 1)]|a_n|^2 - \sum_{n=1}^{\infty} [(A\lambda - B)n + (1 - \lambda)(n + 1)]|b_n|^2 < 1.$$ \hspace{1cm} (10)

If condition (6) does not hold then condition (11) does not hold for r sufficiently close to 1. Thus there exists $r_0 = r_0 \in (0, 1)$ for which the quotient (11) is greater than 1. This contradicts the required condition for $f \in S'_u(\lambda, A, B)$, and so the proof is completed.

2.5. Theorem. Let $f \in S'_u(\lambda, A, B)$. Then for $|z| < r < 1$, we have

$$f(z) = \frac{A - B}{2(A\lambda - B) + (1 - \lambda)(1 + A)}|z|^{r + 1}$$

and

$$|f(z)| \leq \frac{A - B}{2(A\lambda - B) + (1 - \lambda)(1 + A)}.$$

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be omitted. Let $f \in T_{S'_u}(\lambda, A, B)$. Taking the absolute value of f we have

$$|f(z)| \leq \frac{A - B}{2(A\lambda - B) + (1 - \lambda)(1 + A)}.$$

and

$$|f(z)| \leq \frac{A - B}{2(A\lambda - B) + (1 - \lambda)(1 + A)}.$$

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be omitted. Let $f \in T_{S'_u}(\lambda, A, B)$, taking the absolute value of f we have

$$|f(z)| \leq \frac{A - B}{2(A\lambda - B) + (1 - \lambda)(1 + A)}.$$
The following covering results follows from the left hand inequality in Theorem 2.5.

2.6. Corollary. Let \(f = h + \bar{g} \) with \(h \) and \(g \) of the form (2). If \(f \in TS'_\mu(\lambda, A, B) \), then
\[
\left[w : |w| < \left(\frac{(A-\lambda) A - B + 1 - (2 - \lambda)(A-\lambda) B + 1}{2(A-\lambda) B + 1 - (1 - \lambda)(1 + A)} \right) \right] \subset f(E).
\]

2.7. Theorem. Set
\[
h_n(z) = z - \frac{A-B}{\Phi_n} z^n \quad (n = 2, 3, \ldots)
\]
and
\[
g_n(z) = z + \frac{A-B}{\Psi_n} z^n \quad (n = 1, 2, 3, \ldots).
\]
Then \(f \in TS'_\mu(\lambda, A, B) \) if and only if it can be expressed as
\[
f(z) = \sum_{n=1}^{\infty} (x_n h_n(z) + y_n g_n(z)),
\]
where \(x_n \geq 0, y_n \geq 0, \sum_{n=1}^{\infty} (x_n + y_n) = 1 \). In particular, the extreme points of \(TS'_\mu(\lambda, A, B) \) are \(\{h_n\} \) and \(\{g_n\} \).

Proof. Suppose that
\[
f(z) = \sum_{n=1}^{\infty} (x_n h_n(z) + y_n g_n(z))
\]
and note that by Theorem 2.4, \(0 \leq x_n \leq 1 \) (n = 2, 3, \ldots) and
\[
0 \leq y_n \leq 1 \quad (n = 1, 2, \ldots).
\]
We define
\[
x_1 = 1 - \sum_{n=2}^{\infty} x_n - \sum_{n=1}^{\infty} y_n
\]
and note that by Theorem 2.4, \(x_1 \geq 0 \). Consequently, we obtain
\[
f(z) = \sum_{n=1}^{\infty} (x_n h_n(z) + y_n g_n(z))
\]
as required.

2.8. Theorem. The class \(TS'_\mu(\lambda, A, B) \) is closed under convex combination.