Al-Qadisiyah Journal of Pure Science

Manuscript 1241

Large-Small Quasi-Dedekind Modules

Amira A. Abduljaleel

Follow this and additional works at: https://qjps.researchcommons.org/home

Part of the Biology Commons, Chemistry Commons, Computer Sciences Commons, Environmental Sciences Commons, Geology Commons, Mathematics Commons, and the Nanotechnology Commons

ARTICLE Large-small Quasi-Dedekind Modules

Amira A. Abduljaleel

Department of Applied Sciences, University of Technology, Baghdad, Iraq

Abstract

Let R be a ring with identity. An R module W is called small quasi-Dedekind (small quasi-D) if for each homomorphism $h: W \rightarrow W$ such that h is nonzero, then kerh is small in W. In this paper we introduce a new concept called Large-small quasi-Dedekind (L-small quasi-D) module which is a generalization of small quasi-Dedekind module.

Keywords: Small submodule, Large-small submodule, Quasi-Dedekind module, Small quasi-Dedekind module, Large-small quasi-Dedekind module

1. Introduction

et R be a ring with identity. In [1], a submodule V of an R-module W is called small in $W(V \ll W)$, if V + S = M, where S be a submodule of W, implies that S = W [2,3]. In [5], introduce the concept of Largesmall submodule as, a submodule V of an R-module W is called Large-small in W ($V \ll_L W$), if V + S = M, where S be a submodule of W, implies that S is essential submodule in W. Recall that An R-module W is called small quasi-Dedekind (small quasi-D), if for each nonzero homomorphism $h: W \rightarrow W$, implies ker h is small in W [4]. In this paper we give and explain the concept of Large-small quasi-Dedekind module such that, an R-module W is called Largesmall quasi-Dedekind (L-small quasi-D), if for each nonzero homomorphism $h: W \rightarrow W$, implies *ker* h is Large-small in W (ker $h \ll_L W$).

Now, we give the main results and propositions.

Definition(1.1):

An R-module W is called L-small quasi-D, if for each nonzero homomorphism $h: W \rightarrow W$, implies that ker $h \ll_L W$.

Remarks and Examples (1.2):

1 Every small quasi-D is L-small quasi-D, since by [5], every small submodule is L-small. But the converse is not true, for example Z_{12} as Z-module is L-small quasi-D, since define $h: Z_{12} \rightarrow Z_{12}$ by $h(\overline{x}) = 4\overline{x}$; $\overline{x} \in Z_{12}$ so $h \neq 0$ and $ker h = \{\overline{x} \in Z_{12} : h(\overline{x}) = \overline{0}\} = \{\overline{x} \in Z_{12} : 4\overline{x} = \overline{0}\} = \{\overline{x} \in Z_{12} : 4\overline{x} = \overline{0}\}$ $\{0,3,6,9\} = 3Z_{12} \ll_L Z_{12}$ since $3Z_{12} + 2Z_{12} = Z_{12}$ and $2Z_{12}$ is essential in Z_{12} , but $3Z_{12}$ is not small in Z_{12} , and hence Z_{12} is not small quasi-D.

- 2 Z_4 as Z-module is L-small quasi-D. Since define $h: Z_4 \rightarrow Z_4$ by $h(\overline{x}) = 2\overline{x}$; $\overline{x} \in Z_4$ so $h \neq 0$ and ker $h = \{\overline{x} \in Z_4 : h(\overline{x}) = \overline{0}\} = \{\overline{x} \in Z_4 : 2\overline{x} = \overline{0}\} = \{0, 2\} \ll_L Z_4.$
- 3 Z_6 as Z-module is not L-small quasi-D, since let $h: Z_6 \rightarrow Z_6$, define by $h(\overline{x}) = 2\overline{x}$, $h \neq 0$ then ker $h = \{0,3\}$ is not L-small in Z_6 .
- 4 Z as Z-module is L-small quasi-D. Since define $h: Z \rightarrow Z$ by $h(\overline{x}) = 2\overline{x}$; $\overline{x} \in Z$ so $h \neq 0$ and ker $h = \{\overline{x} \in Z : h(\overline{x}) = \overline{0}\} = \{\overline{x} \in Z : 2\overline{x} = \overline{0}\} = \{0\} \ll_L Z$.
- 5 Every integral domain is L-small quasi-D but the converse is not true for example Z_4 as Z-module is L-small quasi-D but not integral domain.
- 6 Let W be a semisimple module, then W is small quasi-D if and only if, W is L-small quasi-D.

