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ABSTRACT: 
In this current work, by using a relation of subordination, we define a new subclass of starlike harmonic functions. We 

get coefficient bounds, distortion theorems, extreme points, convolution and convex combinations for this class of 

functions. Moreover, some relevant connections of the results presented here with diverse known results are briefly 
denoted. 
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1. INTRODUCTION 

A continuous complex valued function f u iv   defined 

in a simply connected complex domain D   is said to 

be harmonic in D  if both u  and v  are real harmonic in 

D . Consider the functions U  and V  analytic in D  so 

that Reu U  and Imv V . Then the harmonic function 

f  can be expressed by 

( ) ( ) ( ) ( ),f z h z g z z D    

where ( ) 2h U V   and ( ) 2g U V  . We call h  the 

analytic part and g  co-analytic part of f . If g  is 

identically zero then f  reduces to the analytic case. A 

necessary and sufficient condition for f  to be locally 

univalent and sense-preserving in D  is that 

( ) ( ) ( )g z h z z D    (see Clunie and Sheil-Small [2]). 

 

Let 
HS  denote the class of functions f h g   which are 

harmonic sense-preserving, and univalent in the open unit 

disk  :   and 1E z z z    with (0) (0) 1 0.zf f    

Thus, any function 
Hf S  can be written in the form 

                                                             

1

2 1

( ) ( 1).n n

n n

n n

f z z a z b z b
 

 

                   (1)                              

Also, let 
HTS  denote the subclass of 

HS  consisting of 

functions f h g   so that the functions h  and g  take 

the form 

                                      

1

2 1

( )   and   ( ) ( 1).n n

n n

n n

h z z a z g z b z b
 

 

          (2)                            

Recently, Öztürk et al. [7], studied a family of complex 

valued harmonic starlike univalent functions related to 

uniformly convex analytic functions, denoted by 
* ( , ) (0 1,0 1)HS         so that  

* ( , )Hf h g S      if  

( ) ( )
Re .

( ( ) ( )) (1 )( ( ) ( ))

zh z zg z

zh z zg z h z g z


 

   
 

      
 

When 0    and 0,   this class is denoted by *

HS  and 

* ( ),HS   respectively. These classes have been studied by 

Silverman [9], Avcı and Zlotkiewicz [1], Öztürk and Yalçın 

[8], Jahangiri [6], Yalçın [10]. 

 

We say that an analytic function f  is subordinate to an 

analytic function g  and write ,f g  if there exists a 

complex valued function w  which maps E  into oneself 

with (0) 0, ( ) 1w w z   such that 

( ) ( ( )) ( ).f z g w z z E   

Now, by using a relation of subordination, we define a 

new subclass of starlike harmonic functions. 

1.1 Definition. A function f  given by (1) is said to be in 

the class * ( , , )HS A B  if the following condition is satisfied  

                                 

( ) ( ) 1
,

1( ( ) ( )) (1 )( ( ) ( ))

zh z zg z Az

Bzzh z zg z h z g z 

  

     
        (3)  

                              

where 1 1 and 0 1.B B A          

 

Also, we let * *( , , ) ( , , ) .H H HTS A B S A B TS     

By suitably specializing the parameters, the class * ( , , )HS A B  

reduces to the various subclasses of harmonic univalent 

functions. Such as, 

(i) * *(0, , ) ( , )H HS A B S A B  (see [5]), 

(ii) * *( ,1 2 , 1) ( , )H HS S       (see [7]), 

(iii) * *(0,1 2 , 1) ( )H HS S     (see [1],[8],[6]), 

(iv) * *(0,1, 1)H HS S   (see [9]). 

Making use of the techniques and methodology used by Dziok 

(see [3], [4]), Dziok et al. [5], in this paper, we find necessary 

and sufficient conditions, distortion bounds, compactness and 

extreme points for the above defined class * ( , , ).HTS A B  

 
2. MAIN RESULTS 

 

For functions 
1 2, Hf f S  of the form 

, ,

2 1

( ) ( , 1,2),n n

m m n m n

n n

f z z a z b z z E m
 

 

       

we define the Hadamard product of 
1 2 and f f  by 

1 2 1, 2, 1, 2,

2 1

( )( ) ( ).n n

n n n n

n n

f f z z a a z b b z z E
 

 

       

First we state and prove the necessary and sufficient conditions 

for harmonic functions in * ( , , ).HS A B   

2.1. Theorem. Let .Hf S  Then * ( , , )Hf S A B  if and only if 

( ) ( ; ) 0         ( , 1, \ {0}),f z z z E         

where 

 

2

2

2

2

( ) (1 )(1 )
( ; )

(1 )

2 ( ) 2(1 ) (1 )(1 )
.

(1 )

A B z A z
z

z

A B A z A z

z

  
 

    

   




      




 

Proof. Let 
Hf S  be of the form (1). Then * ( , , )Hf S A B  if 

and only if it satisfies (3) or equivalently 

                                                                  

( ) ( ) 1
,

1( ( ) ( )) (1 )( ( ) ( ))

zh z zg z A

Bzh z zg z h z g z



 

  


     
     (4)                                        

where , 1 and \ {0}.z E     Since 

( ) ( ) , ( ) ( )
1 1

z z
h z h z g z g z

z z
   

 
 

and 

2 2
( ) ( ) , ( ) ( ) ,

(1 ) (1 )

z z
zh z h z zg z g z

z z
    

 
 

the inequality (4) yields 

 

 

2

2

2

2

(1 ) ( ( ) ( )) (1 )( ( ) ( ))

(1 ) ( ) ( )

( ) (1 ) (1 ) (1 )(1 )
(1 ) 1

( ) (1 ) (1 ) (1 )(1 )
(1 ) 1

( ) (1 )(1 )
( )

(1 )

A zh z zg z h z g z

B zh z zg z

z z
h z A B A

z z

z z
g z B A A

z z

A B z A z
h z

z

g

  



    

    

  

      
 

    
 

 
        

  

 
        

  

   
 




  2

2

2 ( ) 2(1 ) (1 )(1 )
( )

(1 )

( ) ( ; ) 0.

A B A z A z
z

z

f z z
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Here we state a result due to Silverman [9], which we will 
use throughout this paper.  

 

2.2. Theorem. Let f  be of the form (1). If  

                            
1

( ) 2,n n

n

n a b




                                (5)                                                            

then f  is harmonic, sense preserving, univalent in E  and 

* .Hf S  The condition (5) is also necessary if 

* .H Hf S TS    

Now we state and prove a sufficient coefficient bound for 

the class * ( , , ).HS A B  

 

2.3. Theorem. Let f  be of the form (1). If 

1 1, 0 1B B A         and  

1

( ) 2( ),n n n n

n

a b A B




                             (6) 

where  
                                                     

( ) (1 )( 1 )n A B n n A                            (7)                                                

and 

                                              

( ) (1 )( 1 )n A B n n A                           (8)                                               

then f  is harmonic, sense preserving, univalent in E  and 
* ( , , ).Hf S A B  

Proof. Since ( ) ( ) (1 )( 1 )n A B A B n n A         and 

( ) ( ) (1 )( 1 )n A B A B n n A         for 0 1   and 

1 0 1B A     , it follows from Theorem 2.2 that 

*

Hf S  and hence f  is sense preserving and starlike 

univalent in E . Now, we only need to show that if (3) holds 

then * ( , , ).Hf S A B . 

By definition of subordination, * ( , , ).Hf S A B  if and only 

if there exists a complex valued function 

; (0) 0, | ( ) | 1( )w w w z z E    such that  

 

( ) ( ) 1 ( )

1 ( )( ( ) ( )) (1 )( ( ) ( ))

zh z zg z Aw z

Bw zzh z zg z h z g z 

  


     
 

  or equivalently                              

        
(1 )( ( ) ( ) ( ) ( ))

1
( )( ( ) ( )) (1 )( ( ) ( ))

zh z zg z h z g z

A B zh z zg z A h z g z



 

    


     
. (9) 

       

  Substituting for ( )zh z  and ( )zg z  in (9), we obtain 

 

2 1

2

1

2

(1 )( ( ) ( ) ( ) ( ))

( )( ( ) ( )) (1 )( ( ) ( ))

(1 )( 1) (1 )( 1)

( ) [( ) (1 )]

[( ) (1 )]

(1 )( 1) | || | (1 )(

n n

n n

n n

n

n

n

n

n

n

n

n

n

zh z zg z h z g z

A B zh z zg z A h z g z

n a z n b z

A B z A B n A a z

A B n A b z

n a z



 

 

 

 

 

 

 













    

      

     

     

   

    

 






1

2

1

1) | || |

( ) | |

[( ) (1 )] | || |

[( ) (1 )] | || |

n

n

n

n

n

n

n

n

n

n b z

A B z

A B n A a z

A B n A b z

 

 















 

   

   







 

2

1

| | [( ) (1 )( 1 )] | |

| | [( ) (1 )( 1 )] | | | | ( )

0,

n

n

n

n

z A B n n A a

z A B n n A b z A B

 

 









     

       





  

  by (6). 

  The harmonic functions  
                                                

2 1

( ) ,n n

n n

n nn n

A B A B
f z z x z y z

 

 

 
  

 
                    (10)                                       

where 
2 1

| | | | 1n n

n n

x y
 

 

   , show that the coefficient   bound 

given by in Theorem 2.3 is sharp. 

 
Next we show that the bound (6) is also necessary for 

* ( , , ).HTS A B  

2.4. Theorem. Let f h g   with h  and g  of the form (2). 

Then * ( , , ).Hf S A B  if and only if the condition (6) holds. 

Proof. In view of Theorem 2.3, we only need to show that 
* ( , , )Hf TS A B  if condition (6) does not hold. We note that a 

necessary and sufficient condition for f h g   given by (2) to 

be in * ( , , )HTS A B  is that the coefficient condition (6) to be 

satisfied. Equivalently, we must have 
 

   

2 1

2 1

( 1)(1 ) ( 1)(1 )

1.