Proof. (\Rightarrow) Clear

(\Leftarrow) Let W is L-small quasi-D, then *ker* $h \ll_L W$ and since W is semisimple then *ker* $h = 0 \ll_L W$, hence *ker* $h = 0 \ll W$ so we get, W is small quasi-D.

Theorem(1.3). Let W be an R-module then W is L-small quasi-D if and only if, $Hom(\frac{W}{V}, W) = 0$ for all $V \ll_L W$.

Proof. (\Rightarrow) Assume there exists V not L-small in W such that $Hom(\frac{W}{V}, W) \neq 0$, then there exists $g : \frac{W}{V} \rightarrow W$ such that $g \neq 0$ and so $go \emptyset \in End_{\mathbb{R}}(W)$ where \emptyset is

Received 18 November 2023; accepted 11 April 2024. Available online 28 September 2024 E-mail address: amira.a.abduljaleel@uotechnology.edu.iq.

canonical projection and $go \emptyset \neq 0$, hence $ker(go \emptyset) \ll_L W$ and since $V \leq go \emptyset \ll_L W$ then $V \ll_L W$ by [5] and this contradiction.

(⇐) Assume there exists a nonzero homomorphism $h: W \rightarrow W$ such that $ker h \ll_L W$. Define $q: \frac{W}{Kerh} \rightarrow W$ by q(w + Kerh) = h(w) for all $w \in W$, so clear that q is well define and $q \neq 0$ and hence, $Hom(\frac{W}{Kerh}, W) \neq 0$ and this contradiction.

Proposition(1.4). Let W be an R-module and $\overline{R} = R/U$ such that U is an ideal of R and $U \leq ann_R(W)$, then W is L-small quasi-D R-module if and only if, W is L-small quasi-D \overline{R} -module.

Proof. (\Rightarrow) By [1], we have $Hom_R(\frac{W}{S}, W) = Hom_{\overline{R}}(\frac{W}{S}, W)$ for all $S \leq W$ and since W is L-small quasi-D R-module, then $Hom_R(\frac{W}{S}, W) = 0$ for all $S \ll_L W$ by Theorem(1.3) and hence $Hom_{\overline{R}}(\frac{W}{S}, W) = 0$ for all $S \ll_L W$, so we get W is L-small quasi-D \overline{R} -module.

 (\Leftarrow) By the same way we get the result.

Proposition(1.5). Let W_1 and W_2 be R-modules such that $W_1 \cong W_2$, then W_1 is L-small quasi-D R-module if and only if, W_2 is L-small quasi-D R-module.

proof. (\Rightarrow) Let $h: W_2 \rightarrow W_2$ be a nonzero, since $W_1 \cong W_2$ then there exists an isomorphism $q: W_1 \rightarrow W_2$. By the following $W_1 \xrightarrow{q} W_2 \xrightarrow{h} W_2 \xrightarrow{q} W_1$, we have $f = q^{-1}o h o q \in End_R(W_1)$, $f \neq 0$ and since W_1 is L-small quasi-D, we get $Kerf \ll_L W_1$ and so, $q(Kerf) \ll_L W_2$ by [6]. By the same proof in [4], Kerh = q(Kerf), so $Kerh = q(Kerf) \ll_L W_2$ and hence $Kerh \ll_L W_2$.

 (\Leftarrow) By the same way we get the result.

Proposition(1.6). Let W be an R-module such that W is L-small quasi-D and quasi-injective and $V \le W$ such that V is direct summand of W, then V is L-small quasi-D.

Proof. Let $h : V \to V$ be a nonzero, since W is quasiinjective then there exist $q : W \to W$ such that qoi = ioh where *i* is inclusion map, and hence $q(V) = h(V) \neq 0$, also since W is L-small quasi-D so $q \neq 0$ and $Kerq \ll_L W$. Now since $Kerh \leq Kerq \ll_L W$, then $Kerh \ll_L W$ by [5] and since $Kerh \leq V$ and V is direct summand of W, we get $Kerh \ll_L V$ by [5], so V is L-small quasi-D.

Remark(1.7). Let W be an R-module and $V \le W$, if $\frac{W}{V}$ is L-small quasi-D, then it is not necessary that W is L-small quasi-D.

For example: Let $W = Z_6$ and $= 2Z_6$, then $\frac{Z_6}{2Z_6} \cong Z_2$ that is L-small quasi-D, but Z_6 is not L-small quasi-D.

Remark(1.8). : Let W be an R-module and $V \le W$, if W is L-small quasi-D, then it is not necessary that $\frac{W}{V}$ is L-small quasi-D.

For example: Let W = Z such that Z is L-small quasi-D and let V = 6Z, then $\frac{Z}{6Z} \cong Z_6$ which is not L-small quasi-D.

Proposition(1.9). Let W be an R-module such that W is L-small quasi-D and let $\frac{W}{U}$ is projective for all U is not L-small in W then $\frac{W}{V}$ is L-small quasi-D for all $V \le W$.

Proof. Suppose that $\frac{U}{V}$ is not L-small in $\frac{W}{V}$, so U is not L-small in W. Now Assume that $Hom\left(\frac{W/V}{U/V}, \frac{W}{V}\right) \neq 0$, but since $Hom\left(\frac{W/V}{U/V}, \frac{W}{V}\right) \cong Hom\left(\frac{W}{U}, \frac{W}{V}\right)$, then there exists $h: \frac{W}{U} \to \frac{W}{V}$ and $h \neq 0$, and since $\frac{W}{U}$ is projective, then there exists $q: \frac{W}{U} \to W$ such that $\emptyset oq = h; \emptyset$ is canonical projection, hence $\emptyset oq\left(\frac{W}{U}\right) = h\left(\frac{W}{U}\right) \neq 0$, so $q \neq 0$ but $q \in Hom\left(\frac{W}{U}, W\right)$, then $Hom\left(\frac{W}{U}, W\right) \neq 0$ and U is not L-small in W, so we get W is not L-small quasi-D and this contradiction, hence $\frac{W}{V}$ is L-small quasi-D.

Proposition(1.10). Let W be quasi-projective module and V is closed submodule in W and for each $q \in End_R(W)$ such that $q^{-1}(V) \ll_L W$, then $\frac{W}{V}$ is L-small quasi-D.

Proof. Suppose $h: \frac{W}{V} \to \frac{W}{V}$ be a nonzero, since W is quasi-projective, then there exists a homomorphism $q: W \to W$ such that $\emptyset oq = ho\emptyset$; \emptyset is canonical projection. Let $Kerh = \frac{L}{V} = \{k + V : h(k + V) = V\} = \{k + V : ho\emptyset(k) = V\} = \{k + V : \phi oq(k) = V\} = \{k + V : \phi oq(k) = V\} = \{k + V : q(k) \in V\} = \{k + V : k \in q^{-1}(V)\},$ hence $Kerh = \frac{q^{-1}(V)}{V}$ and since $q^{-1}(V) \ll_L W$ and V is closed submodule in W, then $\frac{q^{-1}(V)}{V} \ll_L \frac{W}{V}$ by [5], so we get $Kerh \ll_L \frac{W}{V}$ and $\frac{W}{V}$ is L-small quasi-D.

Proposition(1.11). Let W be an R-module then W is L-small quasi-D if and only if, there exists V is L-small in W, V is fully invariant such that for each $h \in End_R(W)$, $h \neq 0$, $h(W) \notin V$ and $\frac{W}{V}$ is L-small quasi-D.

Proof. (\Rightarrow) Choose V = (0), so V is L-small in W, V is fully invariant and for each $h \in End_R(W)$, $h \neq 0$, hence $h(W) \not\subset (0) = V$ and $\frac{W}{V} = \frac{W}{(0)} \cong W$ is L-small quasi-D.

(⇐) If V = (0), then W is L-small quasi-D. Suppose $V \neq (0)$, such that V is L-small in W, and let $h \in End_R(W)$, $h \neq 0$, define $q : \frac{W}{V} \rightarrow \frac{W}{V}$ by

q(w+V) = h(w) + V for all $w \in W$ and by the same proof in [4], q is well define and $q \neq 0$. Now since $\frac{W}{V}$ is Lsmall quasi-D, then $Kerq \ll_L \frac{W}{V}$, let $Kerq = \frac{L}{V} \ll_L \frac{W}{V}$ and hence $L \ll_L W$ by [5] and since $Kerh \leq L \ll_L W$, then by [5] we get $Kerh \ll_L W$ and so, W is L-small quasi-D.

References

- [1] Kasch F. Modules and rings. Academic Press, Inc-London; 1982.
- [2] Goodearl KR. Ring theory, nonsingular rings and modules, Marcel Dekkl. 1976.
- [3] Azumaya G, Mbuntum F, Varadarajan K, On M. Projective and M-injective modules. J Math 1975;95:9–16.
- [4] Inaam MA, Thaar YG. Small quasi-Dedekind modules, J. For Alqadisiyah for computer science and mathematics 3rd scientific conference. 2011. Vol.3, No.2.
- [5] Abduljaleel Amira A, Yaseen Sahira M. On large-small submodule and Large- hollow module. J Phys Conf 2021; 1818.
- [6] Amira A Abduljaleel. Large small submodules with related concepts. University of Baghdad.; 2022. Ph.d. Thesis.