( ) ( ) (1 ) ( ) (1 )

n n

n n

n n

n n

n n

n n

n a z n b z

A B z A B n A a z A B n A b z

 

   

 

 

 

 

     



        

 

 

 

For 1,z r   we obtain 

         

   

1 1

2 1

1 1

2 1

( 1)(1 ) ( 1)(1 )

1.

( ) ( ) (1 ) ( ) (1 )

n n

n n

n n

n n

n n

n n

n a r n b r

A B A B n A a r A B n A b r

 

   

 
 

 

 
 

 

    



        

 

 

(11) 

 
If condition (6) does not hold then condition (11) does not hold 

for r  sufficiently close to 1. Thus there exists 
0 0z r  in (0,1)  

for which the quotient (11) is greater than 1. This contradicts the 

required condition for * ( , , ).Hf S A B  and so the proof is 

completed. 

2.5. Theorem. Let * ( , , ).Hf S A B  Then for 1,z r   we 

have 

 

1

2

1

( ) (1 )

(1 )(2 )

2( ) (1 )(1 ) 2( ) (1 )(1 )

f z b r

A B A B A
b r

A B A A B A

 

   

 

     
  

        

 

and 

1

2

1

( ) (1 )

(1 )(2 )
.

2( ) (1 )(1 ) 2( ) (1 )(1 )

f z b r

A B A B A
b r

A B A A B A

 

   

 

     
  

        

 

 

Proof. We only prove the right hand inequality. The proof for the 

left hand inequality is similar and will be omitted. Let 
* ( , , )Hf TS A B . Taking the absolute value of f  we have 

1

2

2

1

2

21
1

| ( ) | (1 | |) (| | | |)

1
(1 | |) ( | | | |)

2( ) (1 )(1 )

[( ) (1 )(2 )] | |
(1 | |) .

2( ) (1 )(1 )

n

n n

n

n n n n

n

f z b r a b r

b r a b r
A B A

A B A B A b
b r r

A B A
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The following covering results follows from the left hand 

inequality in Theorem 2.5. 
 

2.6. Corollary. Let f h g   with h  and g  of the form 

(2). If * ( , , ),Hf TS A B  then 

    1( 1) 1 (2 )( 1) 1
: ( ).

2( ) (1 )(1 )

A B A B b
w w f E

A B A

 

 

         
  

     
 

2.7. Theorem. Set  

1( ) , ( ) ( 2,3, )n

n

n

A B
h z z h z z z n


   


 

and 

( ) ( 1,2,3, ).n

n

n

A B
g z z z n


  


 

Then * ( , , )Hf TS A B  if and only if it can be expressed as 

1

( ) ( ( ) ( )),n n n n

n

f z x h z y g z




   

where  
1

0, 0, ( ) 1.n n n n

n

x y x y




     In particular, the 

extreme points of * ( , , )HTS A B  are  nh  and  .ng  

 

Proof. Suppose that 

1

1 2 2

( ) ( ( ) ( ))

( ) .

n n n n

n

n n

n n n n

n n nn n

f z x h z y g z

A B A B
x y z x z y z





  

  

 

 
   

 



  

 

Then 

2 1 2 1

1

( ) ( )

( )(1 )

n n n n n n

n n n n

a b A B x A B y

A B x A B

   

   

      

    

   

 

and so * ( , , ).Hf TS A B  Conversely,  if * ( , , ),Hf TS A B  

then 

n

n

A B
a





   and    .n

n

A B
b





 

Set 

( 2,3, )n
n nx a n

A B


 


  and  

( 1,2, ).n
n ny b n

A B


 


 

 

Then note by Theorem 2.4, 0 1 ( 2,3, )nx n     and  

0 1 ( 1,2, ).ny n    

We define 

1

2 1

1 n n

n n

x x y
 

 

     

and note that by Theorem 2.4, 
1 0.x   Consequently, we 

obtain 
1

( ) ( ( ) ( ))n n n n

n

f z x h z y g z




   as required. 

2.8. Theorem. The class * ( , , ).HTS A B  is closed under 

convex combination. 

Proof. For 1,2,i   let * ( , , ).i Hf TS A B  where if  is given by 

2 1

( ) .
i i

n n

i n n

n n

f z z a z b z
 

 

     

Then by (6), we get  
                                                                 

1

( ) 2( ).
i in n n n

n

a b A B




                                  (12) 

For 
1

1, 0 1,i i

i

t t




   the convex combination of if  may be 

written as 
 

1 2 1 1 1

( ) .
i i

n n

i i i n i n

i n i n i

t f z z t a z t b z
    

    

   
     

   
      

Then by (12), we can write 

 

1 1 1 1 1

1

( )

2( ) 2( ).

i i i in i n n i n i n n n n

n i i n i

i

i

t a t b t a b

A B t A B

    

    





   
        
   

   

    



 

This is the condition required by (6) and so 

*

1

( ) ( , , ).i i H

i

t f z TS A B
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